Appendix 1

INFINITE SERIES

A.1.1 Introduction

As discussed in the Chapter 9 on Sequences and Series, a sequence a,, a,, ..., @, ...
having infinite number of terms is called infinite sequence and its indicated sum, i.e.,
a,ta,*a,+..+a +..is called an infinte series associated with infinite sequence.
This series can also be expressed in abbreviated form using the sigma notation, i.e.,

ata,ta+... ta +...=zak

n

In this Chapter, we shall study about some special types of series which may be
required in different problem situations.
A.1.2 Binomial Theorem for any Index

In Chapter 8, we discussed the Binomial Theorem in which the index was a positive
integer. In this Section, we state a more general form of the theorem in which the
index is not necessarily a whole number. It gives us a particular type of infinite series,
called Binomial Series. We illustrate few applications, by examples.

We know the formula

(I+x)y="C, +"C,x+... +"C, x
Here, n is non-negative integer. Observe that if we replace index n by negative
integer or a fraction, then the combinations ”C, do not make any sense.

We now state (without proof), the Binomial Theorem, giving an infinite series in
which the index is negative or a fraction and not a whole number.

Theorem The formula

m(m—l)x2 N m(m—l)(m—2)x3 N
1.2 123

(l+x)m =1+mx+

holds whenever |x| <1.

2024-25



INFINITE SERIES 315

Remark 1. Note carefully the condition | x | < 1, i.e., — I<x <1 is necessary when m
is negative integer or a fraction. For example, if we takex = —2 andm = — 2, we
obtain

(1-2)~ =1+(—2)(—2)+M(—2)2 +

or I=1+4+12+...
This is not possible

2. Note that there are infinite number of terms in the expansion of (1+ x)”, when m
is a negative integer or a fraction

o] ()
a” {1 +m§+@ (g)z +]

m(m _1) a" b +
1.2

Consider (a+ b)m

a" +ma" b+

This expansion is valid when P <1 or equivalently when | b | <| a]|.

The general term in the expansion of (a + b)" is

m(m —1)(m —2)...(m—r+1)a'”7’br
1.23..r

We give below certain particular cases of Binomial Theorem, when we assume

|x|<1, these are left to students as exercises:
(I+x) '=1l-x+x*-x+...
I-x)y'"=l+x+x*+x+...
(1+x)2=1-2x+3x% — 43+ ...

(1 —x)2=1+2x+3x*+4x° +. ..

Sl .

Example 1 Expand (1—%} ’ , when | x| <2.
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Solution We have

I+ — -
2 1 \2 1.2 2
x  3x7
= l+—+—+
4 32
A.1.3 Infinite Geometric Series
From Chapter 9, Section 9.5, a sequence a, a,, a,, ..., a,is called G.P,, if
Art1

W =T (constant) for k = 1, 2, 3, ..., n—1. Particularly, if we take a, = a, then the
3

resulting sequence a, ar, ar’, ..., ar'"! is taken as the standard form of G.P., where a is
first term and », the common ratio of G.P.

Earlier, we have discussed the formula to find the sum of finite series
a+ar+ar*+ ..+ ar" "which is given by

a (1 -7 )
S, =——"<
1-r
In this section, we state the formula to find the sum of infinite geometric series

a+ar+ar*+..+a”" '+ .. and illustrate the same by examples.

Let us consider the G.P. 1,

b

[SSHE N}

4
o

2
Here a=1,r= 3 We have
) ey
Sn=—2=3{1—(ﬂ ] (1)
3

Let us study the behaviour of (g} as n becomes larger and larger.
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n 1 5 10 20
2 n
(EJ 0.6667 0.1316872428 0.01734152992 0.00030072866

n
We observe that as n becomes larger and larger, (Ej becomes closer and closer to

zero. Mathematically, we say that as n becomes sufficiently large, (g) becomes

sufficiently small. In other words, as 7 — o0, (Ej — 0. Consequently, we find that

the sum of infinitely many terms is given by S = 3.
Thus, for infinite geometric progression a, ar, ar?, ..., if numerical value of common
ratio r is less than 1, then

G a(l—r”) v a _arn

n -7 1-r 1-r

ar”

In this case, ;» as n — oo since |r|<1 and then
r"—0 1

— 0. Therefore,
—-r

S, >

as n—>w.
1-r

Symbolically, sum to infinity of infinite geometric series is denoted by S. Thus,

we have s=_12
1-r
For example
1 1 1 1
(l) 1+5+?+?+ _1_—122
2
N AR
2 2 1—(—2j 1+—
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Example 2 Find the sum to infinity of the G.P. ;
-5 5 =5

4716 647

1
Solution Here a=— and r=—Z.Als0 |r|<1.

-5

Hence, the sum to infinity is = % =-1.
I+- =
4 4

A.1.4 Exponential Series
Leonhard Euler (1707 — 1783), the great Swiss mathematician introduced the number
e in his calculus text in 1748. The number e is useful in calculus as rin the study of the
circle.

Consider the following infinite series of numbers

1+l+i+l+i+... (1)
o2 31 4!

The sum of the series given in (1) is denoted by the number e

Let us estimate the value of the number e.

Since every term of the series (1) is positive, it is clear that its sum is also positive.

Consider the two sums

1 1 1 1

—t— o F— . - (2)

31 41 5! n!

1 1 1 1
and 7+ o 4 5 +ot e +... .. (3)
Observe that

1 1 1 1 1 1

§=g and? 4,whlchglves 3!<?

1 1 11 1 1

Z!ZQ and — PR which gives — A1 ?

11 11 11

—=——and

51”120 ? 16,whlchglves

51 %
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Therefore, by analogy, we can say that

1 1

7 F,Whenn>2

We observe that each term in (2) is less than the corresponding term in (3),

1 1 1 1 1 1 1 1

2!

( 1 1) (1 1 1 1 j

I+—+— |+ —=F+—+—+. . +—+...

1 2! 31 41 5| n!

< 1+l+L + L+L+i+...+ | +... 6
o2 (22 2° 2¢ 2"

1+1+1+1+1+1+ +1+
= Stort gt gttt

1 1
Adding (1 +F +—j on both sides of (4), we get,

Left hand side of (5) represents the series (1). Therefore e <3 and also e > 2 and
hence 2 < e < 3.

Remark The exponential series involving variable x can be expressed as

Example 3 Find the coefficient of x? in the expansion of e*** as a series in
powers of x.

Solution In the exponential series

replacing x by (2x + 3), we get
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2
e = 1+(2x+3)+(2x+3) .

1! 2!

(2x+3)" _ 3+2x)"

n! n!

Here, the general term is

. This can be expanded by the

Binomial Theorem as

1 n ., n n—1 n n—=2 2 n
;[3 #1137 (20) 47 €37 (20) 4 (20) |
. _"Cy3? . :
Here, the coefficient of x? is — Therefore, the coefficient of x? in the whole
n!

series 1S

o n n—-2~2 0 _ n—2
3 C,3"%2 22n(n 1)3

— n! ~ n!

x 3n—2
2,,22(n—2)! [usingn!=n(n—-1)(n — 2)!]

2 3
= 2{1+3+3—+3—+..}
n 21 3

=2¢e .
Thus 2¢3 is the coefficient of x? in the expansion of >,
Alternatively ¥ = &3 | ¥

2 3
= 1! 21 3!

22
3 _ 3
Thus, the coefficient of x2 in the expansion of e is € .?—Ze

Example 4 Find the value of €%, rounded off to one decimal place.

Solution Using the formula of exponential series involving x, we have
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Putting x =2, we get

5 2 2% 2% 2t 2 2t
e=l+—+—+—+—+—+—
120 31 41 51 6!

= 1+2+2+f+2+i+i+
3 3 15 45
> the sum of first seven terms > 7.355.

On the other hand, we have

Thus, €? lies between 7.355 and 7.4. Therefore, the value of €%, rounded off to one

decimal place, is 7.4.

A.1.5 Logarithmic Series

Another very important series is logarithmic series which is also in the form of infinite
series. We state the following result without proof and illustrate its application with an
example.

Theorem If | x | <1, then

2 3
loge(l+x)=x—%+x?—...

The series on the right hand side of the above is called the logarithmic series.

The expansion of log, (1+x) is valid for x = 1. Substituting x = 1 in the
expansion of log, (1+x), we get

1 1 1
log,2=1-—+——+...
2 3 4
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Example 5If a, B are the roots of the equation x* — px+¢ =0, prove that

2 2 3 3
o+ o+
B o @B

loge(1+px+qx2)=((x+[3)x—

2 3
2 o B By
Solution Right hand side = | ¥ = + 3 _W]{Bx_T-FT_'"
= loge(1+ocx)+log(1+[3x)
= 1Oge(1+(on+B)x+oanz)

= log, (1 + px+ qxz) = Left hand side.

Here, we have used the facts a+B=p and af=¢g . We know this from the

given roots of the quadratic equation. We have also assumed that both |ax|< 1 and
Bx|<1.

4

®  —

o,
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Appendix 2

MATHEMATICAL MODELLING

A.2.1 Introduction

Much of our progress in the last few centuries has made it necessary to apply
mathematical methods to real-life problems arising from different fields — be it Science,
Finance, Management etc. The use of Mathematics in solving real-world problems
has become widespread especially due to the increasing computational power of digital
computers and computing methods, both of which have facilitated the handling of
lengthy and complicated problems. The process of translation of a real-life problem
into a mathematical form can give a better representation and solution of certain
problems. The process of translation is called Mathematical Modelling.

Here we shall familiaries you with the steps involved in this process through
examples. We shall first talk about what a mathematical model is, then we discuss the
steps involved in the process of modelling.

A.2.2 Preliminaries

Mathematical modelling is an essential tool for understanding the world. In olden days
the Chinese, Egyptians, Indians, Babylonians and Greeks indulged in understanding
and predicting the natural phenomena through their knowledge of mathematics. The
architects, artisans and craftsmen based many of their works of art on geometric
prinicples.

Suppose a surveyor wants to measure the height of a tower. It is physically very
difficult to measure the height using the measuring tape. So, the other option is to find
out the factors that are useful to find the height. From his knowledge of trigonometry,
he knows that if he has an angle of elevation and the distance of the foot of the tower
to the point where he is standing, then he can calculate the height of the tower.

So, his job is now simplified to find the angle of elevation to the top of the tower
and the distance from the foot of the tower to the point where he is standing. Both of
which are easily measurable. Thus, if he measures the angle of elevation as 40° and
the distance as 450m, then the problem can be solved as given in Example 1.
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Example 1 The angle of elevation of the top of a tower from a point O on the ground,
which is 450 m away from the foot of the tower, is 40°. Find the height of the tower.

Solution We shall solve this in different steps.

Step 1 We first try to understand the real problem. In the problem a tower is given and
its height is to be measured. Let / denote the height. It is given that the horizontal
distance of the foot of the tower from a particular point O on the ground is 450 m. Let
d denotes this distance. Then d = 450m. We also know that the angle of elevation,
denoted by 0, is 40°.

The real problem is to find the height / of the tower using the known distance d
and the angle of elevation 0.

Step 2 The three quantities mentioned in the problem are height,
distance and angle of elevation.

So we look for a relation connecting these three quantities.
This is obtained by expressing it geometrically in the following
way (Fig 1).

AB denotes the tower. OA gives the horizontal distance h
from the point O to foot of the tower. ZAOB is the angle of

elevation. Then we have
(]

h 0440 A
tan® = — or h=d tan 0 .. (1) 450 m
d Fig1

This is an equation connecting 0, 4 and d.

Step 3 We use Equation (1) to solve 4. We have 6 = 40°. and d = 450m. Then we get
h = tan 40° x 450 =450 x 0.839 =377.6m

Step 4 Thus we got that the height of the tower approximately 378m.

Let us now look at the different steps used in solving the problem. In step 1, we
have studied the real problem and found that the problem involves three parameters
height, distance and angle of elevation. That means in this step we have studied the
real-life problem and identified the parameters.

In the Step 2, we used some geometry and found that the problem can be
represented geometrically as given in Fig 1. Then we used the trigonometric ratio for
the “tangent” function and found the relation as

h=dtan 0

So, in this step we formulated the problem mathematically. That means we found
an equation representing the real problem.
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In Step 3, we solved the mathematical problem and got that 2 =377.6m. That is

we found

Solution of the problem.
In the last step, we interpreted the solution of the problem and stated that the

height of the tower is approximately 378m. We call this as

Interpreting the mathematical solution to the real situation

In fact these are the steps mathematicians and others use to study various real-

life situations. We shall consider the question, “why is it necessary to use mathematics
to solve different situations.”

Here are some of the examples where mathematics is used effectively to study

various situations.

1.

Proper flow of blood is essential to transmit oxygen and other nutrients to various
parts of the body in humanbeings as well as in all other animals. Any constriction
in the blood vessel or any change in the characteristics of blood vessels can
change the flow and cause damages ranging from minor discomfort to sudden
death. The problem is to find the relationship between blood flow and physiological
characteristics of blood vessel.

In cricket a third umpire takes decision of a LBW by looking at the trajectory of
a ball, simulated, assuming that the batsman is not there. Mathematical equations
are arrived at, based on the known paths of balls before it hits the batsman’s leg.
This simulated model is used to take decision of LBW.

Meteorology department makes weather predictions based on mathematical
models. Some of the parameters which affect change in weather conditions are
temperature, air pressure, humidity, wind speed, etc. The instruments are used to
measure these parameters which include thermometers to measure temperature,
barometers to measure airpressure, hygrometers to measure humidity,
anemometers to measure wind speed. Once data are received from many stations
around the country and feed into computers for further analysis and interpretation.

Department of Agriculture wants to estimate the yield of rice in India from the
standing crops. Scientists identify areas of rice cultivation and find the average
yield per acre by cutting and weighing crops from some representative fields.
Based on some statistical techniques decisions are made on the average yield of
rice.

How do mathematicians help in solving such problems? They sit with experts in
the area, for example, a physiologist in the first problem and work out a
mathematical equivalent of the problem. This equivalent consists of one or more
equations or inequalities etc. which are called the mathematical models. Then
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solve the model and interpret the solution in terms of the original problem. Before
we explain the process, we shall discuss what a mathematical model is.

A mathematical model is a representation which comprehends a situation.
An interesting geometric model is illustrated in the following example.

Example 2 (Bridge Problem) Konigsberg is a town on the Pregel River, which in the
18th century was a German Island C

town, but now is Russian. Within River Bank B

the town are two river islands

that are connected to the banks

with seven bridges as shown

in (Fig 2).

People tried to walk around Island D
the town in a way that only
crossed each bridge once, but it
proved to be difficult problem.
Leonhard Euler, a Swiss Fig 2
mathematician in the service of
the Russian empire Catherine the Great, heard about the problem. In 1736 Euler proved
that the walk was not possible to do. He proved this by inventing a kind of diagram
called a network, that is made up of vertices .

. o . River bank
(dots where lines meet) and arcs (lines) (Fig3). A

He used four dots (vertices) for the two
river banks and the two islands. These have
been marked A, B and C, D. The seven lines yqand Island D
(arcs) are the seven bridges. You can see that
3 bridges (arcs) join to riverbank, A, and 3 join
to riverba%nlf B. 5 bridges (ar(?s) join to island River bank
C, and 3 join to island D. This means that all B
the vertices have an odd number of arcs, so
they are called odd vertices (An even vertex
would have to have an even number of arcs joining to it).

Remember that the problem was to travel around town crossing each bridge only
once. On Euler’s network this meant tracing over each arc only once, visiting all the
vertices. Euler proved it could not be done because he worked out that, to have an odd
vertex you would have to begin or end the trip at that vertex. (Think about it). Since
there can only be one beginning and one end, there can only be two odd vertices if you
are to trace over each arc only once. Since the bridge problem has 4 odd vertices, it
just not possible to do!

River Bank A

Fig 3
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After Euler proved his Theorem, much River bank
water has flown under the bridges in Konigsberg. A
In 1875, an extra bridge was built in Konigsberg,
joining the land areas of river banks A and B

(Fig4). Is it possible now for the Konigsbergians 181and € Island D
to go round the city, using each bridge only once?
Here the situation will be as in Fig 4. After )
the addition of the new edge, both the vertices Rlve%bank
A and B have become even degree vertices. Fig 4

However, D and C still have odd degree. So, it
is possible for the Konigsbergians to go around the city using each bridge exactly once.

The invention of networks began a new theory called graph theory which is now
used in many ways, including planning and mapping railway networks (Fig 4).

A.2.3 Whatis Mathematical Modelling?

Here, we shall define what mathematical modelling is and illustrate the different
processes involved in this through examples.

Definition Mathematical modelling is an attempt to study some part (or form) of the
real-life problem in mathematical terms.

Conversion of physical situation into mathematics with some suitable
conditions is known as mathematical modelling. Mathematical modelling is
nothing but a technique and the pedagogy taken from fine arts and not from the
basic sciences. Let us now understand the different processes involved in Mathematical
Modelling. Four steps are involved in this process. As an illustrative example, we
consider the modelling done to study the motion of a simple pendulum.

Understanding the problem

This involves, for example, understanding the process involved in the motion of simple
pendulum. All of us are familiar with the simple pendulum. This pendulum is simply a
mass (known as bob) attached to one end of a string whose other end is fixed at a
point. We have studied that the motion of the simple pendulum is periodic. The period
depends upon the length of the string and acceleration due to gravity. So, what we need
to find is the period of oscillation. Based on this, we give a precise statement of the
problem as

Statement How do we find the period of oscillation of the simple pendulum?
The next step is formulation.

Formulation Consists of two main steps.
1. Identifying the relevant factors In this, we find out what are the factors/
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parameters involved in the problem. For example, in the case of pendulum, the factors
are period of oscillation (T), the mass of the bob (m), effective length (/) of the pendulum
which is the distance between the point of suspension to the centre of mass of the bob.
Here, we consider the length of string as effective length of the pendulum and acceleration
due to gravity (g), which is assumed to be constant at a place.

So, we have identified four parameters for studying the problem. Now, our purpose
is to find T. For this we need to understand what are the parameters that affect the
period which can be done by performing a simple experiment.

We take two metal balls of two different masses and conduct experiment with
each of them attached to two strings of equal lengths. We measure the period of
oscillation. We make the observation that there is no appreciable change of the period
with mass. Now, we perform the same experiment on equal mass of balls but take
strings of different lengths and observe that there is clear dependence of the period on
the length of the pendulum.

This indicates that the mass m is not an essential parameter for finding period
whereas the length / is an essential parameter.

This process of searching the essential parameters is necessary before we go
to the next step.

2. Mathematical description This involves finding an equation, inequality or a
geometric figure using the parameters already identified.

In the case of simple pendulum, experiments were conducted in which the values
of period T were measured for different values of /. These values were plotted on a
graph which resulted in a curve that resembled a parabola. It implies that the relation
between T and / could be expressed

T =k (D)

4o’ .
It was found that & = ——. This gives the equation
g

!
T=2r |-
2 . (2)

Equation (2) gives the mathematical formulation of the problem.

Finding the solution The mathematical formulation rarely gives the answer directly.
Usually we have to do some operation which involves solving an equation, calculation
or applying a theorem etc. In the case of simple pendulums the solution involves applying
the formula given in Equation (2).
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The period of oscillation calculated for two different pendulums having different
lengths is given in Table 1

Table 1
/ 225 cm 275cm
T 3.04 sec 3.36 sec

The table shows that for / =225 cm, T = 3.04 sec and for / =275 cm, T = 3.36 sec.

Interpretation/Validation

A mathematical model is an attempt to study, the essential characteristic of a real life
problem. Many times model equations are obtained by assuming the situation in an
idealised context. The model will be useful only if it explains all the facts that we would
like it to explain. Otherwise, we will reject it, or else, improve it, then test it again. In
other words, we measure the effectiveness of the model by comparing the results
obtained from the mathematical model, with the known facts about the real
problem. This process is called validation of the model. In the case of simple
pendulum, we conduct some experiments on the pendulum and find out period of
oscillation. The results of the experiment are given in Table 2.

Table 2
Periods obtained experimentally for four different pendulums

Mass (gms) Length (cms) Time (secs)
385 275 3.371
225 3.056
230 275 3.352
225 3.042

Now, we compare the measured values in Table 2 with the calculated values given in
Table 1.

The difference in the observed values and calculated values gives the error. For

example, for /=275 cm, and mass m = 385 gm,
error =3.371 —-3.36 =0.011
which is small and the model is accepted.

Once we accept the model, we have to interpret the model. The process of
describing the solution in the context of the real situation is called interpretation
of the model. In this case, we can interpret the solution in the following way:

(a) The period is directly proportional to the square root of the length of the
pendulum.
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(b) Itis inversely proportional to the square root of the acceleration due to gravity.

Our validation and interpretation of this model shows that the mathematical model
is in good agreement with the practical (or observed) values. But we found that there
is some error in the calculated result and measured result. This is because we have
neglected the mass of the string and resistance of the medium. So, in such situation we
look for a better model and this process continues.

This leads us to an important observation. The real world is far too complex to
understand and describe completely. We just pick one or two main factors to be
completely accurate that may influence the situation. Then try to obtain a simplified
model which gives some information about the situation. We study the simple situation
with this model expecting that we can obtain a better model of the situation.

Now, we summarise the main process involved in the modelling as

(a) Formulation (b) Solution (¢) Interpretation/Validation
The next example shows how modelling can be done using the techniques of finding
graphical solution of inequality.

Example 3 A farm house uses atleast 800 kg of special food daily. The special food is
a mixture of corn and soyabean with the following compositions

Table 3
Material | Nutrients present per Kg| Nutrients present per Kg | Cost per Kg
Protein Fibre
Corn .09 .02 Rs 10
Soyabean .60 .06 Rs 20

The dietary requirements of the special food stipulate atleast 30% protein and at most
5% fibre. Determine the daily minimum cost of the food mix.

Solution Step 1 Here the objective is to minimise the total daily cost of the food which
is made up of corn and soyabean. So the variables (factors) that are to be considered
are

x = the amount of corn
y = the amount of soyabean
z = the cost
Step 2 The last column in Table 3 indicates that z, x, y are related by the equation
z=10x+ 20y .. (1)
The problem is to minimise z with the following constraints:
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(a) The farm used atleast 800 kg food consisting of corn and soyabean
ie.,x+y>800 .. (2)
(b) The food should have atleast 30% protein dietary requirement in the proportion
as given in the first column of Table 3. This gives
0.09x + 0.6y > 0.3 (x +y) .. (3)

(c) Similarly the food should have atmost 5% fibre in the proportion given in
2nd column of Table 3. This gives

0.02x + 0.06 y < 0.05 (x + y) .. (4
We simplify the constraints given in (2), (3) and (4) by grouping all the coefficients
of x, y.

Then the problem can be restated in the following mathematical form.
Statement Minimise z subject to

x+y>2800
0.21x-.30y<0
0.03x - .01y >0

This gives the formulation of the model.

Step 3 This can be solved graphically. The shaded region in Fig 5 gives the possible
solution of the equations. From the graph it is clear that the minimum value is got at the
point (470.6,329.4) i.e., x =470.6 and y = 329.4.

Minimise z

1500 s/ " TTme-all
1000
N

500

| | |
0 500 1000 1500

Optimum: x = 470.6 kg
y=3294kg
z=Rs 11294

Fig 5
This gives the value of zas z=10 x 470.6 + 20 x 329.4 = 11294
This is the mathematical solution.
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Step 4 The solution can be interpreted as saying that, “The minimum cost of the
special food with corn and soyabean having the required portion of nutrient contents,
protein and fibre is Rs 11294 and we obtain this minimum cost if we use 470.6 kg of
corn and 329.4 kg of soyabean.”

In the next example, we shall discuss how modelling is used to study the population
of a country at a particular time.

Example 4 Suppose a population control unit wants to find out “how many people will
be there in a certain country after 10 years”

Step 1 Formulation We first observe that the population changes with time and it
increases with birth and decreases with deaths.

We want to find the population at a particular time. Let # denote the time in years.
Then ¢ takes values 0, 1, 2, ..., = 0 stands for the present time, # = 1 stands for the next
year etc. For any time ¢, let p (¢) denote the population in that particular year.

Suppose we want to find the population in a particular year, say 7, = 2006. How
will we do that. We find the population by Jan. 1st, 2005. Add the number of births in
that year and subtract the number of deaths in that year. Let B(¢) denote the number of
births in the one year between ¢ and ¢ + 1 and D(¢) denote the number of deaths
between ¢ and ¢ + 1. Then we get the relation

P(t+1)=P(H)+B(H-D ()
Now we make some assumptions and definitions

B ()
1. P_(t) is called the birth rate for the time interval ¢ to ¢ + 1.

D (t)
2. P_(t) is called the death rate for the time interval ¢ to ¢ + 1.

Assumptions

1. The birth rate is the same for all intervals. Likewise, the death rate is the same
for all intervals. This means that there is a constant b, called the birth rate, and a
constant d, called the death rate so that, for all >0,

b=B—(t) and d=D—(t) (D)
P () P ()

2. There is no migration into or out of the population; i.e., the only source of population
change is birth and death.
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As a result of assumptions 1 and 2, we deduce that, for ¢ > 0,
P (t+ 1) =P(t) + B(?) - D(?)
= P(¢) + bP(¢) — dP(¥)
=1 +b-d) P@ .. (2)
Setting t= 0 1in (2) gives
P(1)=(1 +b - d)P (0) ..(3)
Setting # =1 in Equation (2) gives
PR)=(1+b-d)P (1)
=(1+b-d)y(1+b-d)P(0) (Using equation 3)
= (1 + b —d)* P(0)
Continuing this way, we get
P()=(1+b—d)P(0) . (4)
fort=0,1, 2, ... The constant 1 + b — d is often abbreviated by » and called the growth
rate or, in more high-flown language, the Malthusian parameter, in honor of Robert
Malthus who first brought this model to popular attention. In terms of », Equation (4)
becomes
P($) = P(O)r" t=0,1,2,.. .. (5

P(?) is an example of an exponential function. Any function of the form cr ‘, where ¢
and r are constants, is an exponential function.
Equation (5) gives the mathematical formulation of the problem.

Step 2 — Solution
Suppose the current population is 250,000,000 and the rates are »=0.02 and d=0.01.
What will the population be in 10 years? Using the formula, we calculate P(10).
P(10)=(1.01)""(250,000,000)
=(1.104622125) (250,000,000)
=276,155,531.25

Step 3 Interpretation and Validation

Naturally, this result is absurd, since one can’t have 0.25 of a person.
So, we do some approximation and conclude that the population is 276,155,531
(approximately). Here, we are not getting the exact answer because of the assumptions
that we have made in our mathematical model.

The above examples show how modelling is done in variety of situations using
different mathematical techniques.

2024-25



334 MATHEMATICS

Since a mathematical model is a simplified representation of a real problem, by its
very nature, has built-in assumptions and approximations. Obviously, the most important
question is to decide whether our model is a good one or not i.e., when the obtained
results are interpreted physically whether or not the model gives reasonable answers.
If a model is not accurate enough, we try to identify the sources of the shortcomings.
It may happen that we need a new formulation, new mathematical manipulation and
hence a new evaluation. Thus mathematical modelling can be a cycle of the modelling
process as shown in the flowchart given below:

> | ASSUMPTIONS/AXIOMS
I
FORMULATION
y’
SOLUTION
)
INTERPRETATION
"
N VALIDATION

NO YES
< SATISFIED > STOP
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‘ ANSWERS ’

|EXERCISE 1.1 |

(1), (iv), (v), (vi), (vii) and (viii) are sets.
(i) e (i) e (iii) ¢ (vi) e (v) e (vi) ¢
(i A=1{3,-2,-1,0,1,2,3,4,5,6} (i) B={l,
(i) C={17,26,35,44,53,62,71,80} (iv) = { }
(v) E={T, RLGO,N,M,E, Y} (vi F={ E T, R}
(1) {x:x=3n,nexand1<n<4} () {x:x=2"neNvand1<n<5}
(i) {x:x=5,nevand 1<n<4 } (iv) {x:xisanevennatural number}
(v) {x:x=n*neNnand1<n<10}
(i A={1,3,5...} @@ B=1{0,1,2,3,4}
@) C={-2,-1,0,1,2} vy D={L,0,Y,A}
(v) E={February, April, June, September, November }
i) F={bc d fghj}
() <> (c) (i) «> (a) (iii) <> (d) (iv) <> (b)

| EXERCISE 1.2 |

.5}

@), (i), (iv)

(i) Finite  (ii) Infinite (i) Finite (iv) Infinite (v) Finite
(i) Infinite (i) Finite (i) Infinite (iv) Finite (v) Infinite
(1) Yes (i) No (i) Yes (iv) No

(i) No (i) Yes 6. B=D,E=G

| EXERCISE 1.3 |
(i) < (i) & (i) < (iv) « v) « (vi)
(vi) <
(i) False (i) True (i) False (iv) True (v) False  (vi) True

. () as {34} €A, (v) as 1 €A, (vii) as {1,2, 5} A,

(viii) as 3¢ A, (ix) as ¢ < A, (xi) as ¢ C A,

@) ¢, {a} o, {a},{b},{ab}

@) ¢, {15 {25 {3}, {L2}, {1,3},{2,3},{1,2,3} (iv) ¢
(i) (—4, 6] () (-12,-10) (iii) [0,7)

(iv) [3,4]

(i {x:x eR,-3<x<0} (@ {x:x eR,6<x<12}

@) {x:x eR,6<x<12} (v) {x R:—=23<x<5} 8 (iii)
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| EXERCISE 1.4 |
1 XuyY={1,2,3,5} (i) AuB={a b ceiou}
() AuB={x:x=1,2,4,50ramultiple of 3 }
(iv) AuB={x:1<x<10,x e N} (v) AuB={1,2,3}
2. Yes,AuB={a bc} 3. B
4. (@) {1,2,3,4,56} (i) {1,2,3,4,5,6,7,8} (i) {3,4,5,6,7,8}
(iv) {3,4,5,6,7,8,9,10} (v){1,2,3,4,5,6,7,8}

ok
.

(vi) {1,2,3,4,5,6,7,8,9,10} (vi) {3,4,5,6,7,8,9,10}
5. () XnY={1,3} (i) AnB={a} g {3} (v o (v)o
6. (1) {7,911} @) {11,13} (i) ¢ (iv) {11}
V) ¢ (i) {7,9,11} (vi)) ¢
(vii) {7,9,11} (ix) {7,9,11} (x) {7,9,11,15}
7. () B @) C (i) D @{iv) ¢
v) {2} (vi) {x:xisan odd prime number } 8. (i)
9. (1) {3,6,9,15,18,21} (i) {3,9,15,18,21} (iii) {3,6,9,12,18,21}
(iv) {4,8,16,20} (v) {2,4,8,10,14,16 } (vi) {5,10,20}
(vi)) {20} (viii) {4,8,12,16} (ix) {2,6,10,14}
(x) {5,10,15} (xi) {2,4,6,8,12,14, 16} (xii) {5,15,20}
10. () {ac} () {f, g} (i) {b,d }
11. Setofirrational numbers 12. () F (i) F (i) T (v) T
| EXERCISE 1.5 |
1. (i) {5,6,7,8,9} @) {1,3,5,7,9} (i) {7,8,9}
i) {5,7,9} v) {1,2,3,4} (vi) {1,3,4,5,6,7,9}
2. () {dyef g h} () {a b,c,h} (i) {b,d,f,h}

(iv) {b,c,d, e}
3. (1) {x:xisan odd natural number }
(i) {x:x isan even natural number }
@) {x:x € Nanduxisnotamultiple of 3 }
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(iv) {x:xisa positive composite number or x =1 }
(v) {x:xisapositive integer which is not divisible by 3 or not divisible by 5}
(vi) {x:x e Nandx is not a perfect square }

(vil) { x:x e N and x is not a perfect cube }

(vii) {x:x e Nandx =3 } (ix) {x:xeNandx = 2}

9
x) {x:xeNandx<7} (xi) {x:xeNandx < 5}
A is the set of all equilateral triangles.

@ U (i) A (iii) ¢ ) ¢

Miscellaneous Exercise on Chapter 1

Ac B, AcC,BcC, DcA, DcB, DcC

(i) False (i) False (i) True (iv) False (v) False
(vi) True

We may takeA={1,2},B={1,3},C={2,3}

| EXERCISE 2.1|

. x=2andy=1 2. The number of elements in A x B is 9.

GxH=1{(7,5),(7,4),(7,2),(8,5),(8,4),(8,2)}
HxG={(5,7),(5,8),4,7),4,738),2,7),2,8)}

(i) False

P x Q= {(m,n), (m, m), (n, n), (n, m)}

(i) True
(i) True
AxA={-1,-1),11,(1,-1),1,1)}
AxAxA={-1,-1,-1),(-1,-1,1),(-1,1,-1), (-1, 1, 1), (1,-1,-1), (1, -1, 1),
(1,1,-1),(1, 1, 1)}
A= {aa b}a B= {X,y}
AxB={(1,3),(1,4),2,3),(2,4)}
A x B will have 2* = 16 subsets.

A={x,y,z} and B = {1,2}
A={-1,0, 1}, remaining elements of
A x Aare (-1, -1), (-1, 1), (0,-1), (0, 0), (1, 1), (1, 0), (1, 1)
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| EXERCISE 2.2

. R=1{(1,3),(2,6),(3,9), (4, 12)}

Domain of R = {1, 2, 3, 4}
Range of R ={3, 6,9, 12}

Co domain of R = {1, 2, ..., 14}
R={(1,6),(2,7),(3,8)}
Domain of R = {1, 2, 3}
Range of R = {6, 7, 8}

3. R={(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)}

(9]

i R={(x,y):y=x-2forx=5,6,7}
(i) R=1{(5,3),(6,4),(7,5)}. Domain of R = {5, 6, 7}, Range of R={3,4, 5}

i) R={1,1),(12),(1,3),(1,4),(1,6), (24, (2,6),(2,2),(4,4),(6,06),
(3,3),(3,6)}

(i) Domain of R = {1, 2, 3, 4, 6}

(i) Range of R=1{1,2,3,4,6}
Domain of R=1{0, 1,2, 3,4,5,} 7. R={(2,8),(3,27),(5,125),(7,343)}
Range of R=1{5,6,7,8,9, 10}
No. of relations from A into B = 2° 9. Domain of R=7

Range of R=7Z

| EXERCISE 2.3 |

(1) yes, Domain={2,5,8, 11, 14, 17}, Range = {1}
(i) yes, Domain=(2,4,6,8, 10,12, 14}, Range= {1,2,3,4,5,6,7}
(i)  No.
(i) Domain =R, Range = (- o, 0]
(i) Domain of function = {x : -3 <x < 3}
Range of function = {x : 0 <x <3}

@) fO)=-5 (@) f(NH=9 @) f(3)=-11

1 t(0)=32 (i) t(28) = % (iii) t(-10)=14 (iv) 100
(i) Range = (— o, 2) (i) Range =[2, o) (i) Range =R
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Miscellaneous Exercise on Chapter 2

2.1 3. Domain of function is set of real numbers except 6 and 2.
Domain =[1, o), Range = [0, «)

Domain = R, Range = non-negative real numbers

Range =10, 1)

f+gx=3x-2 8.a=2,b=-1 9.(i) No (i) No  (iii)No
(f-gx=-x+4

(i}c:x_ﬂ, 23

g 2x -3 2
(i) Yes, (i) No 11. No 12. Rangeof f={3,5,11,13}
| EXERCISE3.1 |
N . 19m L. AT . 26m
0 3 (i) =5 (i) = (iv) =
(1) 39°22'30" (i1))—229°5'27" (iii) 300° (iv) 210°
20m
121 4.12° 36’ 5. T 6. 5:4
L2 L1 L1
M 13 (if) 5 (i) >3
|EXERCISE 3.2 |
3 2 1
sinx=——,cosecx=——,secx=—2,tanx=x/§,cotx=—
2 NE) NG
4
coseC X =—,Co0sS xX=——,8eCx=——,tan x=——,cot x =——
3 5 4 4 3
. 4 5 3 5 4
SIn X=——,C08eC X=——,C0S X =——,SeC x=——,tan x = —
5 5 3 3
. 12 13 5 12 5
SiInx=——,C08€CX=——,C08x=—,tan x=——,cot x =——
13 13 5 12
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. 5 13 12 1
sIn X =—, COSEC X =—, COS X = ——, S€C X = ——
13 5 13 1

2 8. 3 9.73

& -
R

| EXERCISE 3.3 |

|
0 S5 (i) 2 - 3

Miscellaneous Exercise on Chapter 3

25 ¥5 1
5752

\/8+j\/g’\/8—2\/3’4+\/g

4

|[EXERCISE 4.1

3+ 0 2. 0+i0 3. 041

2 7 6 _Q_ﬂ 7 £+l§
o 5 10 © 303
242 . -22 107 4 3
——=260 10. —/—i—— 11. —_+i—
27 3 27 25 25

0+ il 14. 0—i 7‘2/5
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Miscellaneous Exercise on Chapter 4

Yy 307+599i
442
7 7. 20 —y—3 9. 2
1 12. 0 14. 4
| EXERCISE 5.1 |
G) {1,2,3,4) (i) {.—3,-2,-1,0,1,2,34,}
() No Solution @) {.—-4,-3}
() {..—2,-1,0,1} (i) (-o0,2)
() {-1,0,1,2,3,..} (i) (-2, o)
(~4, o) 6. (~o0,-3) 7. (-0, 3] 8. (-0, 4]
(-0,6)  10. (~», —6) 11. (w0, 2] 12. (- oo, 120]
(4, o) 14. (-0, 2] 15. (4, ) 16. (~o, 2]
Co3), o> 18 [Loo), e >
01234 -101
>4
(-1, o), %if_m_> 20. [—%,wl <o >
35 22. 82
(5.7),(7.9) 24, (6,8),(8,10),(10,12)

9 cm

26. Greater than or equal to 8cm but less than or equal to 22cm
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Miscellaneous Exercise on Chapter 5

[2, 3] 2. (0,1] 3. [-4,2]
(—80 —10} [1 11}
(-23, 2] 5. 3 3 6. "3
-5,5)
-5.5 — 00 E=—tp—0 o—— >
3,9 S s 432001 2343567809°
. -1,7)
-1,7 —00 €—4+—+—0 o—t—+—>
1.7 PSS 0012345678010
(5, 00)
5, —00 €—t+—t—t—t+—+—+—0
(5, ) m\—1012345678>m
[-7,11]
-7, 11] |
—0c0 | S
76-5-4-3-2-10123 4567 8910111213

Between 20°C and 25°C
More than 320 litres but less than 1280 litres.
More than 562.5 litres but less than 900 litres.

9.6 <MA < 16.8
|EXERCISE 6.1 |
(i)125,(i) 60. 2. 108 3. 5040 4. 336
8 6. 20
| EXERCISE 6.2 |
(1)40320,(i)) 18 2. 30,No 3. 28 4. 64
(i) 30, (i) 15120
EXERCISE 6.3 |
504 2. 4536 3. 60 4. 120,48
56 6. 9 7. ()3, ()4 8. 40320
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(1) 360, (ii) 720, (iii) 240 10. 33810
(i) 1814400, (ii) 2419200, (iii) 25401600

| EXERCISE 6.4
45 2. (i)5,(ii)6 3. 210 4. 40
2000 6. 778320 7. 3960 8. 200
35

Miscellaneous Exercise on Chapter 6

3600 2. 1440 3. (i) 504, (ii) 588, (iii) 1632
907200 5. 120 6. 50400 7. 420
‘C x*C, 9. 2880 10. 2CH+*C, 11. 151200

EXERCISE7.1 |
1-10x + 40x* — 80x* + 80x* — 32x°

3240 20 5, x°
—5——3+——5x+—x -

X x X 8 32

64 x5 —576 x5 + 2160 x* — 4320 x*>+ 4860 x> — 2916 x + 729
X 5 10 10 5 1
—t—t—x+—+—+—

243 81 27 9x 3x¥ X°

x® +6x* +15x° +2o+1—§ +i4 +i6

X X X
884736 7. 11040808032 8. 104060401
9509900499 10. (1.1)!° > 1000  11. 8(a’b + ab®); 406

2(x¢ + 156 + 152 + 1), 198

Miscellaneous Exercise on Chapter 7

396/6 3. 2a%+ 12a° - 10a* — 4a* + 2
0.9510

16 8 32 16 2 o Xt

—t -+t 4x+—+—+—-5

X X X’  x 2 2 16

27x% — 54ax’ + 117a*x* — 116a°x* + 117a** — 54a’°x + 27a°
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EXERCISE 8.1

3,8,15,24,35 2 12345 3. 2,4,8,16and 32
5 O B ’ . 2’ 3’4’5’6 . , 4, 0, an
—l l l éandZ 5. 25,-125,625,-3125, 15625
6626 6 T e e e
3921 49
-, — 2land— . —
2°2°2 2 7. 65,93 128
729 10 @
23

3,11,35,107,323; 3+11+35+107+323+..

-1 -1 -1 -1 -1 -1 -1 -1
—1,—,—,—,— =1+ — |+ — |[+] — |+ — |+
2 6 24120 (2) [6) [24) (120)

35 8
2,2,1,0,-1; 2424140+ (1) +.. 14. 1,2,—,—and—
2’375
| EXERCISE 8.2 |
PE 2. 3072 4. —2187
1 20
(@) 13", (b) 120, (c) 9" 6. +1 7. g[l—(o.l) }
n n 3 2n
ﬁ(ﬁﬂ)(ﬁ-l} 0 [l‘(‘“)} " o (1-x7)
2 ° - ¢ 1_ 2
l+a X
22+3(311 ) 12. rzéorg;Termsalreg,l,éoré,l,g
25 572275
16 16/,
4 14. 7,2,7(2 —1) 15. 2059 or 463
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—4 B0 48163264, 18. @(10"—1)—%
333 81 9
496 20. R 21. 3,-6,12,-24 26. 9and27

-1
n=— 30. 120,480,30 (2") 31. Rs 500 (1.1)'
x2—16x+25=0

Miscellaneous Exercise on Chapter 8

4 2. 160:6 3. +3 4. 8,16,32
50 5n 2
. il 10}1_1 - .o - __= 1_10*}1
4 1. G) 81( ) 5 o () 27( )
1680

Rs16680 14. Rs39100  15. Rs43690 16. Rs 17000; 20,000
Rs5120  18. 25days

| EXERCISE 9.1

121 .
——square unit.

2
(0, @), (0, — a) and (=v3a,0) or (0, a), (0, - ), and (v34,0)

. .. 15 1
@ |J’2 _J’1|’ (i1) |x2 —x1| 4. BE 0 5, ——
-3 9. 135°

1
1 and 2, or 5 and 1, or — 1 and -2, or B and — 1

| EXERCISE 9.2
y=0andx=0 2. x-2y+10=0 3. y=mx
(\@+1)x—(ﬁ—l)y=4(ﬁ—l) 5. 2x+y+6=0
x-3y+24320 7. Sx+3y+2=0
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8. 3x-4+8=0 9. Sx—y+20=0

10, (A+nx+3(1+ny=n+l11 11. x+y=5

12, x+2y—-6=0,2x+y—-6=0

13. Bx+y-2=0and~Bx+y+2=0 14. 2x—9y+85=0
.192

15. L= % —=(C-20)+124.942 16. 1340litres.  18. 2kx + hy = 3kh.

| EXERCISE 9.3 |

ok
.

1 1 5 5
@) y=—7x+0,—7,0; (i1) y=—2x+§,—2,§; (i) y=0x+0,0,0

Xy _ XL 3
2 () rp=L4s (n)§+_2 1272
2
2 : : 2 : : .
@) y= 3 intercept with y-axis = w3 and no intercept with x-axis.
3. 5 units
65 .
4. (~2,0)and (8,0) 5. () 77 umts (i1) [‘ units.
6. 3x—4y+18=0 7. y+7x=21 8. 30°and 150°
o 2
9
1. (ﬁ+2)x+(2£—1)y=86+1 or (\B—z)x+(1+2ﬁ)y=—1+sﬁ
_ (@ _ﬂj 1.8
12. 2x+y=5 13. |35 os 4. m=—,c=>
16. y—x=1, o
Miscellaneous Exercise on Chapter 9
1. (@3,b)x2,(c)6orl
8 32
2. 2x-3y=6,-3x+2y=6 3. 0,—5, 0,?
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5
Cos 28 5. x=-— 6. 2x—3y+18=0
2 2
I square units 8. 5 10. 3x—-y=7, x+3y=9
2345 .
13x+13y=6 13. 1:2 14. 1\8/_un1ts
The line is parallel to x - axis or parallel to y-axis
x=1, y=lLorx=—4, y=3 17. (-1,-4).
1£5v2
7\/— 20. 18x+ 12y +11=0
13
?,0 23. 119x+102y =125
EXERCISE10.1]
X2+y2—4y=0 2. x* +)yP+4x—-6y-3=0
36x? +36)>—36x— 18y +11=0 4. X*+y*-2x-2y=0
X2+ y* +2ax+2by +2b6>°=0 6. ¢(-5,3),r=06
1 1
2. 4.r= 65 8. el -5).r=453 9. e(3.05r =7
X+)y'—6x—-8 +15=0 1. x¥*+)y*=Tx+5y-14=0
X+y+4x-21=0& x>+’ - 12x+11=0
xX*+y*—ax—by =0 4. x2+)>—4x—4y =5

Inside the circle; since the distance of the point to the centre of the circle is less
than the radius of the circle.

EXERCISE 10.2

F (3,0), axis - x - axis, directrix x =— 3, length of the Latus rectum = 12

3 3
F (0, 5 ), axis - y - axis, directrix y =— > length of the Latus rectum =6

F (-2, 0), axis - x - axis, directrix x = 2, length of the Latus rectum =8
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F (0,—4), axis - y - axis, directrix y = 4, length of the Latus rectum =16

5 . g .
F (5 , 0) axis - x - axis, directrix x=— % , length of the Latus rectum =10

-9 9
F (0, ry ), axis - y - axis, directrix y = e length of the Latus rectum =9

V= 24x 8. x*=-12 9. y»¥=12x
=8 11. 2y =9x 12. 2x2 =25y
[EXERCISE 10.3

F (i@,O); V (£ 6, 0); Major axis = 12; Minor axis = 8 , e

16
Latus rectum = ?

F (0, £./21); V (0, £ 5); Major axis = 10; Minor axis = 4 , e

8
Latus rectum = g

F (£47, 0); V (£ 4, 0); Major axis = 8; Minor axis = 6 , e

9
Latus rectum = 5

F (0, +4/75); V (0,% 10); Major axis = 20; Minor axis = 10 ,

Latus rectum = 5

F (i\/ﬁ ,0); V (£ 7, 0); Major axis =14 ; Minor axis = 12 , ¢

72
Latus rectum = 7

F (0, +1043 ); V (0, 20); Major axis =40 ; Minor axis = 20 ,

Latus rectum = 10
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242
F (0, £ 44/2); V (0,% 6); Major axis =12 ; Minor axis =4 , e = T\/_;
4
Latus rectum =§
15
F(O,i\/g); V (0, 4); Major axis = 8 ; Minor axis =2 , e = g;
1
Latus rectum =5
o . . 5
F (+45,0); V (£ 3, 0); Major axis = 6 ; Minor axis = 4 , e = ?;
8
Latus rectum =§
2 2 2 2 2 2
LA S oY
25 9 144 169 36 20
2 2 2 2 2 2
x_+y_:1 14. x_+y_:1 15. X y_:
9 4 1 5 169 144
2 2 2 2 2 2
. A 17. =42 =1 18, —+2 1
64 100 16 7 25 9
2 2 2 2
X y 2 2 X y
S 20, X +4y =52 0or —+2—=
10 40 RN
[EXERCISE 10.4

5
Foci (5, 0), Vertices (+ 4, 0); e = —; Latus rectum =

4

o
2

Foci (0 + 6), Vertices (0, = 3); e =2; Latus rectum = 18

13
Foci (0, i\/ﬁ ), Vertices (0, + 2); e = g; Latus rectum =9

5
Foci (£ 10, 0), Vertices (+ 6, 0); e =§ ; Latus rectum =?
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214 6 14 45
Foci (O,iT), Vertices (O,iﬁ ); e =g ; Latus rectum = T\/_
65 49
Foci (0, i\/a ), Vertices (0, + 4); e =g ; Latus rectum =7
A g VX g VX
4 5 25 39 9 16
2 2 2 2 2 2
x__y_=1 11. y__x_=1 12. x__y_=1
16 9 25 144 25 20
2 2 2 2 2 2
x__y_=1 14. x__9i=1 15. y__x_=1
4 12 49 343 5 5
Miscellaneous Exercise on Chapter 10
Focus is at the mid-point of the given diameter.
2.23 m (approx.) 3. 9.11 m(approx.) 4. 1.56m (approx.)
X2 y2 X2 y2
—+—=1 6. 18 it 7. —+=—=1
81 9 S 25 9
8/3a
|EXERCISE 11.1|
.y and z - coordinates are zero 2. y - coordinate is zero
I, 1V, VIIL, V, VI, 11, 111, VII
(i) XY -plane @) (x,,0) (ii)) Eight
|[EXERCISE 11.2|
()245 (i) 43 (i) 2426 (iv)24/5
x—2z=0 5. 9x?+25)2+2522-225=0
Miscellaneous Exercise on Chapter 11
16
(1,-2,8) 2. 7,\34,7 3. a=-2, b=—7,c=2

2
x2+y2+zz—2x—7y+2z=w
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IEXERCISE 12.1
(-2) :
6 2. 7 R 4, >
! o s . u , 108
2 T4
b 10. 2 11. 1 12 —l
. . . 1
2 14. 2 15 1 16, +
b ) on ‘on
a+1
4 18. b 19. 0 20. 1
0 22. 2 23. 3,6
Limit does not exist at x = 1
Limit does not exist at x =0 26. Limit does not exist atx =0
0 28. a=0,b=4
lim f)=0and M f(x) =(@-a)(@-a)..(a-a)
)161_15 f(x) exists for all a = 0. 31. 2

lim 4 — 5, lim ; ;
For M0 f'(x) to exists, we need m = n; M} f'(x) exists for any integral value

of m and n.
|EXERCISE 12.2 |
20 2.1 3. 9
- 2
(i) 32 (i) 2x-3 (i) 5 ) (x-1)’

" ran-Dx"? +a*(n-2)x"" + .. +a""!

a->b
() 2x—a-b (i) 4ax(ax’+b) (i) (x——b)2
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nx" —anx"' = x" +a

(v-af

n

: y L. T3 .
() 2 (i) 20— 15+ 6x—4 (i) F(S +2x) (V) 15+ 5
~12 36 ) -2 _x(3x—2) )
(V)?"'F (vi) (x+1)2 (3x—1)° 10. —sinx
(i) cos 2x (i) sec x tan x
(i) Ssec x tan x — 4sin x (iv) — cosec x cot x
(v) —3cosec’ x — 5 cosec x cotx  (vi) 5cos x+ 6sin x
(vii) 2sec? x — 7sec x tan x
Miscellaneous Exercise on Chapter 12
1 / n
(i)—1 (i1)) =7 (i) cos (x +1) (iv) —sin (x —gJ 2.1
X
—qr
> *tps 4. 2c (ax+b) (cx +d) + a (cx + d)?
ad —bc -2 —(2ax +b)
— 6. T X #0,1 7 T, v
(cx+d) ) (x—l) ’ (ax +bx+c)
2 2
- —-2b -b. +2bpx + bg - -4 .
apx px+ar2 q \ apx PX 2q ar 0 5a +2 _inx
(px2+qx+r) (ax+b) X x
2 n—1
ﬁ 12, na (ax + b)

(ax+ b)w1 (ex+ a’)W1 [mc(ax +b)+na(cx+ d)] 14. cos (x+a)

-1
— cosec® x — cosec x cot? x 16.

-2 2sec x tan x

(sin X —COS x)2 ) (sec x+ 1)2

2024-25
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20.

22.
23.

24.

26.

27.

29.

30.

bc cos x +ad sin x + bd

(c +d cos x)2

21.

2
COS X

x° (Sx cos x +3x sin x +20sin x —12cos x)

—x? sin x —sin x + 2x cos x

-q sinx(ax2 +sin x)+ (p + g cos x)(2a x +cos x)

—tanzx(x + cos x) + (x —tan x)(l —sin x)

35+15x cos x +28 cos x + 28x sin x —15sin x

(3x +7 cos x)2

X cos%(Z sin x — x cos x)

cos a

ANSWERS 353

1 + tanx — x sec’x

28.

sin’x

(x +sec x) (1 - seczx) + (x —tan x). (1 +sec x tan x)

Sin X —7 X CoS x

sin"!x
3 2.
6.32 6.
157.92 10.
9,9.25
100, 29.09
93,105.58,10.27

2.

6.

EXERCISE 13.1
8.4 3. 233
16 7. 323
11.28 11. 1034
EXERCISE 13.2
n+l n*-1
—_—, 3. 16.5,74.25
2 12
64,1.69 7. 107,2276
10. 5.55,43.5

2024-25
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Miscellaneous Exercise on Chapter 13

4,8 2. 6,8 3. 24,12
(i) 10.1, 1.99 (i) 10.2, 1.98
20,3.036

| EXERCISE 14.1]

. No.

1 {1,2,3,4,5,6} (i) ¢ (i) {3,6} @iv) {1,2,3} (v) {6}

(vi) {3,4,5,6},AuB={1,2,3,4,5,6}, AnB=¢,BuC={3,6}, ENF={6},
DNE = ¢,

A-C={1,245},D-E={1,23},ENnF =¢, F ={1,2}

. A={(3,6),(4,5),(5,4),(6,3),(4,6),(5,5), (6,4), (5,6), (6,5), (6,6)}

B={(1,2),(2,2),(3,2),(4,2),(5,2),(6,2), (2,1),(2,3),(2,4), (2,5), (2,6)}
C={(3,6),(6,3),(5,4),(4,5), (6,06)}
A and B, B and C are mutually exclusive.

(i) AandB;Aand C; Band C; C and D (ii) Aand C (iii) B and D
(1) “Getting at least two heads”, and “getting at least two tails”
(i) “Getting no heads”, “getting exactly one head” and “getting at least two
heads”
(i) “Getting at most two tails”, and “getting exactly two tails”
(iv) “Getting exactly one head” and “getting exactly two heads”
(v) “Getting exactly one tail”, “getting exactly two tails”, and getting exactly
three tails”

| There may be other events also as answer to the above question. |

6.

A= {2, 1),(22),(2,3),(24),(2,5), (2,6), (4,1), (4.2), (4.3), (4.4), (4.5), (4,6),
(6,1),(6,2), (6,3), (6,4), (6,5), (6,6)}
B= {1, 1), (1,2), (1,3), (1.4), (1,5), (1,6), 3, 1), (3,2), (3,3), (3,4), (3.5), (3,6),
(5,1),(5,2), (5,3), (5.4), (5.5), (5,6)}
C= {(L1),(1,2),(1,3),(1.4),(2,1),(2,2),(2.3), (3,1), (3,2), (4, D)}
@) A"={(1,1),(1,2),(1,3), (1,4),(1.5),(1,6), (3,1, (3,2), 3.3), (3.4, (3.5), (3.6),
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)} =B
(i) B'={(2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (4.1), (4,2), (4.3), (4,4, (4.5), (4.0),
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)} =A
@) AUB={(1,1),(1,2),(1,3),(1,4),(1,5), (1,6), (3,1),(3,2), (3,3), (3,4), (3,5),
(3,6), (5,1), (5,2), (5,3), (5:4), (5,5), (5,6), (2,1), (2,2), (2,3), (2.5),
(2,6), (4,1), (4.2), (4,3), (4,4), (4,5), (4,6), (6,1), (6,2), (6,3), (6,4),
(6,5),(6,6)} =S

2024-25



12.

13.

15.

ANSWERS 355

(iv) AnB=¢
(v) A-C={(24),(2,5),(2,6), (4,2), (4,3), (4,4), (4,5), (4,6), (6,1), (6,2), (6,3),
(6,4),(6.5),(6,6)}

(viy BuC={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(3,1),(3,2),
(3,3),(3,4),(3,5),(3,6), (4,1), (5,1), (5,2), (5,3), (5,4), (5.5), (5,6)}
(vi) BN C={(1,1),(1,2),(1,3),(1,4),(3,1),(3,2)}
(vii) AnNB'nC'={(24),(2,5),(2,6),(4,2),(4,3),(4,4),(4,5),(4,6), (6,1),(6,2),
(6,3),(6,4),(6,5), (6,6)}
(1) True (ii) True (iii) True (iv) False (v) False (vi) False

|EXERCISE 14.2 |

. (AYes (b)Yes (¢c)No (d)No (e)No 2. %

N R 5 1 L1
(1) 5 (i1) 3 (i) 5 (iv) 0 (v) 5 4. (a)52 (b) % (c) (I)E (11)5
A S | 3
(I)E (11)5 6. 5

Rs 4.00 gain, Rs 1.50 gain, Re 1.00 loss, Rs 3.50 loss, Rs 6.00 loss.

1 1 3
P ( Winning Rs 4.00) :E , P(Winning Rs 1.50) =1 P (Losing Re. 1.00) =§

1 1
P (Losing Rs 3.50) = 1 P (Losing Rs 6.00) :E .

13 1 7 1 1 3 1 7
(1) g (i1) g (ii1) 5 (iv) g ) g (vi) N (vii) g (viii) n (ix) g
9 1

L6 T
— )— (ii)— —
11 10. ()13 ()13 I 38760

(i) No, because P(AnB) must be less than or equal to P(A) and P(B), (ii) Yes

(i)% (i) 0.5 (iii) 0.15 14. ?
(1)§ (”)g 16. No 17. (i)0.58 (ii) 0.52 (iii) 0.74
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=
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0.6 19. 0.55 20. 0.65
L1911 2
1) — 1) — m) —
O35 W35 @3

Miscellaneous Exercise on Chapter 14

@Zi—gj ai)l—i‘;—gj 2. %

()3 Gy G 4 @l (b) % (")x—iﬁ
@5 © 6. 2

(1) 0.88 (i) 0.12 (iii) 0.19 (iv) 0.34 8. ?

0% G 0. o
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Foreword

The National Curriculum Framework (NCF), 2005, recommends that children’s life
at school must be linked to their life outside the school. This principle marks a
departure from the legacy of bookish learning which continues to shape our system
and causes a gap between the school, home and community. The syllabi and textbooks
developed on the basis of NCF signify an attempt to implement this basic idea. They
also attempt to discourage rote learning and the maintenance of sharp boundaries
between different subject areas. We hope these measures will take us significantly
further in the direction of a child-centred system of education outlined in the National
Policy on Education (1986).

The success of this effort depends on the steps that school principals and
teachers will take to encourage children to reflect on their own learning and to
pursue imaginative activities and questions. We must recognise that given space,
time and freedom, children generate new knowledge by engaging with the information
passed on to them by adults. Treating the prescribed textbook as the sole basis of
examination is one of the key reasons why other resources and sites of learning are
ignored. Inculcating creativity and initiative is possible if we perceive and treat
children as participants in learning, not as receivers of a fixed body of knowledge.

These aims imply considerable change in school routines and mode of
functioning. Flexibility in the daily time-table is as necessary as rigour in implementing
the annual calendar so that the required number of teaching days are actually devoted
to teaching. The methods used for teaching and evaluation will also determine how
effective this textbook proves for making children’s life at school a happy experience,
rather than a source of stress or boredom. Syllabus designers have tried to address
the problem of curricular burden by restructuring and reorienting knowledge at
different stages with greater consideration for child psychology and the time available
for teaching. The textbook attempts to enhance this endeavour by giving higher
priority and space to opportunities for contemplation and wondering, discussion in
small groups, and activities requiring hands-on experience.

The National Council of Educational Research and Training (NCERT) appreciates
the hard work done by the Textbook Development Committee responsible for this
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book. We wish to thank the Chairperson of the advisory group in Science and
Mathematics, Professor J.V. Narlikar and the Chief Advisor for this book
Professor P.K. Jain for guiding the work of this committee. Several teachers
contributed to the development of this textbook; we are grateful to their principals
for making this possible. We are indebted to the institutions and organisations which
have generously permitted us to draw upon their resources, material and personnel.
We are especially grateful to the members of the National Monitoring Committee,
appointed by the Department of Secondary and Higher Education, Ministry of Human
Resource Development under the Chairpersonship of Professor Mrinal Miri and
Professor G.P. Deshpande, for their valuable time and contribution. As an organisation
committed to the systemic reform and continuous improvement in the quality of its
products, NCERT welcomes comments and suggestions which will enable us to
undertake further revision and refinement.

Director
New Delhi National Council of Educational
20 December 2005 Research and Training

iv
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Rationalisation of Content in the Textbooks

In view of the COVID-19 pandemic, it is imperative to reduce content load on
students. The National Education Policy 2020, also emphasises reducing the content
load and providing opportunities for experiential learning with creative mindset. In
this background, the NCERT has undertaken the exercise to rationalise the textbooks
across all classes. Learning Outcomes already developed by the NCERT across
classes have been taken into consideration in this exercise.

Contents of the textbooks have been rationalised in view of the following:

® Overlapping with similar content included in other subject areas in the same
class

® Similar content included in the lower or higher class in the same subject

* Difficulty level

® Content, which is easily accessible to students without much interventions

from teachers and can be learned by children through self-learning or peer-
learning

® Content, which is irrelevant in the present context

This present edition, is a reformatted version after carrying out the
changes given above.

2024-25
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‘ SUPPLEMENTARY MATERIAL ’

CHAPTER 8

8.6 Infinite G.P. and its Sum

G.P. of the form a, ar, ar?, ar’, ... is called infinite G.P. Now, to find the formulae for
finding sum to infinity of a G.P., we begin with an example.
Let us consider the G.P.,

1, — —,...
39

Here a=1, 7”=§. We have

. 2
Let us study the behaviour of (;] as n becomes larger and larger:

n 1 5 10 20

(—) 0.6667 0.1316872428 0.01734152992 0.00030072866

2 n
We observe that as n becomes larger and larger, (Ej becomes closer and closer to

zero. Mathematically, we say that as n becomes sufficiently large, [gj becomes

sufficiently small. In other words as 7 — o, (Ej — 0. Consequently, we find that the

sum of infinitely many terms is givenby S_ =3.
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Now, for a geometric progression, a, ar, ar?, ..., if numerical value of common ratio r
is less than 1, then

_a(l-r") a _ar"
" (1-7r) l-» 1-r

In this case asn —o0, 7" — 0 since || < 1. Therefore

1-r
Symbolically sum to infinity is denoted by S_ or S.

a

Thus, we have S=

1—r-
For examples,
1 1 1 1
i I+ —+ —+—+..=—=2.
(1) 2 22 23 I_L
2
@1 L] 1N/ 1 I )
ii e i 2 — N =T
2 27 2 1_(1j 14 L3
2 2

Exercise 8.3

Find the sum to infinity in each of the following Geometric Progression.

1. 1, %, %, (Ans. 1.5) 2. 6,1.2,.24, ... (Ans. 7.5)
L 5 20 80 A, B L, 333 3
T (ns.3 S A l60 6 (HS'S)

1 1

1
5. Provethat 32 « 3% « 3%  _— 3
6. Letx=1+a+a*+..andy=1+b+5b*+ .., where|a| <1 and || < 1. Prove that

Xy

27,2 . —
1 +ab+ab+ .. Xt y—1
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CHAPTER 12

12.6 Limits Involving Exponential and Logarithmic Functions

Before discussing evaluation of limits of the expressions involving exponential and
logarithmic functions, we introduce these two functions stating their domain, range and
also sketch their graphs roughly.

Leonhard Euler (1707-1783), the great Swiss mathematician introduced the number
e whose value lies between 2 and 3. This number is useful in defining exponential
function and is defined as f'(x) = ¢, x € R. Its domain is R, range is the set of positive
real numbers. The graph of exponential function, i.e., y = e*is as given in Fig.13.11.

Y
A

_/

graph of y= ¢

Fig. 13.11

Similarly, the logarithmic function expressed as log. R — Riis given by log x =,
if and only if e’ = x. Its domain is R" which is the set of all positive real numbers and
range is R. The graph of logarithmic function y =log, x is shown in Fig.13.12.
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iy

graph of y = logx

Fig. 13.12

e —1 . o .
=1, we make use of an inequality involving

In order to prove the result lirré
x> X

e’ —1

the expression which runs as follows:

1 ¥
< © ! < 1+ (e—2) x| holds for all x in [-1, 1] ~ {0}.
1+|x| x

e’ -1
x

=1

Theorem 6 Prove that Uflo

Proof Using above inequality, we get

1 e’ —1 R
1+—|X|S <1+|x(e-2),xI[-1, 1]~ {0}
lim L : -1
Also 401+|x|_1+1imo|x|_1+0_
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and !Yiir(i)[l+(e—2)|x|]:1+(e—2)£i£r(1)|x|:1+(e—2)0:1

Therefore, by Sandwich theorem, we get

lim &=L
x—>0 X
. log,(1+x
Theorem 7 Prove that llmL =1
x—>0 X
log (1+x
Proof Let L =Y. Then
X

log,(1+x)=xy

=1+x=¢e"

or Jy=1

. -1, . .
= lim & lim y =1(sincex —» 0 gives xy — 0)
xy—>0 xy x—>0

xy
:>1imy:1[as1ime 121}

x—> 0 xy—> 0 xy

— lip log. A+ x)
x>0 X

3x
. e -1
Example 5 Compute lim
X = x
Solution We have
3x 3x
. . -1
lim ¢ = lim ¢ -3
x—=0 X 3x>0 3x

y—>0 y
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. e —sinx-1
Example 6 Compute hngu
X x
. e —sinx—1 .. |e"—1 sinx
Solution We have hf% =lim -
g X R X X
. e =1 .. sinx
=lim —li =1-1=0
x—0 X x—0 X
. log, x
Example 7 Evaluate lggllﬁ
Solution Putx=1+ A, then as y 1= 4 — 0. Therefore,
lim 298¢ ¥ _ jip 1084+ 7) _ 1[since lim 1080+ %) _ 1}
x>l x —1 h—0 h x—0 X N

Exercise 13.2

Evaluate the following limits, if exist

et e _ g2
1. lim (Ans. 4) 2. lim (Ans. &%)
x>0 X x—0 X
3 lim ﬂ (Ans. & 4 lim esmx—_l Ans. 1
.M S. e) . im . (Ans. 1)
x 3 x
. e —e . x(et -1
5. lim ——— Ans. & . lim ————= .
am = (Ans. &) 6 o oex (Ans. 2)
. log,(1+2 . log (1+x°
7. lim log.(1+2x) (Ans. 2) 8. lim —g.( 3 ) (Ans. 1)
2530 P x>0 sin” x
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Chapter 1

( SETS )

s In these days of conflict between ancient and modern studies; there
must surely be something to be said for a study which did not
begin with Pythagoras and will not end with Einstein; but
is the oldest and the youngest. — G.H. HARDY **

1.1 Introduction

The concept of set serves as a fundamental part of the
present day mathematics. Today this concept is being used
in almost every branch of mathematics. Sets are used to
define the concepts of relations and functions. The study of
geometry, sequences, probability, etc. requires the knowledge
of sets.

The theory of sets was developed by German
mathematician Georg Cantor (1845-1918). He first
encountered sets while working on “problems on trigonometric
series”. In this Chapter, we discuss some basic definitions

. . . Georg Cantor
and operations involving sets.

(1845-1918)
1.2 Sets and their Representations

In everyday life, we often speak of collections of objects of a particular kind, such as,
a pack of cards, a crowd of people, a cricket team, etc. In mathematics also, we come
across collections, for example, of natural numbers, points, prime numbers, etc. More
specially, we examine the following collections:

(1) Odd natural numbers less than 10, i.e., 1,3,5,7,9
(i) The rivers of India
(i) The vowels in the English alphabet, namely, q, ¢, i, o, u
(iv) Various kinds of triangles
(v) Prime factors of 210, namely, 2,3,5 and 7
(vi) The solution of the equation: x*— 5x + 6 =0, viz, 2 and 3.

We note that each of the above example is a well-defined collection of objects in
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2 MATHEMATICS

the sense that we can definitely decide whether a given particular object belongs to a
given collection or not. For example, we can say that the river Nile does not belong to
the collection of rivers of India. On the other hand, the river Ganga does belong to this
colleciton.

We give below a few more examples of sets used particularly in mathematics, viz.

N : the set of all natural numbers

Z. : the set of all integers

Q : the set of all rational numbers

R : the set of real numbers

7" : the set of positive integers

Q" : the set of positive rational numbers, and

R* : the set of positive real numbers.

The symbols for the special sets given above will be referred to throughout
this text.

Again the collection of five most renowned mathematicians of the world is not
well-defined, because the criterion for determining a mathematician as most renowned
may vary from person to person. Thus, it is not a well-defined collection.

We shall say that a set is a well-defined collection of objects.

The following points may be noted :

(i) Objects, elements and members of a set are synonymous terms.
(i) Sets are usually denoted by capital letters A, B, C, X, Y, Z, etc.
(i) The elements of a set are represented by small letters a, b, ¢, x, y, z, etc.

If a is an element of a set A, we say that ““ a belongs to A” the Greek symbol e
(epsilon) is used to denote the phrase ‘belongs to’. Thus, we write a € A. If ‘b’ is not
an element of a set A, we write b ¢ A and read “b does not belong to A”.

Thus, in the set V of vowels in the English alphabet, « € V but b ¢ V. In the set
P of prime factors of 30,3 € Pbut 15 ¢ P.

There are two methods of representing a set :
(i) Roster or tabular form
(i) Set-builder form.

(i) Inroster form, all the elements of a set are listed, the elements are being separated
by commas and are enclosed within braces { }. For example, the set of all even
positive integers less than 7 is described in roster form as {2, 4, 6}. Some more
examples of representing a set in roster form are given below :

(a) The set of all natural numbers which divide 42 is {1, 2, 3,6, 7, 14, 21, 42}.
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In roster form, the order in which the elements are listed is immaterial.
Thus, the above set can also be represented as {1, 3, 7, 21, 2, 6, 14, 42}.
(b) The set of all vowels in the English alphabet is {q, ¢, i, o, u}.
(c) The set of odd natural numbers is represented by {1, 3, 5, .. .}. The dots
tell us that the list of odd numbers continue indefinitely.
It may be noted that while writing the set in roster form an element is not

generally repeated, i.e., all the elements are taken as distinct. For example, the set
of letters forming the word ‘SCHOOL’ is { S, C, H, O, L} or {H, O, L, C, S}. Here,
the order of listing elements has no relevance.

(i) In set-builder form, all the elements of a set possess a single common property

which is not possessed by any element outside the set. For example, in the set

{a, e, i, 0, u}, all the elements possess a common property, namely, each of them

is a vowel in the English alphabet, and no other letter possess this property. Denoting

this set by V, we write

V = {x : xis a vowel in English alphabet}

It may be observed that we describe the element of the set by using a symbol x
(any other symbol like the letters y, z, etc. could be used) which is followed by a colon
“ 7. After the sign of colon, we write the characteristic property possessed by the
elements of the set and then enclose the whole description within braces. The above
description of the set V is read as “the set of all x such that x is a vowel of the English
alphabet”. In this description the braces stand for “the set of all”, the colon stands for
“such that”. For example, the set

A = {x : xis a natural number and 3 <x < 10} is read as “the set of all x such that

x 1s a natural number and x lies between 3 and 10.” Hence, the numbers 4, 5, 6,

7, 8 and 9 are the elements of the set A.

If we denote the sets described in (a), (b) and (¢) above in roster form by A, B,
C, respectively, then A, B, C can also be represented in set-builder form as follows:

A= {x : x is a natural number which divides 42}

B= {y: yis a vowel in the English alphabet}

C= {z : zis an odd natural number}

Example 1 Write the solution set of the equation x>+ x — 2 = 0 in roster form.

Solution The given equation can be written as
x-1) x+2)=0,i.e, x=1,-2
Therefore, the solution set of the given equation can be written in roster form as {1, —2}.

Example 2 Write the set {x : x is a positive integer and x> < 40} in the roster form.
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4 MATHEMATICS

Solution The required numbers are 1, 2, 3, 4, 5, 6. So, the given set in the roster form
is{1,2,3,4,5,6}.

Example 3 Write the set A= {1,4,9, 16, 25, ... }in set-builder form.

Solution We may write the set A as

A = {x : x is the square of a natural number}
Alternatively, we can write

A= {x:x=n? where n € N}

. 1 23456,. :
Example 4 Write the set {=, =, — =, —, = } in the set-builder form.

2'3'4'5°67
Solution We see that each member in the given set has the numerator one less than
the denominator. Also, the numerator begin from 1 and do not exceed 6. Hence, in the
set-builder form the given set is

n .
{x IX= , where nis a natural number and 1 <n < 6}
n+

Example 5 Match each of the set on the left described in the roster form with the
same set on the right described in the set-builder form :
(1) {P,R,I,N,C,A,L} (a){x:xisapositive integer and is a divisor of 18}

@@ {0} (b) { x : x is an integer and x>— 9 = 0}
@) {1,2,3,6,9,18} (¢) {x :xisan integer and x + 1=1}
@iv) {3,-3} (d) {x : x is a letter of the word PRINCIPAL}

Solution Since in (d), there are 9 letters in the word PRINCIPAL and two letters P and I
are repeated, so (i) matches (d). Similarly, (ii) matches (c) as x + 1 = 1 implies
x=0.Also, 1,2,3,6,9, 18 are all divisors of 18 and so (iii) matches (a). Finally, x>~ 9= 0
implies x = 3, =3 and so (iv) matches (b).

|EXERCISE 1.1|

1. Which of the following are sets ? Justify your answer.
(1) The collection of all the months of a year beginning with the letter J.
(i) The collection of ten most talented writers of India.
(ii)) A team of eleven best-cricket batsmen of the world.
(iv) The collection of all boys in your class.
(v) The collection of all natural numbers less than 100.
(vi) A collection of novels written by the writer Munshi Prem Chand.
(vii) The collection of all even integers.
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(viii) The collection of questions in this Chapter.
(ix) A collection of most dangerous animals of the world.
Let A= {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol € or ¢ in the blank
spaces:
i S5...A (i 8...A @) O...A
(iv) 4...A v) 2...A (vi) 10...A
Write the following sets in roster form:
(i) A= {x:xisaninteger and -3 <x <7}
(i) B = {x:x is anatural number less than 6}
(i) C={x:xis atwo-digit natural number such that the sum of its digits is 8}
(iv) D= {x:xis a prime number which is divisor of 60}
(v) E =The set of all letters in the word TRIGONOMETRY
(vi) F =The set of all letters in the word BETTER
Write the following sets in the set-builder form :
(i) (3,6,9,12} (i) {2,48,16,32} (i) {5, 25,125,625}
(iv) {2,4,6,...} (v) {14)9,...,100}
List all the elements of the following sets :
(i) A= {x:xisan odd natural number}
(i) B = {x:x1isan integer, ) <x< 5}
(i) C= {x:xisan integer, x*’< 4}
(iv) D= {x:xis a letter in the word “LOYAL”}
(v) E = {x:xisamonth of a year not having 31 days}
(vi) F = {x:xis aconsonant in the English alphabet which precedes & }.
Match each of the set on the left in the roster form with the same set on the right
described in set-builder form:

1 {1,2,3,6} (a) {x:xisaprime number and a divisor of 6}
@) {2,3} (b) {x:xisan odd natural number less than 10}
@) {M,ATHELC,S} (¢) {x:xisnatural number and divisor of 6}
i) {1,3,5,7,9} (d) {x:xis aletter of the word MATHEMATICS}.

1.3 The Empty Set

Consider the set

A = {x:xisastudent of Class XI presently studying in a school }
We can go to the school and count the number of students presently studying in

Class XI in the school. Thus, the set A contains a finite number of elements.

We now write another set B as follows:
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6 MATHEMATICS

B = { x : x is a student presently studying in both Classes X and XI }
We observe that a student cannot study simultaneously in both Classes X and XI.
Thus, the set B contains no element at all.

Definition 1 A set which does not contain any element is called the empty set or the
null set or the void set.
According to this definition, B is an empty set while A is not an empty set. The
empty set is denoted by the symbol ¢ or { }.
We give below a few examples of empty sets.
(i) Let A= {x:1<x<2,xis anatural number}. Then A is the empty set,
because there is no natural number between 1 and 2.
(i) B= {x:x*—2=0and x is rational number}. Then B is the empty set because
the equation x*— 2 = 0 is not satisfied by any rational value of x.
(i) C= {x:xisaneven prime number greater than 2}.Then C is the empty set,
because 2 is the only even prime number.
(ivy D={x:x>=4,xisodd }. Then D is the empty set, because the equation
x*=4 is not satisfied by any odd value of x.

1.4 Finite and Infinite Sets

Let A={1,2,3,4,5}, B={a b, ¢ d e g}

and C = { men living presently in different parts of the world}

We observe that A contains 5 elements and B contains 6 elements. How many elements
does C contain? As it is, we do not know the number of elements in C, but it is some
natural number which may be quite a big number. By number of elements of a set S,
we mean the number of distinct elements of the set and we denote it by # (S). If n (S)
is a natural number, then S is non-empty finite set.

Consider the set of natural numbers. We see that the number of elements of this
set is not finite since there are infinite number of natural numbers. We say that the set
of natural numbers is an infinite set. The sets A, B and C given above are finite sets
and n(A) =5, n(B) = 6 and n(C) = some finite number.

Definition 2 A set which is empty or consists of a definite number of elements is
called finite otherwise, the set is called infinite.
Consider some examples :

(i) Let W be the set of the days of the week. Then W is finite.
(i) Let S be the set of solutions of the equation x>—16 = 0. Then S is finite.
(ii)) Let G be the set of points on a line. Then G is infinite.
When we represent a set in the roster form, we write all the elements of the set
within braces { }. It is not possible to write all the elements of an infinite set within
braces { } because the numbers of elements of such a set is not finite. So, we represent
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some infinite set in the roster form by writing a few elements which clearly indicate the
structure of the set followed ( or preceded ) by three dots.

For example, {1, 2,3 ...} is the set of natural numbers, {1, 3, 5,7, ...} is the set
of odd natural numbers, {...—3,-2,-1,0,1,2,3,...} is the set of integers. All these
sets are infinite.

‘@ Note|All infinite sets cannot be described in the roster form. For example, the

set of real numbers cannot be described in this form, because the elements of this
set do not follow any particular pattern.

Example 6 State which of the following sets are finite or infinite :
(1) {x:xeNand(x—-1)((x-2)=0}
(i) {x:x e Nandx*=4}
@) {x:x e Nand2x-1=0}
(iv) {x:x e Nandux is prime}
(v) {x:x e Nandxisodd}
Solution (i) Given set= {1, 2}. Hence, it is finite.
(i) Given set = {2}. Hence, it is finite.
(i) Given set = ¢. Hence, it is finite.
(iv) The given set is the set of all prime numbers and since set of prime
numbers is infinite. Hence the given set is infinite
(v)  Since there are infinite number of odd numbers, hence, the given set is
infinite.

1.5 Equal Sets

Given two sets A and B, if every element of A is also an element of B and if every
element of B is also an element of A, then the sets A and B are said to be equal.
Clearly, the two sets have exactly the same elements.

Definition 3 Two sets A and B are said to be equal if they have exactly the same
elements and we write A = B. Otherwise, the sets are said to be unequal and we write
A = B.
We consider the following examples :
(i) LetA={1,2,3,4} and B=1{3,1,4,2}. Then A=B.
(i) Let A be the set of prime numbers less than 6 and P the set of prime factors
of 30. Then A and P are equal, since 2, 3 and 5 are the only prime factors of
30 and also these are less than 6.

A set does not change if one or more elements of the set are repeated.
For example, the sets A = {1, 2, 3} and B = {2, 2, 1, 3, 3} are equal, since each
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element of A is in B and vice-versa. That is why we generally do not repeat any
element in describing a set.

Example 7 Find the pairs of equal sets, if any, give reasons:
A={0}, B={x:x>15and x <5},
C={x:x-5=01}, D = {x: x*=25},
E = {x : x is an integral positive root of the equation x> — 2x —15 = 0}.

Solution Since 0 € A and 0 does not belong to any of the sets B, C, D and E, it
follows that, A= B,A=C,A#D, A=#E.

Since B = ¢ but none of the other sets are empty. Therefore B = C, B# D
and B # E. Also C = {5} but =5 € D, hence C # D.

Since E = {5}, C=E. Further, D= {-5, 5} and E = {5}, we find that, D # E.
Thus, the only pair of equal sets is C and E.

Example 8 Which of the following pairs of sets are equal? Justify your answer.
(1) X, the set of letters in “ALLOY” and B, the set of letters in “LOYAL”.
() A= {n:neZandn’<4} and B= {x:x € Rand x’- 3x +2 =0}.

Solution (i) We have, X ={A,L,L,0,Y},B={L,0,Y, A, L}. Then X and B are

equal sets as repetition of elements in a set do not change a set. Thus,
X={A,L,0,Y} =B

(i)A={-2,-1,0,1,2}, B={1,2}.Since 0 € Aand 0 ¢ B, A and B are not equal sets.

|EXERCISE 1.2 |

1. Which of the following are examples of the null set
(i) Set of odd natural numbers divisible by 2
(i) Set of even prime numbers
@ii)) { x : xis a natural numbers, x <5and x> 7 }
(iv) {y:y isapoint common to any two parallel lines}
2. Which of the following sets are finite or infinite
(i) The set of months of a year
@ {1,2,3,...}
@) {1,2,3,...99,100}
(iv) The set of positive integers greater than 100
(v) The set of prime numbers less than 99
3.  State whether each of the following set is finite or infinite:
(i) The set of lines which are parallel to the x-axis
(i) The set of letters in the English alphabet
(ii)) The set of numbers which are multiple of 5
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(iv) The set of animals living on the earth
(v) The set of circles passing through the origin (0,0)
4. In the following, state whether A= B or not:
i) A={ab,c,d} B ={dcba}
(i) A={4,8,12,16} B = {8,4,16,18}
(i) A=1{2,4,6,8,10} B = {x:xispositive even integer and x < 10}
(iv) A= {x:x isamultiple of 10}, B = {10,15,20,25,30,...}
5. Are the following pair of sets equal ? Give reasons.
(i) A=1{2,3}, B= {x:xissolution of x>+ 5x + 6 =0}
(i) A= {x:xisaletter in the word FOLLOW}
B = {y:yis aletter in the word WOLF}
6.  From the sets given below, select equal sets :
A=1{2,4,8,12}, B={1,2,3,4}, C={4,8,12,14}, D={3,1,4,2}
E={-1,1}, F=1{0,a}, G={l,-1}, H={0,1}

1.6 Subsets
Consider the sets : X = set of all students in your school, Y = set of all students in your
class.

We note that every element of Y is also an element of X; we say that Y is a subset
of X. The fact that Y is subset of X is expressed in symbols as Y < X. The symbol —
stands for ‘is a subset of” or ‘is contained in’.

Definition 4 A set A is said to be a subset of a set B if every element of A is also an
element of B.

In other words, A c B if whenever a € A, then a € B. It is often convenient to
use the symbol “=" which means implies. Using this symbol, we can write the definiton
of subset as follows:

AcBifaeA=aecB

We read the above statement as “A is a subset of B if a is an element of A
implies that a is also an element of B”. If A is not a subset of B, we write A ¢ B.

We may note that for A to be a subset of B, all that is needed is that every
element of A is in B. It is possible that every element of B may or may not be in A. If
it so happens that every element of B is also in A, then we shall also have B — A. In this
case, A and B are the same sets so that we have Ac B and B c A < A= B, where
“<" is a symbol for two way implications, and is usually read as if and only if (briefly
written as “iff”).

It follows from the above definition that every set 4 is a subset of itself, i.e.,
A c A. Since the empty set ¢ has no elements, we agree to say that ¢ is a subset of
every set. We now consider some examples :
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(i) The set Q of rational numbers is a subset of the set R of real numbes, and
we write Q  R.
(i) IfAis the set of all divisors of 56 and B the set of all prime divisors of 56,
then B is a subset of A and we write B — A.
@) LetA={l1,3,5} and B = {x . xis an odd natural number less than 6}. Then
A c B and B c A and hence A = B.
(iv) LetA={a e i 0, u} and B={aq, b, ¢, d}. Then A is not a subset of B,
also B is not a subset of A.
Let A and B be two sets. [fA < B and A # B, then A is called a proper subset
of B and B is called superset of A. For example,
A =1{1, 2,3} is a proper subset of B= {1, 2, 3, 4}.
If a set A has only one element, we call it a singleton set. Thus,{ a } is a
singleton set.

Example 9 Consider the sets
o6, A={1,3}, B={1,59}, C={1,3,5,7,9}.
Insert the symbol — or & between each of the following pair of sets:
(i ¢...B (i)A...B (ii)A...C (@(v)B...C
Solution (i) ¢ < B as ¢ is a subset of every set.
(i) AzBas3eAand3 ¢ B

(i) AcCasl,3 € Aalso belongs to C
(iv) B < C as each element of B is also an element of C.

Example 10 Let A={a, ¢ i, 0o, u} and B= { a, b, ¢, d}. Is A a subset of B ? No.
(Why?). Is B a subset of A? No. (Why?)

Example 11 Let A, B and C be three sets. [f A € B and B — C, is it true that
A c C?. If not, give an example.

Solution No.LetA={1},B = {{1},2} andC= {{1},2,3}. Here A BasA= {1}
and BcC.ButAgzCasl e Aand1 ¢ C.
Note that an element of a set can never be a subset of itself.

1.6.1 Subsets of set of real numbers
As noted in Section 1.6, there are many important subsets of R. We give below the
names of some of these subsets.

The set of natural numbers N = {1,2,3,4,5,...}

The set of integers zZ=1{ ..,-3,-2,-1,0,1,2,3,...}

The set of rational numbers Q = { x : x = 5 ,p,q€ Zand g+0}
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V4
which is read “ Q is the set of all numbers x such that x equals the quotient ; , Where

p and ¢ are integers and ¢ is not zero”. Members of Q include —5 (which can be

S5 5 .1 _ 7 11
expressed as _T) > 7 35 (which can be expressed as 5) and R

The set of irrational numbers, denoted by T, is composed of all other real numbers.
Thus T ={x: x € Rand x ¢ Q}, i.e., all real numbers that are not rational.

Members of T include /7 , /5 and =.

Some of the obvious relations among these subsets are:
NcZcQQcR TcR NgT.

1.6.2 Intervals as subsets of R Leta, b € Rand a < b. Then the set of real numbers
{y:a<y<b}is called an open interval and is denoted by (a, b). All the points
between a and b belong to the open interval (g, b) but a, b themselves do not belong to
this interval.

The interval which contains the end points also is called closed interval and is
denoted by [ @, b ]. Thus

[a, b]={x:a<x<b}
We can also have intervals closed at one end and open at the other, i.e.,

[a b)={x: a<x<b} isan open interval from a to b, including a but excluding b.

(a, b]={x:a<x< b} isanopen interval from a to b including b but excluding a.

These notations provide an alternative way of designating the subsets of set of
real numbers. For example , if A= (-3, 5) and B =[-7, 9], then A c B. The set [ 0, «)
defines the set of non-negative real numbers, while set ( — oo, 0 ) defines the set of
negative real numbers. The set (— oo, oo ) describes the set of real numbers in relation
to a line extending from — o to oo.

On real number line, various types of intervals described above as subsets of R,
are shown in the Fig 1.1.

(a,b) [a,b] [a,b) (a,b]

O O L @ L O O @

a b a b a b a b
Fig 1.1

Here, we note that an interval contains infinitely many points.

For example, the set {x : x € R, =5 <x <7}, written in set-builder form, can be
written in the form of interval as (=5, 7] and the interval [-3, 5) can be written in set-
builder form as {x: -3 <x <5}.
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12 MATHEMATICS

The number (b — a) is called the length of any of the intervals (a, b), [a, b],
[a, b) or (a, b].

1.7 Universal Set

Usually, in a particular context, we have to deal with the elements and subsets of a
basic set which is relevant to that particular context. For example, while studying the
system of numbers, we are interested in the set of natural numbers and its subsets such
as the set of all prime numbers, the set of all even numbers, and so forth. This basic set
is called the “Universal Set”. The universal set is usually denoted by U, and all its
subsets by the letters A, B, C, etc.

For example, for the set of all integers, the universal set can be the set of rational
numbers or, for that matter, the set R of real numbers. For another example, in human
population studies, the universal set consists of all the people in the world.

|EXERCISE 13|

1.  Make correct statements by filling in the symbols c or & in the blank spaces :

i {2,3,4}...{1,2,3,45} (i) {a,b,c}...{bc,d}
(i) {x:xisastudent of Class XI of your school}. . .{x : x student of your school}
(iv) {x:xisacircle in the plane} .. .{x : x is a circle in the same plane with
radius 1 unit}
(v) {x:xisatriangle in a plane} ... {x : x is a rectangle in the plane}
(vi) {x:xisanequilateral triangle inaplane} ... {x:xisatriangle in the same plane}
(vil) {x:xisan even natural number} ... {x:xis an integer}
2. Examine whether the following statements are true or false:
(i) {a,b}z{bca}
(i) {a, e} c{x:xisavowelin the English alphabet}
i) {1,2,3}c{1,3,5}
@iv) {a}c {a b c}
(v) {ajef{ab c}
(vi) {x:xisan even natural number less than 6} — { x : x is a natural number
which divides 36}
3. Let A={1,2,{3,4},5}. Which of the following statements are incorrect and why?
(i) {3,4}c A (i) {3,4} €A (i) {{3,4}}c A
(iv) 1eA v) 1cA vi) {1,2,5}c A
(vi) {1,2,5} €A (vii) {1,2,3}c A (ix) ¢ € A
x) b A x) {0} c A

4. Write down all the subsets of the following sets

(M)

{a} (i) {a, b} (i) {1,2,3} () ¢
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5. Write the following as intervals :
(i) {x:xeR,-4<x<6} (i) {x:xeR -12<x<-10}

() {x:xeR 0Zx<7} (iv) {x:xeR,3<x<4}
6.  Write the following intervals in set-builder form :
(i) (-3,0) () [6,12] (iii) (6, 12] (iv) [-23,95)
7. What universal set(s) would you propose for each of the following :
(i) The set of right triangles. (i) The set of isosceles triangles.

8. GiventhesetsA={1,3,5},B={2,4,6} and C = {0, 2, 4, 6, 8}, which of the
following may be considered as universal set (s) for all the three sets A, B and C
(i) {0,1,2,3,4,5,6}
(i) ¢
(i) {0,1,2,3,4,5,6,7,8,9,10}
(iv) {1,2,34,5,6,7,8}

1.8 Venn Diagrams

Most of the relationships between sets can be U
represented by means of diagrams which are known
as Venn diagrams. Venn diagrams are named after ol
the English logician, John Venn (1834-1883). These
diagrams consist of rectangles and closed curves S
usually circles. The universal set is represented
usually by a rectangle and its subsets by circles. 9

In Venn diagrams, the elements of the sets are
written in their respective circles (Figs 1.2 and 1.3)

Ilustration 1 In Fig 1.2, U={1,2,3,...,10}isthe U
universal set of which
A=1{2,4,6,8,10} is a subset. el

Ilustration 2 In Fig 1.3, U= {1,2,3, ..., 10} is the
universal set of which

A=1{2,4,6,8,10} and B = {4, 6} are subsets, 9
and also B C A.

The reader will see an extensive use of the
Venn diagrams when we discuss the union, intersection and difference of sets.

Fig1.3

1.9 Operations on Sets

In earlier classes, we have learnt how to perform the operations of addition, subtraction,
multiplication and division on numbers. Each one of these operations was performed
on a pair of numbers to get another number. For example, when we perform the
operation of addition on the pair of numbers 5 and 13, we get the number 18. Again,
performing the operation of multiplication on the pair of numbers 5 and 13, we get 65.
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14 MATHEMATICS

Similarly, there are some operations which when performed on two sets give rise to
another set. We will now define certain operations on sets and examine their properties.
Henceforth, we will refer all our sets as subsets of some universal set.

1.9.1 Union of sets Let A and B be any two sets. The union of A and B is the set
which consists of all the elements of A and all the elements of B, the common elements
being taken only once. The symbol ‘U’ is used to denote the union. Symbolically, we
write A U B and usually read as ‘A union B’.

Example 12 Let A= {2,4,6,8} and B={ 6, 8, 10, 12}. Find A U B.

Solution We have AUB ={2,4,6,8, 10, 12}
Note that the common elements 6 and 8 have been taken only once while writing
A UB.

Example 13 LetA={a,¢ i, 0,u}and B={qa, i u}. Showthat AUB =A

Solution We have, AUB=1{aqa, ¢ i,0 u}=A.

This example illustrates that union of sets A and its subset B is the set A
itself, i.e., if BC A, then A UB =A.

Example 14 Let X = {Ram, Geeta, Akbar} be the set of students of Class XI, who are
in school hockey team. Let Y = {Geeta, David, Ashok} be the set of students from
Class XI who are in the school football team. Find X U Y and interpret the set.

Solution We have, X U'Y = {Ram, Geeta, Akbar, David, Ashok}. This is the set of
students from Class XI who are in the hockey team or the football team or both.

Thus, we can define the union of two sets as follows:

Definition 5 The union of two sets A and B is the set C which consists of all those
elements which are either in A or in B (including T
those which are in both). In symbols, we write.
AUB ={x:xeAorx eB}

The union of two sets can be represented by
a Venn diagram as shown in Fig 1.4.

The shaded portion in Fig 1.4 represents A U B. B
AUB

Some Properties of the Operation of Union
(i) AuB =B uUA (Commutative law) Fig1.4

i (AuB)uC=AuU(BuUCQO)
(Associative law )

) Avod=A (Law of identity element, ¢ is the identity of L)
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(iv) AUA =A (Idempotent law)

vy UuA =U (Law of U)
1.9.2 Intersection of sets The intersection of sets A and B is the set of all elements
which are common to both A and B. The symbol ‘’ is used to denote the intersection.
The intersection of two sets A and B is the set of all those elements which belong to
both A and B. Symbolically, we writte AN B = {x: x € Aand x € B}.
Example 15 Consider the sets A and B of Example 12. Find A " B.
Solution We see that 6, § are the only elements which are common to both A and B.
Hence AnB={6,8}.
Example 16 Consider the sets X and Y of Example 14. Find X N Y.

Solution We see that element ‘Geeta’ is the only element common to both. Hence,
XNY = {Geeta}.

Example 17 LetA={1,2,3,4,5,6,7,8,9,10} and B={2,3,5,7 }. Find A nBand
hence show that AN B = B.

Solution We have AN B={2,3,5,7}=B. We
note that B — A and that A~ B =B.

Definition 6 The intersection of two sets A and B A

is the set of all those elements which belong to both
A and B. Symbolically, we write

U

ANnB={x:xeAandx € B} ANB

The shaded portion in Fig 1.5 indicates the Fig 1.5
intersection of A and B.
If A and B are two sets such that AN B = ¢, then [y
A and B are called disjoint sets.

For example, letA={ 2,4, 6,8 } and
B=1{1,3,5 7 }. Then A and B are disjoint sets,
because there are no elements which are common to
A and B. The disjoint sets can be represented by
means of Venn diagram as shown in the Fig 1.6
In the above diagram, A and B are disjoint sets. Fig 1.6
Some Properties of Operation of Intersection

i) AnhB =BnA (Commutative law).
@ (AnNnB)NnC=An(BnNC) (Associative law).

) ¢NnA=¢,UNnA=A (Law of ¢ and U).

(iv) AnA=A (Idempotent law)
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16 MATHEMATICS

v) An(BucC) = (AnB)U(ANC) (Distributive law ) i. e.,
N distributes over U
This can be seen easily from the following Venn diagrams [Figs 1.7 (i) to (v)].

U U

(1) (BUC) (i) (ANB)

P%

(i) AN(BUC) (iv) (ANC)

U

$

(v) (AnB) U (ANC)
Figs 1.7 (i) to (v)

1.9.3 Difference of sets The difference of the sets A and B in this order is the set
of elements which belong to A but not to B. Symbolically, we write A — B and read as
“A minus B”.

Example 18 LetA=1{1,2,3,4,5,6}, B={2,4,6,8 }. Find A—Band B-A.

Solution We have, A— B = {1, 3, 5 }, since the elements 1, 3, 5 belong to A but
not to Band B— A= { 8 }, since the element 8 belongs to B and not to A.
We note that A— B #B — A.
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Example 19 Let V=1{aqa, ¢ i, 0, u } and
B={a ik u}.FindV-Band B-V

Solution We have, V-B={¢, 0 }, since the elements
e, o belong to V butnotto Band B—V = { k }, since
the element k& belongs to B but not to V.

builder notation, we can rewrite the definition of Fig1.8
difference as

represented by Venn diagram as shown in Fig 1.8.
The shaded portion represents the difference of
the two sets A and B.

Remark The sets A— B, An B and B — A are B (ANB)

SETS 17

We note that V — B # B — V. Using the set- | A—B

A-B={x:xeAandx ¢ B}
The difference of two sets A and B can be

mutually disjoint sets, i.e., the intersection of any of Fig 1.9
these two sets is the null set as shown in Fig 1.9.

|EXERCISE 1.4|

Find the union of each of the following pairs of sets :
(i) X={1,3,5} Y=1{1,2,3}
(i) A=1la eio u B={a b c}
(@ii)) A = {x:xisanatural number and multiple of 3}
B = {x : x is a natural number less than 6}
(iv) A= {x:xisanatural numberand I <x <6 }
B = {x : x is a natural number and 6 <x < 10 }
v) A={1,2,3},B=9¢
LetA={a b},B= {a b c}.IsAcB?WhatisAUB?
If A and B are two sets such that A — B, then whatisA U B ?
IfA={1,2,3,4},B=1{3,4,5,6},C=1{5,6,7,8 tandD={7,8,9, 10 }; find
(i) AuB (i AucC (i) BuC (ivyBuD
(v) AuBuUC (vij AuBuUD (vi) BuCuD
Find the intersection of each pair of sets of question 1 above.
IfA={3,5,7,9,11 },B=1{7,9,11,13},C={11,13, 15}and D = {15, 17}; find

i) AnB @i BnNC @) AnCnD
iv) AnC (vy BnD vi) AnBuUO)
(vi) AnD (vii) An(BuD) (@(x) (AnB)n(BuUC)

x) (AuD)N(BuUQ)
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18 MATHEMATICS

7. If A= {x:xis anatural number }, B = {x :x is an even natural number}
C = {x : x is an odd natural number}andD = {x : x is a prime number }, find
i) AnB i@ AnC (i) AnD
(ivy BnC v) BnD (vip CnD
8. Which of the following pairs of sets are disjoint
(1 {1,2,3,4} and {x : x is a natural number and 4 <x <6 }
(i) {a eiou}tand{cde [}
(i) {x:xisan even integer } and {x : x is an odd integer}
9. IfA=1{3,6,9,12,15,18,21},B={4,8,12,16,20 },
C=1{2,4,6,8,10,12,14,16 },D={5,10, 15,20 }; find

i) A-B @@ A-C (i) A-D (ivy B-A
v) C-A (vip D-A (vi) B-C (vii) B-D
(ix) C-B x) D-B (xi) C-D (xi) D-C
10. IfX={a b c,d}andY=1{f b, d, g}, find
(i) X-Y () Y-X (i) XNY
11. If R is the set of real numbers and Q is the set of rational numbers, then what is
R-Q?

12. State whether each of the following statement is true or false. Justify your answer.
(1) {2,3,4,5} and {3, 6} are disjoint sets.
(i) {a e i o u}and{a b c d}are disjoint sets.
@) {2,6,10,14 }and {3,7,11, 15} are disjoint sets.
(iv) {2,6,10} and { 3,7, 11} are disjoint sets.

1.10 Complement of a Set

Let U be the universal set which consists of all prime numbers and A be the subset of
U which consists of all those prime numbers that are not divisors of 42. Thus,
A={x:x e Uandxisnota divisor of 42 }. We see that 2 € U but 2 ¢ A, because
2 is divisor 0f 42. Similarly,3 e Ubut3 ¢ A,and 7 € Ubut 7 ¢ A. Now 2, 3 and 7 are
the only elements of U which do not belong to A. The set of these three prime numbers,
i.e., the set {2, 3, 7} is called the Complement of A with respect to U, and is denoted by

A'. So we have A'= {2, 3, 7}. Thus, we see that
A' ={x:x e Uandx ¢ A }. This leads to the following definition.

Definition 7 Let U be the universal set and A a subset of U. Then the complement of
A is the set of all elements of U which are not the elements of A. Symbolically, we
write A’ to denote the complement of A with respect to U. Thus,
A'={x:xeUandx ¢ A }. Obviously A’=U - A
We note that the complement of a set A can be looked upon, alternatively, as the
difference between a universal set U and the set A.
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Example 20 LetU= {1,2,3,4,5,6,7,8,9,10} and A= {1,3,5,7,9}. Find A".

Solution We note that 2, 4, 6, 8, 10 are the only elements of U which do not belong to
A. Hence A'={2,4,6,8,10 }.

Example 21 Let U be universal set of all the students of Class XI of a coeducational
school and A be the set of all girls in Class XI. Find A".

Solution Since A is the set of all girls, A" is clearly the set of all boys in the class.

If A is a subset of the universal set U, then its complement A’ is also a
subset of U.
Again in Example 20 above, we have A’ ={2,4,6,8, 10 }
Hence (A’Y={x:xeUandx g A"}
={1,3,5,7,9} =A
It is clear from the definition of the complement that for any subset of the universal
set U, we have (A'Y =A

Now, we want to find the results for (A U B )" and A’ N B’ in the followng
example.

Example 22 Let U= {1,2,3,4,5,6},A={2,3} and B= {3, 4, 5}.
Find A’, B’, A’ nB’, AU B and hence show that( AUB ) =A’nB".

Solution Clearly A’ = {1,4,5,6},B'={1,2,6 }. Hence A’ "B'={ 1,6}
AlsoAUB ={2,3,4,5},sothat(AUB) ={1,6}
(AUuB) ={1,6}=A"NnB’

It can be shown that the above result is true in general. If A and B are any two
subsets of the universal set U, then

(AUB ) =A"NnB' Similarly, (AnB ) = A’ UB'. These two results are stated

in words as follows :

The complement of the union of two sets is U
the intersection of their complements and the A
complement of the intersection of two sets is the
union of their complements. These are called De
Morgan's laws. These are named after the
mathematician De Morgan.
The complement A" of a set A can be represented
by a Venn diagram as shown in Fig 1.10. Fig 1.10
The shaded portion represents the complement of the set A.
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Some Properties of Complement Sets
1. Complement laws: HAUVA" =U ANA"=¢
2. De Morgan’s law: (i)(Au B)Y =A'NnB' (i))(An B)Y =A'"UB’
3. Law of double complementation : (A’) =A

4. Laws of empty set and universal set ¢’ = U and U’ = ¢.
These laws can be verified by using Venn diagrams.

|EXERCISE 1.5|

1. LetU={1,2,3,4,56,7,89},A=1{1,2,3,4,,B=1{2,4,6,8} and
C=1{3,4,56}.Find (i) A’ (ii) B (iii) (AU C) (iv) (AUB)' (v) (A"

(vi) B -C)

2. IfU=1{a b ¢ d e f g h}, find the complements of the following sets :
()A={a b, c} (i) B={d e f, g}
(i) C={a, ¢ ¢ g} (iv)D={f g h, a}

3.  Taking the set of natural numbers as the universal set, write down the complements
ofthe following sets:

(1)  {x:xis an even natural number} (i1) {x:xisanoddnatural number }
(i) {x:xisapositive multiple of 3} (iv) { x : x is a prime number }
(v) {x:xisanatural number divisible by 3 and 5}
(vi) {x:xis aperfect square } (vii) { x : x is a perfect cube}
(vii) {x:x+5=8} (ix) {x:2x+5=9}
x) {x:x2>27} (xi) {x:xeNand2x+1>10}
4. IfU={1,2,3,4,5,6,7,8,9},A=1{2,4,6,8} and B={ 2, 3,5, 7}. Verify that
1) (AuB)Y =A"nB (i) (AnB)Y=A"UB’
5.  Draw appropriate Venn diagram for each of the following :
(1) (AU BY, (i)A'nB', (i) (AnB), (v)A'UB

6. Let U be the set of all triangles in a plane. If A is the set of all triangles with at
least one angle different from 60°, what is A’?

7.  Fill in the blanks to make each of the following a true statement :
i AUA'=... (ii) O NA=...
(i) AnA'=... (iv) UnNnA=...

Miscellaneous Examples

Example 23 Show that the set of letters needed to spell “ CATARACT  and the
set of letters needed to spell “ TRACT” are equal.

Solution Let X be the set of letters in “CATARACT”. Then
X={C,A, TR}
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Let Y be the set of letters in “ TRACT”. Then
Y={T,R,AC, T} ={T,R,A,C}
Since every element in X is in Y and every element in Y is in X. It follows that X =Y.

Example 24 List all the subsets of the set { —1, 0, 1 }.

Solution Let A= {-1,0, 1 }. The subset of A having no element is the empty
set ¢. The subsets of A having one element are { —1 }, { 0 }, { 1 }. The subsets of
A having two elements are {—1, 0}, {—1, 1} ,{0, 1}. The subset of A having three
elements of A is A itself. So, all the subsets of A are ¢, {—1}, {0}, {1}, {-1,0}, {1, 1},
{0, 1} and {-1, 0, 1}.

Example 25 Show that Auw B = AN B implies A=B

Solution Leta € A. Thena € AUB. Since AUB=A "B,ac A nB.Soa € B.
Therefore, A B. Similarly, if b € B, then b € A U B. Since
AUB=ANB,b e AnB.So, b € A. Therefore, B A. Thus, A=B

Miscellaneous Exercise on Chapter 1

1. Decide, among the following sets, which sets are subsets of one and another:
A={x:xeR andxsatisfyx> -8+ 12= 0},
B={2,4,6}, C={2,4,6,8,...},D={6}.

2. Ineach of the following, determine whether the statement is true or false. If it is
true, prove it. If it is false, give an example.

(i) Ifxe AandA € B,thenx e B
(i) IfA cBandB e C,thenA € C
(i) IfAcBandBc C,thenA cC
(ivy fAgzBandBz C,thenA z C
(v) IfxeAand Az B, thenx € B
(vij IfAcBandx ¢ B,thenx ¢ A
3. LetA, B, and C be the sets suchthat AU B=Au Cand AN B=A N C. Show
that B = C.
4.  Show that the following four conditions are equivalent :
()AcB@{i)A-B=¢ (ii)AuUB=B (ivyVAnB=A
5.  Show that if Ac B,then C-B c C — A.
6.  Show that for any sets A and B,
A=(An B) U(A-B)andAuU(B-A)= (AUB)
7. Using properties of sets, show that
HDAU(A NB)=A (i) An(AUB)=A.
8.  Show that An B =A n C need not imply B=C.
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9. LetAand Bbesets. [fFA " X=BnX=¢and Au X =B U X for some set
X, show that A = B.
(Hints A=An(AuX),B=Bn(BuU X)and use Distributive law )
10. Find sets A, B and C such that A "B, B n C and A n C are non-empty

setsand AN B N C = ¢.

Summary

This chapter deals with some basic definitions and operations involving sets. These

are summarised below:

@ A setis a well-defined collection of objects.

@ A set which does not contain any element is called empty set.

@ A set which consists of a definite number of elements is called finite set,
otherwise, the set is called infinite set.

@ Two sets A and B are said to be equal if they have exactly the same elements.

@ Aset Ais said to be subset of a set B, if every element of A is also an element
of B. Intervals are subsets of R.

© The union of two sets A and B is the set of all those elements which are either
inA orinB.

@ The intersection of two sets A and B is the set of all elements which are
common. The difference of two sets A and B in this order is the set of elements
which belong to A but not to B.

@ The complement of a subset A of universal set U is the set of all elements of U
which are not the elements of A.

¢ Forany two sets Aand B, (AUB)Y =A'"nB'and (AnB) =A"UB’

Historical Note

The modern theory of sets is considered to have been originated largely by the
German mathematician Georg Cantor (1845-1918). His papers on set theory
appeared sometimes during 1874 to 1897. His study of set theory came when he
was studying trigonometric series of the form a, sin x + a, sin 2x + a, sin 3x + ...
He published in a paper in 1874 that the set of real numbers could not be put into
one-to-one correspondence wih the integers. From 1879 onwards, he publishd
several papers showing various properties of abstract sets.
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Cantor’s work was well received by another famous mathematician Richard
Dedekind (1831-1916). But Kronecker (1810-1893) castigated him for regarding
infinite set the same way as finite sets. Another German mathematician Gottlob
Frege, at the turn of the century, presented the set theory as principles of logic.
Till then the entire set theory was based on the assumption of the existence of the
set of all sets. It was the famous Englih Philosopher Bertand Russell (1872-
1970 ) who showed in 1902 that the assumption of existence of a set of all sets
leads to a contradiction. This led to the famous Russell’s Paradox. Paul R.Halmos
writes about it in his book ‘Naive Set Theory’ that “nothing contains everything”.

The Russell’s Paradox was not the only one which arose in set theory.
Many paradoxes were produced later by several mathematicians and logicians.
As a consequence of all these paradoxes, the first axiomatisation of set theory
was published in 1908 by Ernst Zermelo. Another one was proposed by Abraham
Fraenkel in 1922. John Von Neumann in 1925 introduced explicitly the axiom of
regularity. Later in 1937 Paul Bernays gave a set of more satisfactory
axiomatisation. A modification of these axioms was done by Kurt Godel in his
monograph in 1940. This was known as Von Neumann-Bernays (VNB) or Godel-
Bernays (GB) set theory.

Despite all these difficulties, Cantor’s set theory is used in present day
mathematics. In fact, these days most of the concepts and results in mathematics
are expressed in the set theoretic language.
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Chapter 2

(RELATIONS AND FUNCTIONS )

*® Mathematics is the indispensable instrument of
all physical research. — BERTHELOT %

2.1 Introduction

Much of mathematics is about finding a pattern — a

recognisable link between quantities that change. In our

daily life, we come across many patterns that characterise

relations such as brother and sister, father and son, teacher

and student. In mathematics also, we come across many

relations such as number m is less than number 7, line /is

parallel to line m, set A is a subset of set B. In all these, we

notice that a relation involves pairs of objects in certain

order. In this Chapter, we will learn how to link pairs of

objects from two sets and then introduce relations between

the two objects in the pair. Finally, we will learn about G.W. Leibnitz
special relations which will qualify to be functions. The (1646-1716)
concept of function is very important in mathematics since it captures the idea of a
mathematically precise correspondence between one quantity with the other.

2.2 Cartesian Products of Sets

Suppose A is a set of 2 colours and B is a set of 3 objects, i.e.,
A = {red, blue}and B = {b, ¢, s},

where b, ¢ and s represent a particular bag, coat and shirt, respectively.
How many pairs of coloured objects can be made from these two sets?

s
Proceeding in a very orderly manner, we can see that there will be 6
distinct pairs as given below:

(red, b), (red, ), (red, s), (blue, b), (blue, ¢), (blue, s). b
. . . . [ ) [ ]
Thus, we get 6 distinct objc?cts (Fig 2.1). ‘ red  blue
Let us recall from our earlier classes that an ordered pair of elements Fig 2.1

taken from any two sets P and Q is a pair of elements written in small
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brackets and grouped together in a particular order, i.e., (p,q), p € Pand g € Q . This
leads to the following definition:

Definition 1 Given two non-empty sets P and Q. The cartesian product P x Q is the
set of all ordered pairs of elements from P and Q, i.e.,

PxQ={(@qg:p €Pqg €Q}
If either P or Q is the null set, then P x Q will also be empty set, i.e., P X Q= ¢

From the illustration given above we note that

A x B = {(red,b), (red,c), (red,s), (blue,b), (blue,c), (blue,s)}.

Again, consider the two sets:

A = {DL, MP, KA}, where DL, MP, KA represent Delhi,
Madhya Pradesh and Karnataka, respectively and B = {01,02, 03
03 }representing codes for the licence plates of vehicles issued 02
by DL, MP and KA . 01

If the three states, Delhi, Madhya Pradesh and Karnataka
were making codes for the licence plates of vehicles, withthe DL MP KA
restriction that the code begins with an element from set A,
which are the pairs available from these sets and how many such
pairs will there be (Fig 2.2)?

The available pairs are:(DL,01), (DL,02), (DL,03), (MP,01), (MP,02), (MP,03),
(KA,01), (KA,02), (KA,03) and the product of set A and set B is given by
A xB={(DL,01), (DL,02), (DL,03), (MP,01), (MP,02), (MP,03), (KA,01), (KA,02),

(KA,03)}.

It can easily be seen that there will be 9 such pairs in the Cartesian product, since
there are 3 elements in each of the sets A and B. This gives us 9 possible codes. Also
note that the order in which these elements are paired is crucial. For example, the code
(DL, 01) will not be the same as the code (01, DL).

As a final illustration, consider the two sets A= {a,, a,} and b,

B={b,, b, b, b} (Fig2.3). b,

A X B = {( ala b]): (ap bz): (ala b3)7 (ala b4)7 (aza b]): (aza bz)a b2

(aza b3)7 (aza b4)} bl

The 8 ordered pairs thus formed can represent the position of points in )

the plane if A and B are subsets of the set of real numbers and it is & a,

obvious that the point in the position (a,, b,) will be distinct from the point
in the position (b,, a,).

Fig 2.2

Fig2.3
Remarks

(i) Two ordered pairs are equal, if and only if the corresponding first elements
are equal and the second elements are also equal.
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26 MATHEMATICS

(i) If there are p elements in A and ¢ elements in B, then there will be pg
elements in A x B, i.e., if n(A) =p and n(B) = ¢, then n(A x B) = pq.

(ii)) IfA and B are non-empty sets and either A or B is an infinite set, then so is
A x B.

(iv) AxAxA={(a,b,c):a,b,c e A}. Here (a, b, ¢) is called an ordered
triplet.

Example 1 If (x+ 1, y—2)=(3,1), find the values of x and y.

Solution Since the ordered pairs are equal, the corresponding elements are equal.
Therefore x+1=3 andy-2=1.
Solvingweget x=2andy=3.

Example 2 If P= {a, b, ¢} and Q = {r}, form the sets P x Q and Q x P.
Are these two products equal?

Solution By the definition of the cartesian product,
PxQ= {(a,r), (b, r),(c,7)} and Q x P= {(r, a), (r, b), (r, ¢)}
Since, by the definition of equality of ordered pairs, the pair (a, 7) is not equal to the pair
(r, a), we conclude that P x Q = Q x P.
However, the number of elements in each set will be the same.

Example 3 Let A= {1,2,3}, B={3,4} and C = {4,5,6}. Find
i AxBNO) (i) (AxB)n(AxC)
(i) Ax (B uUC) (iv) (AxB)U(AxC)
Solution (i) By the definition of the intersection of two sets, (B M C) = {4}.
Therefore, A x (B N C) = {(1.,4), (2,4), (3,4)}.
(i) Now (A xB)=1{(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)}
and (A xC)={(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3.4),(3,5),(3,6)}
Therefore, (AXxB)N (A xC) ={(1,4),(2,4),3,4)}.
(iii) Since, (BWC)={3,4,5, 6}, we have
A x (BuUC)={(1,3), (1,4), (1,5, (1,6), (2,3), (2,4), (2,5), (2,6), (3,3),
(3,4),(3,5),(3,6)}.
(iv) Using the sets A x B and A x C from part (ii) above, we obtain
(AxB)U(AxC)=1{(1,3),(1,4),(1,5),(1,6), (2,3), (2,4), (2,5), (2,6),
(3,3),(3,4),(3,9),(3,6)}.
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Example 4 If P = {1, 2}, form the set P x P x P.

Solution We have, PxPx P= {(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2), (2,2,1),
(2,2,2)}.

Example 5 If R is the set of all real numbers, what do the cartesian products R x R

and R x R x R represent?

Solution The Cartesian product R x R represents the set R x R={(x, y) : x, y € R}

which represents the coordinates of all the points in two dimensional space and the

cartesian product R X R x R represents the set R x Rx R={(x,),2) : x, y,z € R}
which represents the coordinates of all the points in three-dimensional space.

Example 6 If A x B ={(p, 9),(p, 1), (m, q), (m, )}, find A and B.

Solution A = set of first elements = {p, m}
B = set of second elements = {q, r}.

| EXERCISE 2.1 |

2 51

X
—+lLy——=|=|=,—
1. If (3 Y 3j (3 3j,ﬁndthevaluesofxandy.

2. If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of
elements in (AxB).

3. fG={7,8}andH={5,4,2},find GxHand H x G.

4. State whether each of the following statements are true or false. If the statement
is false, rewrite the given statement correctly.

(i) IfP={m,n}and Q= {n, m}, then P x Q= {(m, n),(n, m)}.
(i) If A and B are non-empty sets, then A X B is a non-empty set of ordered
pairs (x, y) such that x € A and y € B.
(i) IfA={1,2},B={3,4},then Ax (BN ¢)=0.

5. IfA={-1,1},find Ax AxA.
6. IfAxB={(a,x),(a,), (b x),(b,y)}. Find A and B.
7. LetA={1,2},B=1{1,2,3,4},C={5,6} and D= {5, 6, 7, 8}. Verify that

HAx (BN C)=(AxB)n (AxC).(ii)) A x Cis asubset of B xD.

8. LetA={l1,2} and B={3,4}. Write A x B. How many subsets will A x B have?
List them.

9. Let A and B be two sets such that n(A) =3 and n(B) =2. If (x, 1), (1, 2), (z, 1)
are in A X B, find A and B, where x, y and z are distinct elements.
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10. The Cartesian product A X A has 9 elements among which are found (-1, 0) and
(0,1). Find the set A and the remaining elements of A X A.

2.3 Relations
Consider the two sets P = {a, b, ¢} and Q = {Ali, Bhanu, Binoy, Chandra, Divya}.
The cartesian product of P Q
P and Q has 15 ordered pairs which
can be listed as P x Q = {(a, Ali),
(a,Bhanu), (a, Binoy), ..., (¢, Divya)}.
We can now obtain a subset of
P x Q by introducing a relation R
between the first element x and the
second element y of each ordered pair
(x,y) as
R= { (x,y): x is the first letter of the name y, x € P, y € Q}.
Then R = {(a, Ali), (b, Bhanu), (b, Binoy), (¢, Chandra)}
A visual representation of this relation R (called an arrow diagram) is shown
inFig2.4.

o Ali
eBhanu

eBinoy
eChandra
eDivya

Definition 2 A relation R from a non-empty set A to a non-empty set B is a subset of
the cartesian product A x B. The subset is derived by describing a relationship between
the first element and the second element of the ordered pairs in A x B. The second
element is called the image of the first element.

Definition 3 The set of all first elements of the ordered pairs in a relation R from a set
A to a set B is called the domain of the relation R.

Definition 4 The set of all second elements in a relation R from a set A to a set B is
called the range of the relation R. The whole set B is called the codomain of the
relation R. Note that range — codomain.

Remarks (1) A relation may be represented algebraically either by the Roster
method or by the Set-builder method.
(i) An arrow diagram is a visual representation of a relation.

Example 7 Let A= {1, 2, 3, 4,5, 6}. Define a relation R from A to A by

R={(x,»):y=x+1}
(i) Depict this relation using an arrow diagram.
(i) Write down the domain, codomain and range of R.

Solution (i) By the definition of the relation,
R=1{(1,2),(2,3), 3,4), (4,5), (5,6)}-
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The corresponding arrow diagram is
shown in Fig 2.5.

(il) We can see that the
domain={1,2,3,4,5,}

Similarly, the range = {2, 3, 4, 5, 6}
and the codomain= {1, 2, 3,4, 5, 6}.

Fig2.5
Example 8 The Fig 2.6 shows a relation

between the sets P and Q. Write this relation (i) in set-builder form, (ii) in roster form.
What is its domain and range? P

Solution It is obvious that the relation R is

“x is the square of y”.
(1) In set-builder form, R = {(x, y): x
is the square of y, x € P,y € Q}
(i1) In roster form, R = {(9, 3),
(9,-3),(4,2),(4,-2),(25,5), (25,-5)} Fig2.6
The domain of this relation is {4, 9, 25}.
The range of this relation is {—2, 2, -3, 3, -5, 5}.
Note that the element 1 is not related to any element in set P.

The set Q is the codomain of this relation.

'@ Note [The total number of relations that can be defined from a set A to a set B
is the number of possible subsets of A x B. If n(A ) = p and n(B) = ¢, then
n (A x B) = pq and the total number of relations is 27.

Example 9 Let A= {1, 2} and B = {3, 4}. Find the number of relations from A to B.

Solution We have,

AxB={(,3),(1,4),(2,3),(2,4)}.
Since n (AxB ) = 4, the number of subsets of AxB is 24 Therefore, the number of
relations from A into B will be 24,

Remark A relation R from A to A is also stated as a relation on A.

| EXERCISE 2.2 |

1. Let A = {1, 2, 3,...,14}. Define a relation R from A to A by
R={(x,y):3x—y=0, where x, y € A}. Write down its domain, codomain and
range.
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2. Define a relation R on the set N of natural numbers by R = {(x, ) : y= x + 5,

x is a natural number less than 4; x, y eN}. Depict this relationship using roster
form. Write down the domain and the range.

3. A=/{1,2,3,5} and B = {4, 6, 9}. Define a relation R from A to B by
R = {(x, y): the difference between x and y is odd; x € A, y € B}. Write R in
roster form.

4. The Fig2.7 shows a relationship

between the sets P and Q. Write this >
relation

(i) in set-builder form (ii) roster form. >
What is its domain and range? S

5. LetA={l,2,3,4,6}. Let R be the
relation on A defined by Fig 2.7
{(a, b):a, b €A, b is exactly divisible by a}.

(i) Write R in roster form
(i) Find the domain of R
(ii)) Find the range of R.
6. Determine the domain and range of the relation R defined by
R={(x,x +5):xe€{0,1,2,3,4,5}}.
7. Write the relation R = {(x, x*) : x is a prime number less than 10} in roster form.
Let A= {x, y, z} and B = {1, 2}. Find the number of relations from A to B.
9. Let R be the relation on Z defined by R = {(a,b): a, b € Z, a— b is an integer}.
Find the domain and range of R.

=]

2.4 Functions

In this Section, we study a special type of relation called function. It is one of the most
important concepts in mathematics. We can, visualise a function as a rule, which produces
new elements out of some given elements. There are many terms such as ‘map’ or
‘mapping’ used to denote a function.

Definition 5 A relation f from a set A to a set B is said to be a function if every
element of set A has one and only one image in set B.

In other words, a function f'is a relation from a non-empty set A to a non-empty
set B such that the domain of f'is A and no two distinct ordered pairs in f* have the
same first element.

If f'is a function from A to B and (a, b) € f, then f(a) = b, where b is called the
image of a under f'and «a is called the preimage of b under f.
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The function f'from A to B is denoted by f: A = B.
Looking at the previous examples, we can easily see that the relation in Example 7 is
not a function because the element 6 has no image.

Again, the relation in Example 8 is not a function because the elements in the
domain are connected to more than one images. Similarly, the relation in Example 9 is
also not a function. (Why?) In the examples given below, we will see many more
relations some of which are functions and others are not.

Example 10 Let N be the set of natural numbers and the relation R be defined on
N such that R = {(x,y) : y=2x, x, y € N}.

What is the domain, codomain and range of R? Is this relation a function?
Solution The domain of R is the set of natural numbers N. The codomain is also N.
The range is the set of even natural numbers.

Since every natural number » has one and only one image, this relation is a
function.

Example 11 Examine each of the following relations given below and state in each
case, giving reasons whether it is a function or not?
() R={2,1),3,1),(42)}, (i) R={(2,2),(2,4),(3,3), (4.4)}
(i) R={(1,2),(2,3),(3.4),(4,5),(5,6), (6,7)}
Solution (i) Since 2, 3, 4 are the elements of domain of R having their unique images,
this relation R is a function.
(i) Since the same first element 2 corresponds to two different images 2
and 4, this relation is not a function.
(ii)) Since every element has one and only one image, this relation is a
function.

Definition 6 A function which has either R or one of its subsets as its range is called
a real valued function. Further, if its domain is also either R or a subset of R, it is
called a real function.

Example 12 Let N be the set of natural numbers. Define a real valued function

f:N-> N by f(x)=2x + 1. Using this definition, complete the table given below.
X 1 2 3 4 5 6 7

vy fH=..1fQ=..fQ=|fG=.|fO)=..1f6)=..|fT)=..
Solution The completed table is given by
X 1 2 3 4 5 6 7

Yy [ SM=3]1f@=5]/C)=7 | f@A=9|/O)=11]f(6)=13] f(7) =I5
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2.4.1 Some functions and their graphs

(i)  Identity function Let R be the set of real numbers. Define the real valued
function f: R - R by y = f{x) = x for each x € R. Such a function is called the
identity function. Here the domain and range of f'are R. The graph is a straight line as
shown in Fig 2.8. It passes through the origin.

Y

Y/
fx)=x
Fig2.8
(i)  Constant function Define the function f R > R by y = f(x) = ¢, x € R where

c is a constant and each x € R. Here domain of fis R and its range is {c}.

Y
N

N
v

8
6..
4
2
C——

8 -6-4-2 |02 4 6 8

T-8
v
Y/
fix)=3
Fig2.9
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The graph is a line parallel to x-axis. For example, if f{x)=3 for each xeR, then its
graph will be a line as shown in the Fig 2.9.

(i) Polynomial function A function /: R — R is said to be polynomial function if

foreachx in R,y = f(x)=a,+ax +ax’+.+a x', where n is a non-negative
a €R.

PERRLE]

integer and a, a,, a

The functions defined by f(x) =x* — x*+ 2, and g(x) =x* + /2 x are some examples

2
of polynomial functions, whereas the function / defined by h(x) = x* + 2x is not a
polynomial function.(Why?)

Example 13 Define the function ff R — R by y = f(x) = x4 x € R. Complete the
Table given below by using this definition. What is the domain and range of this function?
Draw the graph of f.

x -4 32 (1] o]1 |2[3]4
y=fx)=x

Solution The completed Table is given below:

x 4|3 2-1fo]| 1 | 2|3 ]| 4
y=f@=x|16]| 9 4| 1| o|1 |49 |16

Domain of = {x : xeR}. Range of f = {xZ: x € R}. The graph of fis given
by Fig2.10

Y

fix)y=x2 Fig 2.10
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Example 14 Draw the graph of the function f:R — R defined by f (x) = x*, xeR.

Solution We have
A0)=0,A1) =1, fi-1)=-1,f2) =8, A-2) =-8, fi3)=27; -3)=-27, etc.
Therefore, f= {(x,x°): xeR}. Y

The graph of fis given in Fig 2.11.

Y!
fix)=x?

Fig 2.11

() , where f(x) and g(x) are
g(x)

polynomial functions of x defined in a domain, where g(x) # 0.

(iv) Rational functions are functions of the type

1
Example 15 Define the real valued function /: R — {0} — R defined by f(x) :;,

x € R—{0}. Complete the Table given below using this definition. What is the domain
and range of this function?

X 2 |-15[-1[-05]1025]05]( 1 1.5 2
1

y ==
X

Solution The completed Table is given by

X -2 -1.5 [ -1| 0.5 025 05 |1 1.5 2
1

y=— -05(-0.67 -1 -2 | 4 2 1| 067 05
X
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The domain is all real numbers except 0 and its range is also all real numbers
except 0. The graph of fis given in Fig 2.12.
Y

Yl
fo =1

Fig 2.12

(v) The Modulus function The function
f: R—>R defined by f(x) = |x| for each
x eRis called modulus function. For each
non-negative value of x, f(x) is equal to x.
But for negative values of x, the value of
Ax) is the negative of the value of x, i.e.,

x,x=20
fx)=

—x,x<0
The graph of the modulus function is given
in Fig 2.13.

(vi) Signum function The function
f:R—R defined by

Lifx>0
f(x)=:0,if x=0
—-Lifx<0
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is called the signum function. The domain of the signum function is R and the range is
the set {—1, 0, 1}. The graph of the signum function is given by the Fig 2.14.

Y
1 y=1
X' <€ 5 > X
y=- -1
Y!
Lal
f(x):T,x Oand Ofor x =0
Fig 2.14
(vil) Greatest integer function /Y\
The function f: R — R defined
by fix) = [x], x R assumes the 3 —0
value of the greatest integer, less 2 —0
than or equal to x. Such a function
is called the greatest integer 3 -2 -1 T! 1 2 3 4 5
function. X'€ —t— o ——t——+>X
From the definition of [x], we —0 -1
can see that —0 +22
=_ -1<

[x] 1 for—1 <x<0 3

[x]= Ofor0<x<1

[x]= 1forl<x<2 v

Y!
J(x) = [x]
Fig 2.15

[x]= 2for2<x<3and
SO on.

The graph of the function is
shown in Fig 2.15.

2.4.2 Algebra of real functions In this Section, we shall learn how to add two real
functions, subtract a real function from another, multiply a real function by a scalar
(here by a scalar we mean a real number), multiply two real functions and divide one
real function by another.

(i) Addition of two real functions Let /: X — R and g: X — R be any two real
functions, where X — R. Then, we define (f+ g): X — R by

f+g x)=f(x)+g (), forall x € X.
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(i) Subtraction of a real function from another Let /: X - Rand g: X = Rbe
any two real functions, where X ZR. Then, we define (f — g) : X—=>R by
(F~2) (x) = fix) —g(x), for all x € X.

(i) Multiplication by a scalar Let /: X—R be a real valued function and a be a

scalar. Here by scalar, we mean a real number. Then the product o fis a function from
X to R defined by (a0 f) (x) = a f(x), x €X.

(iv) Multiplication of two real functions The product (or multiplication) of two real
functions f:X—R and g:X—R is a function fg:X—>R defined by

(f2) (x) = fix) g(x), for all x € X.
This is also called pointwise multiplication.

(v) Quotient of two real functions Let f'and g be two real functions defined from

A
X—R, where X C R. The quotient of by g denoted by E is a function defined by ,

[é} (x) =% , provided g(x) # 0, x € X

Example 16 Let f(x) = x'and g(x) =2x + 1 be two real functions.Find

S
'+ 8 ), (F—2) (%), (72) (X),[EJ(’C).

Solution We have, / i
fro@=x +2x+ 1, (f-g (x)= x —2x—1,

2
(fe) (x) =x 2x+1)= 2% +x2, [é}(x) = 2;+1,x # —%

Example 17 Let fix) = /x and g(x) = x be two functions defined over the set of non-

negative real numbers. Find (f'+ g) (x), (f— g) (x), (f2) (x) and [é} (x).
Solution We have

f+9 )= Jx+x (-9 @ =Jx —x,

3 i
(fg)x = Jx(x)=x? and [éJ(x) =£=x_5,x¢0
X
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| EXERCISE 2.3 |

1. Which of the following relations are functions? Give reasons. If it is a function,
determine its domain and range.

@) {(21),(5,1),@8,1), (11,1),(14,1), (17,1)}
(i) {(2,1),(4.2),(6,3),(8,4),(10,5),(12,6), (14,7)}
(i) {(1,3),(1,5),(2,5)}.
2. Find the domain and range of the following real functions:
@) fx) = |x] @) fx)= \9-x*.
3. A function fis defined by f{ix) = 2x —5. Write down the values of
@ [, @) £, (i) f(3).
4.  The function ‘2’ which maps temperature in degree Celsius into temperature in
9C
degree Fahrenheit is defined by #C) = Y +32.
Find (i) #«0) (ii)) #28) (iii)) #-10) (iv) The value of C, when #C) = 212.

5. Find the range of each of the following functions.
) f(x) =2-3x, xR x>0.
(i) f(x) =x*+2, xis areal number.
@) f(x) =x, xis areal number.

Miscellaneous Examples

Example 18 Let R be the set of real numbers.

Define the real function }(\
fiR>Rby fix)=x+10

and sketch the graph of this function. (0.10)
Solution Here f0) = 10, 1) =11, A2) =12, ...,
A(10) =20, etc., and

fi-1)=9,/-2)=8, ... i-10)= 0 and so on. (10:0) -

Therefore, shape of the graph of the given X V o -
function assumes the form as shown in Fig 2.16.
Remark The function f* defined by f{x) = mx + ¢, ;{f
x € R, is called linear function, where m and c are fx)=x+10
constants. Above function is an example of a linear .

Fig 2.16

function.
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Example 19 Let R be a relation from Q to Q defined by R = {(a,b): a,b € Q and
a—b € Z}. Show that
(i) (a,a) e Rforalla € Q
(i) (a,b) € R implies that (b, a) € R
(i) (a,b) € R and (b,c) € R implies that (a,c) eR
Solution (i) Since, a —a =0 € Z, if follows that (a, a) € R.
(i) (a,b) € R implies that « — b € Z. So, b — a € Z. Therefore,
(b, a) e R
(@ii)) (a, b) and (b, c) € Rimpliesthata—b € Z.b—c € Z. So,
a—c=(a->b)+ (b-c) € Z. Therefore, (a,c) € R
Example 20 Letf= {(1,1), (2,3), (0,-1), (—1,-3)} be a linear function from Z into Z.
Find f{x).
Solution Since f'is a linear function, f(x) = mx + ¢. Also, since (1, 1), (0, — 1) € R,

f()=m+c=1andf(0)=c=-1. This gives m =2 and f(x) = 2x — 1.

X2 +3x+5

Example 21 Find the domain of the function f (x) =—;
x —-5x+4

Solution Sincex’ —Sx+4= (x—4) (x—1), the function fis defined for all real numbers
except at x = 4 and x = 1. Hence the domain of fis R — {1, 4}.

Example 22 The function fis defined by
1-x, x<0

1 ,x=0

x+1, x>0

S )=

Draw the graph of f (x).
Solution Here, flx)=1-x,x <0, this gives
fed) =1-(4=5
fe3) =1-(3)=4,

fi=2) =1-(-2)=3 -2

A-1) =1-(-1) =2;ete, 3
and f(1) =2,/(2)=3,f(3)=4 N
f(4) =5andsoon for fix)=x+1,x>0. Y’

Thus, the graph of fis as shown in Fig 2.17 Fig 2.17
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Miscellaneous Exercise on Chapter 2

The relation fis defined by /()= £ 0%
e relation fis defined by 3x,3<x<10
) x*,0<x<2
. . x:
The relation g is defined by & 3x,2<x<10

Show that fis a function and g is not a function.

If £ (x) = x , find % .

X2 +2x+1
X2 —8x+12°

Find the domain and the range of the real function f'defined by f'(x) = \/(x—1) .

Find the domain of the function f(x) =

Find the domain and the range of the real function f defined by f (x) = |x - 1| .

2
X
Let /= {x, 1+ 12 J ‘X E R} be a function from R into R. Determine the range

of f.
Let f, g : R—>R be defined, respectively by fix) = x + 1, g(x) = 2x — 3. Find

f+gf- andi
& g g’

Let = {(1,1), (2,3), (0,-1), (-1, =3)} be a function from Z to Z defined by
fix) = ax + b, for some integers a, b. Determine a, b.

Let R be a relation from N to N defined by R = {(a, b) : a, b eNand a = bz}. Are
the following true?
(1) (a,a) e R, foralla e N (i) (a,b) € R, implies (b,a) € R
@ii)) (a,b) € R, (b,c) € R implies (a,c) € R.
Justify your answer in each case.
LetA={1,2,3,4},B={1,5,9,11,15,16} and /= {(1,5),(2,9), (3,1), (4,5), (2,11)}
Are the following true?
(i) fis arelation from A to B (i) f is a function from A to B.
Justify your answer in each case.
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Let f be the subset of Z x Z defined by f = {(ab, a + b) : a, b € Z}. Is f'a
function from Z to Z? Justify your answer.

Let A= {9,10,11,12,13} and let /: A—N be defined by f'(n) = the highest prime
factor of n. Find the range of /.

Summary

In this Chapter, we studied about relations and functions.The main features of
this Chapter are as follows:
@ Ordered pair A pair of elements grouped together in a particular order.
@ Cartesian product A < B of two sets A and B is given by
AxB= {(a, b):ae A,b e B}
In particular R X R = {(x, y): x, y € R}
and R x R x R= {(x, y,2): x,y,z € R}
¢ If (a, b) = (x, ), thena=xand b =y.
¢ If n(A) = p and n(B) = ¢, then n(A x B) = pq.
*AXH=¢
@ In general, Ax B =B x A,

® Relation A relation R from a set A to a set B is a subset of the cartesian
product A x B obtained by describing a relationship between the first element
x and the second element y of the ordered pairs in A x B.

® The image of an element x under a relation R is given by y, where (x, y) € R,

® The domain of R is the set of all first elements of the ordered pairs in a
relation R.

@ The range of the relation R is the set of all second elements of the ordered
pairs in a relation R.

¢ Function A function f from a set A to a set B is a specific type of relation for
which every element x of set A has one and only one image y in set B.

We write f; A—>B, where f(x) = y.
¢ A is the domain and B is the codomain of 1.
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@ The range of the function is the set of images.

@ A real function has the set of real numbers or one of its subsets both as its
domain and as its range.

@ Algebra of functions For functions /: X — R and g : X —> R, we have
(f+g () =/f(x) +gx),xeX
(f-2 () =/f(x)—gkx),x e X
(fg) ) =/f(x).gkx),xeX
(k) (x) =k(f(x)),x € X, where k is a real number.

f S
(g](x) = o) ¥ X, gx)#0

Historical Note

The word FUNCTION first appears in a Latin manuscript “Methodus
tangentium inversa, seu de fuctionibus” written by Gottfried Wilhelm Leibnitz
(1646-1716) in 1673; Leibnitz used the word in the non-analytical sense. He
considered a function in terms of “mathematical job” — the “employee” being
just a curve.

On July 5, 1698, Johan Bernoulli, in a letter to Leibnitz, for the first time
deliberately assigned a specialised use of the term function in the analytical
sense. At the end of that month, Leibnitz replied showing his approval.

Function is found in English in 1779 in Chambers’ Cyclopaedia: “The
term function is used in algebra, for an analytical expression any way compounded
of a variable quantity, and of numbers, or constant quantities”.
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Chapter 3

(TRIGONOMETRIC FUNCTIONS )

A mathematician knows how to solve a problem,
he can not solve it. — MILNE %

3.1 Introduction

The word ‘trigonometry’ is derived from the Greek words
‘trigon’ and ‘metron’ and it means ‘measuring the sides of
a triangle’. The subject was originally developed to solve
geometric problems involving triangles. It was studied by
sea captains for navigation, surveyor to map out the new
lands, by engineers and others. Currently, trigonometry is
used in many areas such as the science of seismology,
designing electric circuits, describing the state of an atom,
predicting the heights of tides in the ocean, analysing a
musical tone and in many other areas.
In earlier classes, we have studied the trigonometric Arya Bhatt
ratios of acute angles as the ratio of the sides of a right (476-550)
angled triangle. We have also studied the trigonometric identities and application of
trigonometric ratios in solving the problems related to heights and distances. In this
Chapter, we will generalise the concept of trigonometric ratios to trigonometric functions
and study their properties.

3.2 Angles

Angle is a measure of rotation of a given ray about its initial point. The original ray is

B Vertex Initial side
0] >
ey,
0]1‘,1
U o
S 77
>A ¢
Vertex Initial side B
(i)Positive angle Fig 3.1 (ii) Negative angle
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called the initial side and the final position of the ray after rotation is called the
terminal side of the angle. The point of rotation is called the vertex. If the direction of
rotation is anticlockwise, the angle is said to be positive and if the direction of rotation
is clockwise, then the angle is negative (Fig 3.1).

The measure of an angle is the amount of Initial side \A
rotation performed to get the terminal side from Terminal Side ,B

the initial side. There are several units for
measuring angles. The definition of an angle
suggests a unit, viz. one complete revolution from the position of the initial side as
indicated in Fig 3.2.

This is often convenient for large angles. For example, we can say that a rapidly
spinning wheel is making an angle of say 15 revolution per second. We shall describe
two other units of measurement of an angle which are most commonly used, viz.
degree measure and radian measure.

Fig 3.2

360

a revolution, the angle is said to have a measure of one degree, written as 1°. A degree is
divided into 60 minutes, and a minute is divided into 60 seconds . One sixtieth of a degree is
called a minute, written as 1’, and one sixtieth of a minute is called a second, written as 1”.
Thus, 1°=60", 1'=60"

Some of the angles whose measures are 360°,180°, 270°, 420°, — 30°, — 420° are
shown in Fig 3.3.

th
3.2.1 Degree measure If arotation from the initial side to terminal side is (—) of

]

(o]
360 A © 270
O > pe— >A A
B
. B
420° o A A
A —30° 4207
B
Fig 3.3 B
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3.2.2 Radian measure There is another unit for measurement of an angle, called
the radian measure. Angle subtended at the centre by an arc of length 1 unit in a
unit circle (circle of radius 1 unit) is said to have a measure of 1 radian. In the Fig
3.4(1) to (iv), OA is the initial side and OB is the terminal side. The figures show the

1
angles whose measures are 1 radian, —1 radian, 15 radian and —1 ) radian.

(iii)

(iv)
Fig 3.4 (i) to (iv)
We know that the circumference of a circle of radius 1 unit is 27t. Thus, one
complete revolution of the initial side subtends an angle of 27 radian.

More generally, in a circle of radius 7, an arc of length » will subtend an angle of
1 radian. It is well-known that equal arcs of a circle subtend equal angle at the centre.
Since in a circle of radius 7, an arc of length r subtends an angle whose measure is 1
radian, an arc of length / will subtend an angle whose measure is é radian. Thus, ifin

a circle of radius r, an arc of length / subtends an angle 0 radian at the centre, we have

/
O =—or/=r0.
7
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3.2.3 Relation between radian and real numbers N
Consider the unit circle with centre O. Let A be any point 1
on the circle. Consider OA as initial side of an angle.
Then the length of an arc of the circle will give the radian 41
measure of the angle which the arc will subtend at the
centre of the circle. Consider the line PAQ which is
tangent to the circle at A. Let the point A represent the 0

real number zero, AP represents positive real number and
AQ represents negative real numbers (Fig 3.5). If we

rope the line AP in the anticlockwise direction along the )
circle, and AQ in the clockwise direction, then every real

number will correspond to a radian measure and 1 -2
conversely. Thus, radian measures and real numbers can Fig 3.5 v, Q

be considered as one and the same.

3.2.4 Relation between degree and radian Since a circle subtends at the centre
an angle whose radian measure is 27 and its degree measure is 360°, it follows that

2n radian = 360°  or mradian = 180°

The above relation enables us to express a radian measure in terms of degree
measure and a degree measure in terms of radian measure. Using approximate value

22

of  as 7, we have

o

1 radian = =57° 16" approximately.
T
Also 1°= 180 radian = 0.01746 radian approximately.

The relation between degree measures and radian measure of some common angles
are given in the following table:

Degree [ 30° 45° 60° 90° 180° 270° 360°
Radi z z z z 3z
adan g 4 3 2 g 2 2
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Notational Convention
Since angles are measured either in degrees or in radians, we adopt the convention
that whenever we write angle 6°, we mean the angle whose degree measure is 0 and
whenever we write angle 3, we mean the angle whose radian measure is 3.

Note that when an angle is expressed in radians, the word ‘radian’ is frequently

T T
omitted. Thus, 7 =180° and 1 45° are written with the understanding that © and 1

are radian measures. Thus, we can say that

T
Radian measure = @ x Degree measure
180 )
Degree measure = — x Radian measure
T

Example 1 Convert 40° 20" into radian measure.

Solution We know that 180° = = radian.

H 40°20" =40 + degree= 2= x 2L ragian= 2F i
ence = 3 egree = 180X 3 radian = 20 radian.
121z
Therefore 40°20' = radian.

540
Example 2 Convert 6 radians into degree measure.

Solution We know that 7 radian = 180°.

. 180 1080x 7
Hence 6 radians = —— x 6 degree = ——-——degree
T 22
7 7x60
=343ﬁdegree =343°+ 1 minute [as 1° = 60']
2

=343°+38" + 11 minute [as 1" = 60"]

=343°+38"+10.9" =343°38' 11" approximately.
Hence 6 radians = 343° 38’ 11" approximately.

Example 3 Find the radius of the circle in which a central angle of 60° intercepts an

arc of length 37.4 cm (use 7 =7).
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T

607 .
Solution Here /=37.4 cm and 6 = 60° = 130 radian = 3

[
Hence, by r= 7 we have

37.4%x3  37.4x3x7
r= = =357 cm
T 22

Example 4 The minute hand of a watch is 1.5 cm long. How far does its tip move in
40 minutes? (Use t = 3.14).

Solution In 60 minutes, the minute hand of a watch completes one revolution. Therefore,

2
in 40 minutes, the minute hand turns through — of a revolution. Therefore, 6 = Y X 360°

3
r . . .
or EY radian. Hence, the required distance travelled is given by
4z
[=7r0 =15x —cm=2ncm=2 x3.14 cm = 6.28 cm.

Example 5 If the arcs of the same lengths in two circles subtend angles 65°and 110°
at the centre, find the ratio of their radii.

Solution Let 7, and 7, be the radii of the two circles. Given that

6_650_LX65_13_71- di
= = 180 = 3¢ radian
T 22z
=110°= —x110 = —— radi
and 0, =110 180 36 radian
Let / be the length of each of the arc. Then /= r 0, = r,0,, which gives
137 227 ooon 22
z Xr, = Y Xr,, 1.€., , ZE
Hence roor,=22:13.
| EXERCISE 3.1 |

1.  Find the radian measures corresponding to the following degree measures:
(i) 25° (i) —47°30’ (iii) 240° (iv) 520°
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2. Find the degree measures corresponding to the following radian measures
22
(Use 27).

L1 ) .. S Tz
) 1o (i) —4 (i) = (v)
3. A wheel makes 360 revolutions in one minute. Through how many radians does
it turn in one second?

4.  Find the degree measure of the angle subtended at the centre of a circle of

22
radius 100 cm by an arc of length 22 cm (Use 7 = 7).

5. Inacircle of diameter 40 cm, the length of a chord is 20 cm. Find the length of
minor arc of the chord.
6. If in two circles, arcs of the same length subtend angles 60° and 75° at the
centre, find the ratio of their radii.
7. Find the angle in radian through which a pendulum swings if its length is 75 cm
and th e tip describes an arc of length
(i) 10cm @) 15cm @) 21 cm

3.3 Trigonometric Functions

In earlier classes, we have studied trigonometric ratios for acute angles as the ratio of
sides of a right angled triangle. We will now extend the definition of trigonometric
ratios to any angle in terms of radian measure and study them as trigonometric functions.

Consider a unit circle with centre v
at origin of the coordinate axes. Let A
P (a, b) be any point on the circle with
angle AOP = x radian, i.e., length of arc ODIB p (a, b)
AP = x (Fig 3.6).
We define cos x=a and sinx = b L b ¥
Since AOMP is aright triangle, we have (:1’ 0)C X \, 1,0)
OM? + MP2= OPor 2 + b =1 X S olam JaA %
Thus, for every point on the unit circle,
we have
az' +b°=1 or cos’x + sin’x = '1 ©O—DD
Since one complete revolution
subtends an angle of 27 radian at the ;{/’
centre of the circle, ZAOB = g , Fig 3.6
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3n
ZAOC=mnand ZAOD= - All angles which are integral multiples of g are called

quadrantal angles. The coordinates of the points A, B, C and D are, respectively,
(1, 0), (0, 1), (-1, 0) and (0, —1). Therefore, for quadrantal angles, we have

cos 0° =1 sin 0° =0,
T m
cosE=0 s1n5=1
cost=—1 sint =0
cos y = sin Y =
cos 2n=1 sin 2w =0

Now, if we take one complete revolution from the point P, we again come back to
same point P. Thus, we also observe that if x increases (or decreases) by any integral
multiple of 27, the values of sine and cosine functions do not change. Thus,

sin (2nmt +x) =sinx>n € Z, cos 2nt+x)=cosx-n e Z
Further, sinx=0, if x =0,+ 7w, + 27 ,£ 37, ..., i.e., when x is an integral multiple of 7

T kY1 St

and cos x =0, if x ==+ Ex + Ik =3 PR i.e., cos x vanishes when x is an odd

T
multiple of 5 Thus
sin x = 0 implies x = nwt, where » is any integer
T
cos x = 0 implies x = (2n + 1) 2 where 7 is any integer.

We now define other trigonometric functions in terms of sine and cosine functions:

1
cosec x = —/——, X # nm, where n is any integer.
sinx
n . .
secx = ,x#(2n+ 1) =, where n is any integer.
cosx 2
sinx T ) .
tanx = ,x# (2n +1)—, where n is any integer.
cos x 2
cosXx ) )
cotx =——,x#nmn, where n is any integer.
sinx
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We have shown that for all real x, sin’x + cos’x =1
It follows that
1 + tan’x = sec’x (why?)

1 + cot’x = cosec’x (why?)

In earlier classes, we have discussed the values of trigonometric ratios for 0°,
30°,45°,60° and 90°. The values of trigonometric functions for these angles are same
as that of trigonometric ratios studied in earlier classes. Thus, we have the following
table:

e | T | Z |z 3z
6 4 3 | 2 i Y Q) N
1 1 NE)
i = = — 1 -1
sin 0 5 NG 2 0 0
NE) 1 1
1 — = - —1 1
cos 2 NG 7 0 0
1 not not
tan 0 3 ! V3 defined U e
The values of cosec x, sec x and cot x %
are the reciprocal of the values of sin x, N
cos x and tan x, respectively.
OB p (a, b)
3.3.1 Sign of trigonometric functions y ‘\
Let P (a, b) be a point on the unit circle 1
with centre at the origin such that (1,0 C X | b \(1, 0)
Z/AOP = x. If ZAOQ = — x, then the X < o\ fA >X
coordinates of the point Q will be (a, —b) x
(Fig 3.7). Therefore B, /
cos (—x) = cos x 0,1 |pD Q(a-d)
and sin (—x)=-sinx
(—x) d
Since for every point P (a, b) on Y’
the unit circle, — 1 < @ < 1 and Fig 3.7
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—1< bh<1,wehave—1<cosx<1and-1<sinx<1 forall x. We have learnt in

T

previous classes that in the first quadrant (0 <x < 3 ) a and b are both positive, in the
T

second quadrant (5 < x <m) a is negative and b is positive, in the third quadrant

RY/4 RY/4
(m<x< EX ) a and b are both negative and in the fourth quadrant (7 <x<2m)ais

positive and b is negative. Therefore, sin x is positive for 0 <x < 7, and negative for

.. . .. T . T T
1 <x<2m. Similarly, cos x is positive for 0 <x < 3 negative for 3 <x< - and also

3r
positive for EY < x < 2m. Likewise, we can find the signs of other trigonometric

functions in different quadrants. In fact, we have the following table.

I 11 111 v
sin x 4 + — _
COS X + 3 = +
tan x 7 = + —
COSEC X + + = =
sec x +* — _ +
cot x + = + =

3.3.2 Domain and range of trigonometric functions From the definition of sine
and cosine functions, we observe that they are defined for all real numbers. Further,
we observe that for each real number x,

—1<sinx<land —1<cosx<1

Thus, domain of y = sin x and y = cos x is the set of all real numbers and range
is the interval [-1, 1], i.e., - 1 <y < 1.

2024-25



TRIGONOMETRIC FUNCTIONS 53

1
sin x
x#nm,n € Z} andrangeistheset {y :y € R,y >1 ory <—1}. Similarly, the domain

Since cosec x = , the domain of y = cosec x is the set { x : x € R and

T
ofy=secxistheset {x :x € Rand x # 2n + 1) 5o nE 7.} and range is the set

{v:y € R,y <—1lory>1}. The domain of y = tan x is the set {x : x € R and

T
x#Q2n+1) e Z.} and range is the set of all real numbers. The domain of

y=cotxistheset {x:x € Rand x #n n, n € Z} and the range is the set of all real
numbers.

sin x
2 2

We further observe that in the first quadrant, as x increases from 0 to
T
increases from 0 to 1, as x increases from By to 7, sin x decreases from 1 to 0. In the

3r
third quadrant, as x increases from 7 to —

5 sin x decreases from 0 to —land finally, in

T
7 to 2m.

Similarly, we can discuss the behaviour of other trigonometric functions. In fact, we
have the following table:

the fourth quadrant, sin x increases from —1 to 0 as x increases from

I quadrant II quadrant III quadrant IV quadrant

sin

increases from 0 to 1

decreases from 1 to 0

decreases from 0 to —1

increases from —1 to 0

Cos

decreases from 1 to 0

decreases from 0 to — 1

increases from —1 to 0

increases from 0 to 1

tan

increases from 0 to co

increases from —ooto 0

increases from 0 to oo

increases from —ooto 0

cot

decreases from oo to 0

decreases from 0 to—o0

decreases from oo to 0

decreases from Oto —oo0

s€c

increases from 1 to oo

increases from —ooto—1

decreases from —1to—o0

decreases from oo to 1

Cosec

decreases from oo to 1

increases from 1 to oo

increases from —ooto—1

decreases from—1to—o0

Remark In the above table, the statement tan x increases from 0 to o (infinity) for

T T
0<x< B simply means that tan x increases as x increases for 0 < x < B and
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assumes arbitraily large positive values as x approaches to — . Similarly, to say that

cosec x decreases from —1 to — oo (minus infinity) in the fourth quadrant means that

RY/4
cosec x decreases for x e (7 , 2m) and assumes arbitrarily large negative values as

x approaches to 27. The symbols co and — oo simply specify certain types of behaviour
of functions and variables.

We have already seen that values of sin x and cos x repeats after an interval of

27. Hence, values of cosec x and sec x will also repeat after an interval of 2. We

Y
A

L LN TN\ N
DR NI N O T N TR NG
2

y=sinx Y’

Fig3.8

e\ /\ r N\ [/

N N _\/ YA

Fig 3.9
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[ Y 1 [
C 2t/ :
' ' '
N . L T
X\-__E_I o 'L .
211 :2 !
21 !
Y’
y=secx y = cosec x
Fig 3.12 Fig 3.13

shall see in the next section that tan (7 + x) = tan x. Hence, values of tan x will repeat
after an interval of 7. Since cot x is reciprocal of tan x, its values will also repeat after
an interval of t. Using this knowledge and behaviour of trigonometic functions, we can
sketch the graph of these functions. The graph of these functions are given above:

Example 6 Ifcosx= — 3 , X lies in the third quadrant, find the values of other five
5
trigonometric functions.
. . 5
Solution Since cos x = —g , we have secx = —g
Now sin’x + cos’x = 1, i.e., sinx =1 — cos’x
9 16
or sinx=1-— = —
25 25
Hence sin x = =+ 3

Since x lies in third quadrant, sin x is negative. Therefore

.4
smx——5

which also gives

5
cosec x = — —
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Further, we have

sinx 4 cosx 3
tan x = == and cotx=—"—"=—.
cosx 3 sinx 4
5
Example 7 If cot x = — 7 x lies in second quadrant, find the values of other five

trigonometric functions.

5 12
Solution  Since cotx = — TR we have tan x = — 3
N 2 — 1 +t 2y = 1 + ﬂ — @
ow sec’x = an’x = 5~ s
13
Hence secx ==+ 5
Since x lies in second quadrant, sec x will be negative. Therefore
13
secx =— 7,
which also gives
cos X =——
13
Further, we have
et 12 5. 12
sinx = tan x cos x = (— 5 ) x (- 13)— 3
q 1 13
an cosec x = = .
sinx 12
. 31z
Example 8 Find the value of sin 3 -

Solution We know that values of sin x repeats after an interval of 2rt. Therefore

B

NELL SN N
sin — =sin (10w 3)—s1n3— 5
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Example 9 Find the value of cos (—1710°).

Solution We know that values of cos x repeats after an interval of 2 or 360°.
Therefore, cos (—1710°) =cos (—1710° + 5 x 360°)
=cos (—1710° + 1800°) = cos 90° = 0.

|EXERCISE 3.2 |

Find the values of other five trigonometric functions in Exercises 1 to 5.

1. cosx=-—_,x lies in third quadrant.

2
3

2. sinx= g, x lies in second quadrant.

3
cotx = X lies in third quadrant.

3.
3
4. secx= ?, x lies in fourth quadrant.
5. tanx=-— E’ x lies in second quadrant.
Find the values of the trigonometric functions in Exercises 6 to 10.
6. sin765° 7.  cosec (— 1410°)
. tan 3 . sin (— 3 )

157
10. cot (- T)

3.4 Trigonometric Functions of Sum and Difference of Two Angles

In this Section, we shall derive expressions for trigonometric functions of the sum and
difference of two numbers (angles) and related expressions. The basic results in this
connection are called trigonometric identities. We have seen that

1. sin (-x) =—-sinx
2. cos (—x) =cosx

We shall now prove some more results:
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3.  cos (x +y) = cos x cos y — sin x sin y

Consider the unit circle with centre at the origin. Letx be the angle P,OP and y be
the angle P,OP,. Then (x + y) is the angle P,OP,. Also let (- ) be the angle P,OP..
Therefore, P, P,, P, and P, will have the coordinates P (cos x, sin x),
P, [cos (x +y), sin (x + y)], P,[cos (- ), sin (- y)] and P, (1, 0) (Fig 3.14).

Y
N

P, (cos x, sin x)

— <

e
X'<€

P,[cos(x + y), sin(x + y)]|

P, [cos(-y), sin(-y)] ~——]

Fig 3.14

Consider the triangles P,OP, and P,OP,. They are congruent (Why?). Therefore,
P P, and P,P, are equal. By using distance formula, we get

P P2 =[cosx—cos (—y)] + [sin x —sin(-y]
= (cos x — cos y)* + (sin x + sin y)?
= cos®> x + cos’ y — 2 cos x cos y + sin’x + sin’*y + 2sin x sin y
=2 —2 (cos x cos y — sin x sin y) (Why?)
Also, P P? =[1-cos(x+y)]*+[0—sin(x+ )]
=1-2cos (x +y) + cos? (x + y) + sin® (x + y)

=2-2cos(x+y)
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Since P P, =PP, wehave PP>=PP2>
Therefore, 2 =2 (cos x cos y — sin x sin y) =2 — 2 cos (x + y).
Hence cos (x +y) = cos x cos y — sin x sin y

4. cos (x —y) = cos x cos y + sin x sin y
Replacing y by — y in identity 3, we get
cos (x + (—y)) = cos x cos (- y) — sin x sin (— )
or cos (x—y)=cosxcosy+sinx siny

n .
5.  cos (E—x) = sin x

T
If we replace x by By and y by x in Identity (4), we get

T T . .
cos (- —X)=cos = cosx +sin — sinx = sin x.
2 2 2
. W
6. s1n(;—x)=cosx

Using the Identity 5, we have

o T (m_,

sm(E—x)—cos 5 |3 = COS X.
7. sin (x + y) = sin x cos y + cos x sin y
We know that

sin (x +y) = cos (g—(x"‘y)J = cos ((g—x)—J’J

T T
= cos (E_x) cos y + sin (E—X)siny

=sin x cos y + cos x sin y
8. sin (x —y) = sin x cos y — cos x sin y
If we replace y by —y, in the Identity 7, we get the result.
9. By taking suitable values of x and y in the identities 3, 4, 7 and 8, we get the

following results:

T T
cos (E+x) = —sin x sin (E+x) = cos x
cos (T—x) =—cosx sin (T —x) =sin x
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cos (T+x) =—cosx sin (T + x) =—sin x
cos (2t — x) = cos x sin 2w — x) = — sin x

Similar results for tan x, cot x, sec x and cosec x can be obtained from the results of sin
x and cos x.

T
10. If none of the angles x, y and (x + y) is an odd multiple of PR then

tan x +tan y

tan (x+y) = 1—tan x tan y

T
Since none of the x, y and (x + y) is an odd multiple of 3 it follows that cos x,
cos y and cos (x + y) are non-zero. Now

sin(x+y) sinxcosy+cosxsiny

tan (x + = = ; ; .
(x+y) cos(x + COSXCOSYy — SInXxSsin
Y Yy Yy

Dividing numerator and denominator by cos x cos y, we have

sin xcos y 2 cosxsin y
COSXCOSY COSXCOSY

+y) = - ;
tan (¥ +) COSXCOSy  sInxsiny
COSXCOSY COSXCOSY
tan x+tan y
- I —tanxtan y
tan x —tan y
11. tan (x —y)=

1+tan x tan y
If we replace y by — y in Identity 10, we get
tan (x — y) = tan [x + (- )]

tanx+tan(—y)  tanx—tany

l1—tanxtan(—y) - I+tanxtan y

12. 1If none of the angles x, y and (x + y) is a multiple of 7, then

cotxcot y—1

cot (x +y) = cot y+cotx
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Since, none of the x, y and (x + y) is multiple of w, we find that sin x sin y and
sin (x + y) are non-zero. Now,

cos(x+y) cosxcosy—sinxsiny

cot (x+y)=— . .
sin (x + y) sin x cos y + cos x sin y

Dividing numerator and denominator by sin x sin y, we have

x4 cotxcoty—1
cot (x =
(x*) coty +cotx

t ty+1 . . .
13. cot (x —y)= COLXYCORVT i¢ none of angles x, y and x—y is a multiple of 7
cot y —cotx

If we replace y by —y in identity 12, we get the result

. . 1-tan®x
14. cos 2x =cos’x —sin?x=2cos’x—-1=1-2sin>x= ————
1+tan” x

We know that

cos (x + y) =cos x cosy—sin x sin y
Replacing y by x, we get
cos 2x = cos’x — sin’x

=cos’x — (1 — cos?x) =2 cos® — 1
Again, cos 2x = cos? x — sin’x

=1 —sin’?x —sin’ x = 1 — 2 sin’x.
cos® x—sin’x
We have cos2x =cos’x —sin’?’x = —5 5 —
cos” x+sin “ x

Dividing numerator and denominator by cos? x, we get

1—tan® x T . .
cos 2x = ————, X#nm+—, where nis an integer
I+tan” x 2
2tan x

T . .
15. sin 2x = 2 sinx cos x = x¢n7r+5, where n is an integer

1+tan® x
We have
sin (x + y) = sin x cos y + ¢cos x sin y
Replacing y by x, we get sin 2x = 2 sin x cos x.
2sin xcos x

Again sin2x="_5 . 2 _
g cos® x+sin’ x
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Dividing each term by cos® x, we get

2tan x

sin 2x =
1+tan’ x

2tan x

T
16. tan2x = if 2x# n7r+5, where n is an integer

1-tan’x
We know that

tanx + tan y
tan (x +y) = 1 —tanx tan y
. 2 tan
Replacing y by x , we get tan2x zlt—;
—tan” x

17. sin 3x =3 sin x — 4 sin’x
We have,
sin 3x = sin (2x + x)
= sin 2x cos x + cos 2x sin x
=2 sin x cos x cos x + (1 — 2sin?x) sin x
=2 sinx (1 —sin*x) + sinx — 2 sin’x
=2sinx—2sin’x +sinx — 2 sin’x
=3 sinx—4sin’x
18. cos 3x=4 cos’x — 3 cos x
We have,
cos 3x = cos (2x +x)
=c0s 2x oS x — sin 2x sin x
= (2cos’x — 1) cos x — 2sin x cos x sin x
=(2cos’x — 1) cos x — 2cos x (1 — cos?x)
=2c0s*x — cos x —2cos x + 2 cos’x
=4cos*x — 3cos x.

3 tan x—tan® x
19, tan3x=————+
1-3tan” x

We have tan 3x =tan (2x + x)

. T . .
if 3x#nm+ > where n is an integer

2tan x

_ tan2x+tanx _ 1-tan’x

- 1 —tan 2x tan x B I—M
1—tan® x

+tan x
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_ 2tan x + tan x — tan’x _ 3tan x — tan’x

1— tan’x — 2tan’x - 3tan’x

x+ xX—
A Ccos Y

20. (i) cos x + cos y = 2cos

. xty | x-—
(ii) cos x — cos y = — 2sin TysmTy

Xty x-y

(iii) sin x + sin y = 2sin COST
(iv) sin x —sin y = 2cos Xty sin%
We know that
cos (x + ) = cos x cos y — sin x sin y .. (1)
and cos (x —y) = cos x cos y + sin x sin y .. (2)
Adding and subtracting (1) and (2), we get
cos (x +y) + cos(x —y) = 2 coSx cos y .. 3)
and cos (x +y)—cos (x —y)=—2 sinx sin y .. (4)
Further  sin (x +y) = sin x cos y + cos x sin y .. (5)
and sin (x — y) = sin x oS y — €Os x sin y ... (6)
Adding and subtracting (5) and (6), we get
sin (x +y) +sin (x —y) =2 sin x cos y - (7
sin (x +y) —sin (x — y) = 2cos x sin y .. (8)

Let x + y =0 and x — y = ¢. Therefore

()

Substituting the values of x and y in (3), (4), (7) and (8), we get

cos 0 + cos ¢ =2 cos (@j cos (%j

cos O — cos ¢ =— 2 sin (9+¢Jsin(9_¢J
2 2

sin 0 +sin ¢ =2 sin (GL;)}COS (%}
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sin O — sin ¢ = 2 cos (GL;)J sin (?J

Since 0 and ¢ can take any real values, we can replace 6 by x and ¢ by y.
Thus, we get

Xy Xty o X—)y
;COS X —Ccosy=—2sin

Y
cos x + cos y =2 cos cos

Xy o . xX+y . x—y
; sinx —siny =2 cos sin

. . . Y
sinx +siny =2 sin cos

Remark As a part of identities given in 20, we can prove the following results:

21. (i) 2cosxcosy=cos (x+y)+cos(x—y)
(ii) —2 sin x sin y = cos (x + y) — cos (x — y)
(iii) 2 sin x cos y = sin (x + y) + sin (x — p)
(iv) 2 cos x sin y = sin (x + y) — sin (x — y).

Example 10 Prove that
3sin£sec£—4sin5—ncot2=1
6 3 6 4
Solution We have

L.HS. = 3sin£sec£—4sinﬁcotE
e 6 3 6 4
3x L xa 45 (Tr nj 1=3_4sin —
= X — X — —— | X = — —_—
2 Sin 6 Sin 6

1
=3-4x — =1=RHS.
2
Example 11 Find the value of sin 15°.

Solution  We have
sin 15° = sin (45° - 30°)
=in 45° cos 30° — cos 45° sin 30°

LB 1B
22 22 a2
13n

Example 12 Find the value of tan -
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Solution We have
137 TE+£ l—tan rr
tan D = tan 12 = tan 12 4 6

tan =~ —tan =~ l-—=
4 6 \/g \/5_1:2—\/§

P18 b4
1+tan—tan— 1+
4 6

Example 13 Prove that

sin(x+y) tanx+tany

sin(x—y) tanx—tany -
Solution We have

_sin(x+y) sinxcosy+cosxsiny

L.H.S. : : ;
sin(x—y) sinxcosy—cosxsin y

Dividing the numerator and denominator by cos x cos y, we get

sin(x+y) tanx+tany
sin(x—y) tanx—tany -
Example 14 Show that
tan 3 x tan 2 x tan x = tan 3x —tan 2 x — tan x
Solution We know that 3x = 2x + x

Therefore, tan 3x = tan (2x + x)

tan2 x+tanx
or tan3x=—— —

l-tan 2 xtanx
or tan 3x — tan 3x tan 2x tan x = tan 2x + tan x
or tan 3x — tan 2x — tan x = tan 3x tan 2x tan x
or tan 3x tan 2x tan x = tan 3x — tan 2x — tan x.

Example 15 Prove that
cos(%+x}+cos(%—szx/§ COSX

Solution Using the Identity 20(i), we have
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= coS E+x + cos E—x
L.H.S. 1 1
P14 P18 P18 P18
—+Xx+——Xx —4+x—(——x)
=2co0s 4 4 cosS 4 4
2 2

T 1
=Zcosz cos x =2 X ﬁ cos x =,/ cos x = R.H.S.

cos 7x +cos Sx

Example 16 Prove that cot x

sin 7x — sin 5x
Solution Using the Identities 20 (i) and 20 (iv), we get

Tx+5x Tx—5x
cos
7 _ cosx

Tx+5x sin 7x;5x Sinx

2cos

L.H.S. = = cotx =R.H.S.

2¢cos

sin5x—2sin 3x+ sin x
=tanx

Example 17 Prove that =
CcOoS5x—cosx

Solution We have

sinSx—2sin3x+sinx  sinSx+sinx—2sin3x
L.H.S. = =

CcoS5x—cosx CcOoS5x—cosx
2sin3x cos2x—2sin3x _ sin3x (cos2x—1)
—2sin3xsin 2x sin 3xsin 2x

2
_l-cos2x  2sin"x

- = = tanx = R.H.S.
sin2x 2SIn XCOS X
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| EXERCISE 3.3 |
Prove that:

1 : 2£+ ZE t ZE—_l 2 2 ZEJ’_ 2 ECOS2E—§
- sin® o+ cos® ——tan® 5 - 2sin’ -+ cosec® — )
3. cot2z+cosecs—n+3tan22=6 4. 2sin23—n+2cos2z+2sec22=10

6 6 6 4 4 3
5. Find the value of:
(1) sin 75° (i1) tan 15°
Prove the following:
cos| T —x |cos| X~y |—sin| T —x|sin| X~ =sin(x+y)
6. 1 4 y 1 4 y y
T
tan | —+Xx 2
(4 ) [1+tanx} cos (m+x) cos(—x) )
7. = 8. = cot'x
T 1—tan x . b
tan | — —x sin (T—x) cos | —+x
4 2
3z 3z
9., cos 7+x cos 2z +x) | cot 7—x +cot r+x)|=1
10. sin(n+ Dxsin (n +2)x + cos (n+ 1)x cos (n + 2)x = cos x
11. cos E+x —Cos 3—Tt—x = —/2sinx
4 4
12. sin® 6x — sin*4x = sin 2x sin 10x 13. cos? 2x — cos? 6x = sin 4x sin 8x
14. sin2 x + 2 sin 4x + sin 6x = 4 cos® x sin 4x
15. cot4x (sin 5x + sin 3x) = cot x (sin 5x — sin 3x)
cos9x —cosS5x sin2x sinS5x + sin3x
16. = - 17. —————————— =tanéx
sinl17x —sin3x cos10x cos5x + cos3x
sinx —siny xX—y sinx + sin3x
18, —————— = tan 19. ———————— =tan2x
coSX +cosy 2 cos x + cos3x
sinx — sin 3x ) cos4dx + cos3x + cos2x
200 ————— = 2sinx 21. — - - = cot3x
sin” x —cos” x sindx + sin3x + sin2x
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22. cotxcot2x—cot2x cot3x —cot3xcotx=1

4tan x (1 —tan’x)

5 - 24. cos 4x =1 — 8sin®> x cos® x
l-6tan“x +tan"x

23. tan4x =

25. cos 6x =32 cos® x —48cos*x + 18 cos? x — 1

Miscellaneous Examples

Example 18 Ifsinx = 2, cosy= —%, where x and y both lie in second quadrant,
find the value of sin (x + y).
Solution We know that
sin (x +y) =sin x cos y + cos x sin y .. (1)
Now cos2x=1—sin2x=1—i=E
25 25

4
Therefore cos x = J_rg.

Since x lies in second quadrant, cos x is negative.

Hence COS X = —i
5
Now sin’y = 1 — cos’y = l—ﬂ=£
169 169
ie siny = +i
13

5
Since y lies in second quadrant, hence sin y is positive. Therefore, sin y = E Substituting

the values of sin x, sin y, cos x and cos y in (1), we get

. 3(12J(4J 5 36 20 56
sin(x+y) =—=x|——|+|-——|x— = - ——-_=_
5 13 5/ 13 65 65 65

Example 19  Prove that
9 . .5
cos 2x cosf —cos 3x cos—x =sin Sx sin X .
2 2 2

Solution  We have
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L.HS. = {2005 2x cos%—2cos9—2xcos 3x}

1
2

:l cos 2x+£ + cos 2x—1 —CosS 2+3x —CosS 9—x—3x
2 2 2 2 2

1l 5x 3x 15x 3x| 1] 5x 15x |
= —Lcos— +cos— —cos— —cos— | = —Lcos— - cos—J
2 2 2 2 2 2 2 2

5x 15x 5x 15x) |
1 St PR
—| —2sin 2 2 sin 2 2
=2 2 2

5x 5x
= —sinSx sin —7 = sin5x sin; =R.HS.

T
Example 20 Find the value of tan 3

T T
Solution Let x = Py Then 2x = 7

2tan x

Now tan2x = >
1—tan” x
2tanE

or tan— = 8
1—tan*Z

Let = tan “eTlort] = —2

ety—tang. en _1—y2

or V+2y—1=0

—2+242
Therefore y:T\/_:—li\/E
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T T
Since 3 lies in the first quadrant, y = tan 3 is positve. Hence

tangzx/i—l'

3 RY/4 X X X
Example 21 If tan x ZZ, T<Xx <7 , find the value of smE, cosg and tang.

RY/4
Solution Since T <x < BE cosx 1s negative.

3

Al £<£<_
50 2724

x x
Therefore, sin Py is positive and cos Py is negative.

Now sec’x =1 +tan’x = 1+i=é
16 16
16 4
Therefore cos’x=— orcosx=—— (Why?)
25 5
Now 2sin2£=1—cosx=l+i=2.
2 5 5
Therefore sin’ 20
2 10
. X 3
or s1n5 = TO (Why?)
X 4 1
Again 200525 =1+ cosle—g=g
Therefore cos’ x_ b
2 10
X 1
or cos Py = _E (Why?)
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X

xSy 3 (LJ10)
Hence tan — = = X =-3.
2 X 10 1
cos—
2

N |

Example 22 Prove that cos®x + cos? (x +§J + cos’ (x —g} =

Solution  We have

1+cos(2x+2ﬁJ 1+cos(2x—2nJ
LHS. = 1+cos2x+ 3 " 3 .

2 2 2

N | —
I 1

3+ cos 2x+cos (Zx + %) + cos (Zx - ?H

N | =

2
3+cos2x+ 2cos 2x cos ?rc}

N | —

3+cos 2x+ 2cos 2x cos (ﬂ—%):|

3+cos2x—2cos 2x cos g}

[3 +¢0s 2x — cos 2x| =% =R.H.S.

Miscellaneous Exercise on Chapter 3

Prove that:

T O 3z S5t
1.  2cos— cos— +cos — +cos —=0
13 13 13
2. (sin 3x + sin x) sin x + (cos 3x — cos x) cos x =0

X+y

3. (cos x + cos y)? + (sin x — sin y)*> = 4 cos?
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x
4. (cosx— cos y)* + (sinx— sin y)* = 4 sin’

5. sinx + sin 3x + sin 5x + sin 7x =4 cos x cos 2x sin 4x

(sin 7x + sin 5x) + (sin 9x + sin 3x)
(cos7x +cosb5x) +(cos9x + cos 3x)

= tan 6x

X 3x
7. sin 3x + sin 2x — sin x = 4sin x cos 5 cos ?

X X X
Find sin > cos Py and tan Py in each of the following :

1
8. tanx = Yk in quadrant I1 9. cosx= ik in quadrant IIT

1
10. sinx = 7 in quadrant II

Summary

¢ Ifin a circle of radius 7, an arc of length / subtends an angle of 0 radians, then
I=r0

. T
¢ Radian measure = @X Degree measure

180
@ Degree measure = — X Radian measure
b4

@ cos? x +sin’x = 1

¢ | +tan’x = sec’x

& | + cot’x = cosec’x

@ cos (2nm + x) = cos x

@ sin 2nm + x) =sin x

@ sin (—x) =—sin x

@ cos (—x) =cos x

@ cos (x +y) =cos x cos y — sin x sin y

@ cos (x—y) = cos x cos y + sin x sin y

T
@ cos (E_x) = sin x
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T
¢ sin (E—x)Icosx

@ sin (x + y) = sin x cos y + cos x sin y

@ sin (x — y) = sin x cos y — cos x sin y

T ) [z
@cos | T X|=—sinx sin | =TX| =cosx
2 2
cos (T —x)=—cosx sin (T — x) = sin x
cos (T +x) =—cosx sin (T +x) =—sinx
cos (2 —x) =cos x sin (2r —x)=—sinx

T
¢ If none of the angles x, y and (x + y) is an odd multiple of 50 then

tanx + tany
tan(x +y)=—_
+) l—-tanxtany

tanx —tany
¢ tan (x—y) = 1+ tanxtany

¢ If none of the angles x, y and (x + y) is a multiple of &, then

cot xcot y—1

cot (x + ) = cot y +cot x

cotxcoty+1
@ cot (x—y) = coty —cot x

. . 1 tan’x
@ cos 2x =cos’x —sin*x =2cos’x—1=1-2sin*x =75
1+ tan“x
. . 2 tan x
@ sin 2x=28inX cos x =———
1+ tan“x

2tanx

tan2x = ———>5—
* * 1—tan’x

@ sin 3x = 3sinx —4sin’x

@ cos 3x = 4cos’x — 3cosx
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3tan x—tan’ x

ot 2= 1-3tan’ x

L —
yCOSx b4

& (i) cosx+cosy=2cos

+ —
Y sinu
2 2

(i) cos x —cos y =— 2sin

L —
yCOSx—2y

x
(ii)) sinx +sin y =2 sin

Y gin 2=
2 2
& (1) 2cosxcosy=cos (x+y)+cos(x—y)

(iv) sinx —sin y = 2cos

(i) — 2sin x sin y = cos (x + y) — cos (x — )
(i) 2sin x cos y = sin (x + y) + sin (x — y)

(iv) 2 cos x sin y =sin (x + y) — sin (x — y).

Historical Nofte

The study of trigonometry was first started in India. The ancient Indian
Mathematicians, Aryabhatta (476), Brahmagupta (598), Bhaskara I (600) and
Bhaskara II (1114) got important results. All this knowledge first went from
India to middle-east and from there to Europe. The Greeks had also started the
study of trigonometry but their approach was so clumsy that when the Indian
approach became known, it was immediately adopted throughout the world.

In India, the predecessor of the modern trigonometric functions, known as
the sine of an angle, and the introduction of the sine function represents the main
contribution of the siddhantas (Sanskrit astronomical works) to the history of
mathematics.

Bhaskara I (about 600) gave formulae to find the values of sine functions
for angles more than 90°. A sixteenth century Malayalam work Yuktibhasa
(period) contains a proof for the expansion of sin (A + B). Exact expression for
sines or cosines of 18°, 36°, 54°, 72° etc., are given by
Bhaskara II.
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The symbols sin™' x, cos™ x, etc., for arc sin x, arc cos x, etc., were
suggested by the astronomer Sir John E.W. Hersehel (1813) The names of Thales
(about 600 B.C.) is invariably associated with height and distance problems. He
is credited with the determination of the height of a great pyramid in Egypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
height, and comparing the ratios:

H

o = tan (sun’s altitude)

Thales is also said to have calculated the distance of a ship at sea through
the proportionality of sides of similar triangles. Problems on height and distance
using the similarity property are also found in ancient Indian works.

g

® —
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Chapter

COMPLEX NUMBERS AND
QUADRATIC EQUATIONS

s Mathematics is the Queen of Sciences and Arithmetic is the Queen of
Mathematics. — GAUSS **

4.1 Introduction

In earlier classes, we have studied linear equations in one
and two variables and quadratic equations in one variable.
We have seen that the equation x> + 1 = 0 has no real
solution as x*> + 1 = 0 gives x> = — 1 and square of every
real number is non-negative. So, we need to extend the
real number system to a larger system so that we can
find the solution of the equation x> =— 1. In fact, the main
objective is to solve the equation ax? + bx + ¢ =0, where
D = b? — 4ac <0, which is not possible in the system of

real numbers.

W. R. Hamilton
4.2 Complex Numbers (1805-1865)

Let us denote /_] by the symbol i. Then, we have i* =-1. This means that i is a
solution of the equation x> + 1 = 0.
A number of the form a + ib, where a and b are real numbers, is defined to be a

(-1
complex number. For example, 2 +i3, (— 1)+ /3, 4+i (HJ are complex numbers.

For the complex number z = a + ib, a is called the real part, denoted by Re z and
b is called the imaginary part denoted by Im z of the complex number z. For example,
ifz=2+i5,thenRez=2and Imz=5.

Two complex numbers z, = a + ib and z, = ¢ + id are equal if a =cand b =d.
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Example 1 If 4x + i(3x — y) = 3 + i (— 6), where x and y are real numbers, then find
the values of x and y.

Solution We have

dx+i(Bx—y)=3+1i(-6) . (1)
Equating the real and the imaginary parts of (1), we get

4x=3,3x—y=-06,

3 33
which, on solving simultaneously, give X = 1 and ¥ = e

4.3 Algebra of Complex Numbers
In this Section, we shall develop the algebra of complex numbers.

4.3.1 Addition of two complex numbers Letz, = a + ib and z, = ¢ + id be any two
complex numbers. Then, the sum z, + z, is defined as follows:

z,+z,= (a+c)+i(b+d), which is again a complex number.
For example, 2 +i3)+ (-6 +i5)=(2-6)+i(3+5)=-4+i8

The addition of complex numbers satisfy the following properties:

(i) The closure law The sum of two complex numbers is a complex
number, i.e., z, + z, is a complex number for all complex numbers
z, and z,.
(i) The commutative law For any two complex numbers z, and z,,
z, tz,=z,+z
(i) The associative law For any three complex numbers z, z,, z,,
(z, tz) +z,=z +(z, + z).
(iv) The existence of additive identity There exists the complex number
0 + i 0 (denoted as 0), called the additive identity or the zero complex
number, such that, for every complex number z, z + 0 = z.
(v) The existence of additive inverse To every complex number
z = a + ib, we have the complex number — a + i(— b) (denoted as — z),
called the additive inverse or negative of z. We observe that z + (-z) = 0
(the additive identity).
4.3.2 Difference of two complex numbers Given any two complex numbers z, and
z,, the difference z, — z, is defined as follows:
z, —z,=z, +(-1z).

For example, 6+3)—-2-i)=06+3)+(-2+i)=4+4i
and RQ-D)-06+3)=Q-)+(-6-3)=—4-4{
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4.3.3 Multiplication of two complex numbers Let z, = a + ib and z, = ¢ + id be any
two complex numbers. Then, the product z, z, is defined as follows:

z, z,= (ac — bd) + i(ad + bc)

For example, 3 +i5) 2+i6)=(3x2-5%x6)+i(3x6+5x2)=-24+i28
The multiplication of complex numbers possesses the following properties, which
we state without proofs.

(M)
(i)
(iii)
(iv)

V)

(vi)

The closure law The product of two complex numbers is a complex number,
the product z, z, is a complex number for all complex numbers z, and z,.
The commutative law For any two complex numbers z, and z,,
Z1 22 = 22 Zl'
The associative law For any three complex numbers z, z,, z,,
(z, z,) z, = 2, (z, 2,).
The existence of multiplicative identity There exists the complex number
1 +70 (denoted as 1), called the multiplicative identity such that z.1 = z,
for every complex number z.
The existence of multiplicative inverse For every non-zero complex
number z = a + ib or a + bi(a # 0, b # 0), we have the complex number

a . =b 1
e r lled th e
PEETTRLE RS (denoted by S orz ), called the multiplicative inverse

of z such that

1
z.—=1 (the multiplicative identity).
z

The distributive law For any three complex numbers z, z,, z,,
@ z,(z,tz)=z2+1z z,
(b) (z,+z)z,=z 2, %zz2

4.3.4 Division of two complex numbers Given any two complex numbers z and z,,

z
where z, # 0, the quotient Z_l is defined by
2

z 1
_lzzl_
Z Z

Forexample,let z =6+3iand z,=2 i

Then

i

1 2 ()
((6+31)X2_J = (6+3i) [22+(_1)2 52 +(_1)2

2
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- (6+3i)(%j = % [12-3+i(6+6)] =%(9+12i)

4.3.5 Power of i we know that

T N A - 1 1
Also, we have [ ==x-=—=-i, [ =5=—=-1,
i i -1 i -1
51 1 i i _ 1 1
13——2— -=-=1, 14:—4:_:1
i - i 1 it 1
In general, for any integer k, i* =1, * "' = ¥ 2=—1, %3 =—i

4.3.6 The square roots of a negative real number
Note that 2=-1and (—i)P?=2=-1
Therefore, the square roots of — 1 are 7, —i. However, by the symbol ,/_1, we would

mean 7 only.
Now, we can see that i and — both are the solutions of the equation x> + 1 =0 or

Similarly (x/§i)2 =(J§)2 P=3(-1)=-3
(5] - (] -

Therefore, the square roots of —3 are /3 ; and —+/3;.
Again, the symbol \/—3 is meant to represent /3 only, i.e., /=3 = /3i.

Generally, if a is a positive real number, \—a¢ = Ja V=1 =a i,
We already know that \/ax~/b = /ab for all positive real number a and b. This

result also holds true when eithera >0,5<0 ora <0, b>0. Whatifa <0, b <0?
Let us examine.

Note that
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2 =+-1-1 =./(—1) (—1) (by assuming /g x+/b = /ab for all real numbers)

=1 = 1, which is a contradiction to the fact that i?=-1,
Therefore, /g x+/b =~/ab if both a and b are negative real numbers.

Further, if any of a and b is zero, then, clearly, \/Z X \/Z = x/% =0.

4.3.77 Identities We prove the following identity

2
(z,+2,) =2z +z3 +2zz,, for all complex numbers z, and z,.

Proof We have, (z,+z) =(z,+z2) (z, + 2),

= (z,tz)z, +(z,+tz2)z, (Distributive law)
= 22 + 2,2, + 2,2, + 22 (Distributive law)
= 22 422, +22, + 2 (Commutative law of multiplication)

- .2 2
zi +2zzy) + 25

Similarly, we can prove the following identities:
(1) (zl—zz)zzzlz—22122+222

(i1) (Zl 4—22)3 =2z +3z}2, +322; + 23

(iii) (Zl -z, )3 =z —3z}z, +3225 — 7,

(iv) zf—z? =(z1 +Z2)(z1 722)

In fact, many other identities which are true for all real numbers, can be proved

to be true for all complex numbers.

Example 2 Express the following in the form of a + bi:

) (—Si)(élj (i) (-0 (20) [—%if

5, -5 55

Solution (i) (—5i) (ézj - ?,’ = —(-1)=>=>+i0

8 &8 8

’ 2
Lo R

8x8x8 256
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Example 3 Express (5 — 3i)*in the form a + ib.

Solution We have, (5 —3i)* = 5°—3 x 52 x (3i) + 3 x 5 (3i)*> — (3i)®
=125- 225i-135+27i =-10 - 198..

Example 4 Express (—\/g +\/3)(2\/§ - i) in the form of a + ib

Solution We have, (—\/§+\/3) (2\/§—i) = (—\/§+\/Ei) (Z\B—i)
= —6+-3i+2:6i—2i% = (—6+\/5)+\/§(1+2\/5)i

4.4 The Modulus and the Conjugate of a Complex Number

Let z=a + ib be a complex number. Then, the modulus of z, denoted by | z |, is defined

to be the non-negative real number /42 +p2 ,i.e.,|z|= /42 + p* and the conjugate

of z, denoted as 7, is the complex number a — ib, i.e., 7 =a— ib.
For example, |3+i =432 +12 =410, | 2-5i|=2> +(-5)* =429,

and 34;=3—j>» 2—-5i=2+5i, 3j—-5=3i—-5

Observe that the multiplicative inverse of the non-zero complex number z is
given by

1 a_ —b a—ib z

atib  a*+b* at+b' a4+’ |z

or zz =| z |
Furthermore, the following results can easily be derived.

For any two compex numbers z, and z, , we have

. R ) .
(1) | z, zz| :|zl||zz| (i1) Z, = |Z2| provided | Z, |¢ 0
(i) z5,-27 V) 7 55,-7 451 f—;}% provided z, # 0.
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Example 5 Find the multiplicative inverse of 2 — 3i.
Solution Letz=2- 3i

Then z=2+3iand |z['=22+(-3)*=13
Therefore, the multiplicative inverse of 2 — 3; is given by

z 243 2 3.

NERNE] 13

! =

N

The above working can be reproduced in the following manner also,

| 2+3i
2-3i (2-30)(2+30)

=

2430 24302 ii
22-@3i)* 13 13 13
Example 6 Express the following in the form a + ib

_ 5++/2i s
Oy (if) ¢

Colution () Weh S+V2i_5+2i 1442 _5+5v2i++2i-2
olution (i) We have, 1-2i  1-+2i 1+2i 1—(\/51')2

_346V2i_30+2V20) _ L4247
1+2 3

|EXERCISE 4.1|

Express each of the complex number given in the Exercises 1 to 10 in the
form a + ib.

NEER
1. (51)(—?) 2. %4 3.7
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4. 3T+ +i(T+iT) 5. (1—i)—(-1+i6)

Gres) v (G H5)
6. |=+i=|—-|4+i= 7. —+i— |+ 4+i= ||| ——+i
5 5 2 3 3 3 3

3 3
8. (I-9 9. [%+3ij 10. [—2—%1)

Find the multiplicative inverse of each of the complex numbers given in the
Exercises 11 to 13.

1. 4-3i 12. 543 13. —i
14. Express the following expression in the form of a + ib :
(3+i/5) (3-1+5)
(V3+42i)-(v3-i2)

4.5 Argand Plane and Polar Representation

We already know that corresponding to
each ordered pair of real numbers
(x, v), we get a unique point in the XY-
plane and vice-versa with reference to a
set of mutually perpendicular lines known
as the x-axis and the y-axis. The complex

D(2,0)

number x + iy which corresponds to the
ordered pair (x, y) can be represented ® E (-5,-2) ®F(1,-2)
geometrically as the unique point P(x, y)
in the XY-plane and vice-versa.

Some complex numbers such as
2+4i,-2+3i,0+ 14,2 +0i,—5-2i and
1 — 2i which correspond to the ordered
pairs (2, 4), (-2, 3), (0, 1), (2, 0), (=5, =2), and (1, — 2), respectively, have been
represented geometrically by the points A, B, C, D, E, and F, respectively in
the Fig 4.1.

The plane having a complex number assigned to each of its point is called the

v
Fig 4.1

complex plane or the Argand plane.
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Obviously, in the Argand plane, the modulus of the complex number

x +iy=,/x*+y? is the distance between the point P(x, y) and the origin O (0, 0)

(Fig 4.2). The points on the x-axis corresponds to the complex numbers of the form
a +1 0 and the points on the y-axis corresponds to the complex numbers of the form

Y
N
Y P(x, )
% xY
<
X € 5 > X
(0,0)
v .
Y Fig4.2

0+ b. The x-axis and y-axis in the Argand plane are called, respectively, the real axis
and the imaginary axis.
The representation of a complex number z = x + iy and its conjugate
z =x — iy in the Argand plane are, respectively, the points P (x, y) and Q (x, — y).
Geometrically, the point (x, —y) is the mirror image of the point (x, ) on the real
axis (Fig 4.3).

Y
N P(x, y)
X' € 5 >X
v Q(x,-y)
Y
Fig4.3
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Miscellaneous Examples

(3-2i)(2 + 3i)
Example 7 Find the conjugate of (A+2i)(2—i)

) (3-20)(2+3i)
Solution We have , 1+ 2—1') Q-1

6+9i-4i+6 12450 4-3i
2—i+4i+2  4+3i 4-3i

48-36i+20i+15 63—16i 63 16.

= i
16+9 25 25 25

. (3-20(2+3) . 63 16,
Therefore, conjugate of (+20)(2—1) 1S 25 2_5’ .

a+ib
Example 8 If x + iy = — ", prove that X*+y=1.

Solution We have,

(a+ib)(a+ib)  a®*—b>+2abi a*-b*  2ab

I _ _ + i
Xty (a—ib)(a+ib) a’+b* a’+b* @ +b?

a’-b*>  2ab

- i
a’+b*  a’+b’

Sothat, x — iy =

Therefore,

e N (az_bz)z 4a2b> B (a2+b2)2 -
Xy =ty (x—iy)= (a2+b2)2 (a2+b2)2 - (a2+b2)2

1

Miscellaneous Exercise on Chapter 4

2573
. 1
1. Evaluate: {’18"‘(;) ] .

2. For any two complex numbers z, and z,, prove that

Re (z, z,) = Re z, Re z, — Imz, Imz,
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10.

11.

12.
13.

14.

MATHEMATICS

1 2 3-4
Reduce ( J( j to the standard form .

1-4i 1+i)\5+i
, - 2 22_a2+b2
If x—1y= o prove that (x +y) v
. o Aatatl
Ifz, =2-1i,z,=1+1i,find z—z,+1|"
2 2
. (x+1)? o (x +1)2
Ifa+ib= 2xZ_'_l,prove that a* + b* = (2x2+1) .

Letz =2 —1i,z,=-2+i Find

. a5 T Iy
0 Re( zZ J @ m(zﬁl]'

Find the real numbers x and y if (x — iy) (3 + 5i) is the conjugate of —6 — 24i.
1+i 1-i

Find the modulus of 1_—z_l_+z .

u v 2 2
If (x + iy)* = u + iv, then show that ;"‘; =4(x"=)y")-

f—a
1-ap|

If o and P are different complex numbers with | [3| =1, then find

Find the number of non-zero integral solutions of the equation |1—i|* =2~
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that
(@+ b)) (¢ +d)(e+[f)(g+h)=A+B

1+i
If (I_—J =1 then find the least positive integral value of .
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Summary

& A number of the form a + ib, where a and b are real numbers, is called a
complex number, a is called the real part and b is called the imaginary part
of the complex number.

@ Letz, =a+ibandz = c+id Then

(i) z,+tz,=(a+c)+i(b+d
() z z, = (ac—bd)+i(ad+ bc)
¢ For any non-zero complex number z = a + ib (a # 0, b # 0), there exists the

a b

. 1
+1 — -1
complex number Lib: b’ denoted by . or z'!, called the

multiplicative inverse of z such that (a + ib) =1+i0

a g
LI
a +b a +b

=1
¢ For any integer k, i* =1, (**!1=j j#*2=_1], #+3=_/

¢ The conjugate of the complex number z = a + ib, denoted by z , is given by

Z =a—ib.

Historical Note

The fact that square root of a negative number does not exist in the real number
system was recognised by the Greeks. But the credit goes to the Indian
mathematician Mahavira (850) who first stated this difficulty clearly. “He
mentions in his work ‘Ganitasara Sangraha’ as in the nature of things a negative
(quantity) is not a square (quantity)’, it has, therefore, no square root”.
Bhaskara, another Indian mathematician, also writes in his work Bijaganita,
written in 1150. “There is no square root of a negative quantity, for it is not a
square.” Cardan (1545) considered the problem of solving

x+y=10,xy=40.
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He obtainedx=5+ ./—15 andy = 5— /15 as the solution of it, which
was discarded by him by saying that these numbers are “useless’. Albert
Girard (about 1625) accepted square root of negative numbers and said that
this will enable us to get as many roots as the degree of the polynomial equation.
Euler was the first to introduce the symbol i for \/_1 and W.R. Hamilton
(about 1830) regarded the complex number @ + ib as an ordered pair of real
numbers (a, b) thus giving it a purely mathematical definition and avoiding use
of'the so called ‘imaginary numbers’.
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Chapter 5

( LINEAR INEQUALITIES )

s Mathematics is the art of saying many things in many
different ways. — MAXWELL%®

5.1 Introduction

In earlier classes, we have studied equations in one variable and two variables and also
solved some statement problems by translating them in the form of equations. Now a
natural question arises: ‘Is it always possible to translate a statement problem in the
form of an equation? For example, the height of all the students in your class is less
than 160 cm. Your classroom can occupy atmost 60 tables or chairs or both. Here we
get certain statements involving a sign ‘<’ (less than), >’ (greater than), ‘<’ (less than
or equal) and > (greater than or equal) which are known as inequalities.

In this Chapter, we will study linear inequalities in o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>