

Performance-based approach to improving pedestrian connectivity

Ten-Zen Guh Technical Director – Transport Planning, Mott MacDonald

Policy

"Pedestrian" infrastructure that is actually vehicle infrastructure in disguise (i.e. what is supposedly for pedestrians is actually for facilitating vehicle movements) For example:

- Pedestrian crossing waiting areas
- Barrier fences
- Pedestrian over or under-passes

Design outcome

Vehicle Performance Metrics

Level of Service (LoS) – essentially a measure of vehicle throughput

A couple problems with this:

- Traffic forecasts based on historical trends that reflect car-oriented travel behaviour this suggests a predict-and-provide approach when we should be moving towards vision-and-validate
- Results in design outcomes that maximise vehicle throughput to the detriment of people and place appropriate for movement corridors but not for place corridors

Vehicle Speed

The root of all (street design) evil

Vehicle speed/volume has the single greatest impact on pedestrian experience

Source: 30please.org

Specifying a design speed no greater than 30 kph is the easiest and most effective way to improve pedestrian experience

- Optimal safety and travel time outcome
- Design speed should be self-reinforcing (i.e. streets should be designed to make driving above the speed limit difficult)

Pedestrian Performance Metrics

Currently used metrics do not sufficiently capture the pedestrian experience

- Waiting LoS for crossing waiting area
- Walking LoS for footpath width

Primary aim of pedestrian design should be to make walking safe, comfortable, and convenient - not "maximise throughput"!

So what metrics do better capture the pedestrian experience?

- **Delay**, including waiting time at crossings
- Route directness, including placement of footpaths, crossings, and links to align with desire lines

Pedestrian Performance Metrics – Example

Pedestrian Performance Metrics – Why?

"What gets measured gets managed"

Whenever traffic performance is considered in street design, it should be required to consider performance of walking and other modes as well

Multi-modal performance assessment

Pedestrian Performance Metrics – Implementation

Key Takeaways

- 1. Set a design speed that reflects the desired Movement & Place function vehicle speeds no greater than 30kph have a massive benefit to pedestrian experience!
- 2. Consider performance metrics that actually reflect pedestrian connectivity (**delay** and **route directness**) remember, "what gets measured gets managed"
- 3. State and local governments can take the lead on **multi-modal** performance assessment e.g. by requiring performance impact of walking and other modes be considered whenever traffic performance is considered

Thank you

Contact: Ten-Zen Guh Technical Director – Transport Planning, Mott MacDonald ten-zen.guh@mottmac.com +61 2 9467 5760

