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Abstract 

In this paper, one of the multi-criteria models in making decision, a Technique  
for Order Preference by Similarity to an Ideal Solution (TOPSIS), is described. Some  
of the advantages of TOPSIS methods are: simplicity, rationality, comprehensibility, 
good computational efficiency and ability to measure the relative performance for each 
alternative in a simple mathematical form.  

The paper has a review character. It systematises the knowledge within the scope 
of techniques of decision taking with the use of the TOPSIS method. Simple numerical 
examples that reference real situations show practical applications of different aspects 
of this method.  

The paper is organized as follows. The Introduction presents a short overview  
of the decision making steps as well as MCDM techniques. Section 1 presents matrix 
representation of the MCDM problem. Section 2 describes the TOPSIS procedure  
for crisp data, and Section 3 for interval data. The TOPSIS algorithm in group decision 
environment in the case of crisp and interval data is also presented. In Section 4  
the problem of qualitative data in TOPSIS model is discussed. The numerical examples 
showing applications of those techniques in the negotiation process are presented  
in Section 5. Finally, conclusions and some concluding remarks are made in last  
section. 
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Introduction 

Multi-criteria decision making (MCDM) refers to making choice of the 
best alternative from among a finite set of decision alternatives in terms  
of multiple, usually conflicting criteria. The main steps in multi-criteria decision 
making are the following [Hwang, Yoon, 1981; Jahanshahloo, Hosseinzadeh, 
Lofti, Izadikhah, 2006a]: 



MULTI-CRITERIA DECISION MAKING MODELS... 201

– establish system evaluation criteria  that relate system capabilities to goals, 
– develop alternative systems for attaining the goals (generating alternatives), 
– evaluate alternatives in terms of criteria, 
– apply one of the normative multiple criteria analysis methods, 
– accept one alternative as “optimal” (preferred), 
– if the final solution is not accepted, gather new information and go to the 

next iteration of multiple criteria optimization. 
Multi-criteria decision making techniques are useful tools to help 

decision maker(s) to select options in the case of discrete problems. Especially, 
with the help of computers, those methods have become easier for the users,  
so they have found great acceptance in many areas of decision making 
processes in economy or management. Among many multi-criteria techniques, 
MAXMIN, MAXMAX, SAW, AHP, TOPSIS, SMART, ELECTRE are the 
most frequently used methods [Chen, Hwang, 1992]. The nature of the 
recommendations of one of those methods depends on the problem being 
addressed: choosing, ranking or sorting. The selection of models/techniques  
can be also based on such evaluation criteria as: 
– internal consistency and logical soundness, 
– transparency, 
– ease of use, 
– data requirements  are consistent with the importance of the issue being 

considered, 
– realistic time and manpower resource requirements for the analytical 

process, 
– ability to provide an audit trail,  
– software availability, where needed. 

The classification methods can be categorized by the type of information 
from the decision maker (no information, information on attributes or 
information on alternatives), data type or by solution aimed at [Chen, Hwang, 
1992, p.16-25]. The MAXMIN technique assumed that the overall performance 
of an alternative is determined by its weakest attribute, in the MAXMAX 
technique an alternative is selected by its best attribute value. The SAW (Simple 
Additive Weighting) method multiplies the normalized value of the criteria  
for the alternatives with the importance of the criteria and the alternative  
with the highest score is selected as the preferred one. The TOPSIS (Technique  
for Order Preference by Similarity to the Ideal Solution) selects the alternative 
closest to the ideal solution and farthest from the negative ideal alternative.  
The classical TOPSIS method is based on information on attribute from 
decision maker, numerical data; the solution is aimed at evaluating, prioritizing 
and selecting and the only subjective inputs are weights. The AHP  (The Analy- 
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tical Hierarchy Process) uses a hierarchical structure and pairwise comparisons. 
An AHP hierarchy has at least three levels: the main objective  
of the problem at the top, multiple criteria that define alternatives in the middle 
and competing alternatives at the bottom. The major weaknesses of TOPSIS  
are that it does not provide for weight elicitation, and consistency checking  
for judgments; on the other hand, the use of AHP has been significantly 
restrained by the human capacity for the information process. From this point  
of view, TOPSIS alleviates the requirement of paired comparisons and the 
capacity limitation might not significantly dominate the process. Hence,  
it would be suitable for cases with a large number of criteria and alternatives,  
and especially where objective or quantitative data are given [Shih, Shyur, Lee, 
2007]. SMART (The Simple Multi Attribute Rating Technique) is similar  
to AHP, a hierarchical structure is created to assist in defining a problem and in 
organizing criteria. However, there are some significant differences between 
those techniques: SMART uses a different terminology. For example,  
in SMART the lowest level of criteria in the value tree (or objective hierarchy) 
are called attributes rather than sub-criteria and the values of the standardized 
scores assigned to the attributes derived from value functions are called ratings. 
The difference between a value tree in SMART and a hierarchy in AHP is that 
the value tree has a true tree structure, allowing one attribute or sub-criterion  
to be connected to only one higher level criterion. SMART does not use  
a relative method for standardizing raw scores to a normalized scale. Instead,  
a value function explicitly defines how each value is transformed to the 
common model scale. The value function mathematically transforms ratings 
into a consistent internal scale with lower limit 0 and upper limit 1.  
The ELECTRE (Elimination and Choice Expressing Reality) method was to 
choose the best action(s) from a given set of actions, but it can also be applied 
to three main problems: choosing, ranking and sorting. There are two main parts 
to an ELECTRE application: first, the construction of one or several outranking 
relations, which aims at comparing in a comprehensive way each pair  
of actions; second, an exploitation procedure that elaborates on the re-
commendations obtained in the first phase.  

This paper is focused on the TOPSIS method, which was presented by 
Hwang and Yoon [1981] and developed later by many authors [Jahanshahloo, 
Lofti, Izadikhah, 2006a; 2006b; Zavadskas,Turskis, Tamosaitiene, 2008; Hung, 
Chen, 2009]. The acronym TOPSIS stands for Technique for Order Preference 
by Similarity to the Ideal Solution. It is worth noting that the TOPSIS method 
corresponds to the Hellwig taxonomic method of ordering objects [Hellwig, 
1968]. The main advantages of this method are the following [Hung, Cheng, 
2009]: 
– simple, rational, comprehensible concept, 
– intuitive and clear logic that represent the rationale of human choice, 
– ease of computation and good computational efficiency, 
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– a scalar value that accounts for both the best and worst alternatives ability  
to measure the relative performance for each alternative in a simple 
mathematical form, 

– possibility for visualization. 
In general, the process for the TOPSIS algorithm starts with forming  

the decision matrix representing the satisfaction value of each criterion with 
each alternative. Next, the matrix is normalized with a desired normalizing 
scheme, and the values are multiplied by the criteria weights. Subsequently,  
the positive-ideal and negative-ideal solutions are calculated, and the distance  
of each alternative to these solutions is calculated with a distance measure. 
Finally, the alternatives are ranked based on their relative closeness to the ideal 
solution. The TOPSIS technique is helpful for decision makers to structure  
the problems to be solved, conduct analyses, comparisons and ranking of the 
alternatives. The classical TOPSIS method solves problems in which all 
decision data are known and represented by crisp numbers. Most real-world 
problems, however, have a more complicated structure. Based on the original 
TOPSIS method, many other extensions have been proposed, providing support  
for interval or fuzzy criteria, interval or fuzzy weights to modeled imprecision, 
uncertainty, lack of information or vagueness.  

In this paper, the classical TOPSIS algorithms for crisp, as well as 
interval data are described. Interval analysis is a simple and intuitive way  
to introduce data, uncertainty for complex decision problems, and can be used 
for many practical applications. An extension of the TOPSIS technique to  
a group decision environment is also investigated. The context of multi-criteria 
group decision making in both crisp and interval data are described. Finally, 
situations where criteria and their weight are subjectively expressed by 
linguistic variables are considered. The practical applications of the TOPSIS 
technique in estimating offers, for instance, in buyer-seller exchange are also 
proposed.  

1. The matrix representation of the MCDM problem 

The MCDM problems can be divided into two kinds. One is the classical 
MCDM set of problems among which the ratings and the weights of criteria are 
measured in crisp numbers. Another one is the multiple criteria decision-making 
set of problems where the ratings and the weights of criteria evaluated  
on incomplete information, imprecision, subjective judgment and vagueness  
are usually expressed by interval numbers, linguistic terms, fuzzy numbers  
or intuitive fuzzy numbers.   

In the classical MCDM model, we assume exact data, objective and 
precise information, but this is often inadequate to model real life situations. 
Human judgments are often vague under many conditions. The socio-economic 
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environment becomes more complex, the preference information provided by 
decision-makers is usually imprecise, and can create hesitation or uncertainty 
about preferences. A decision may have to be made under time pressure  
and lack of knowledge or data, or the decision-makers have limited attention 
and information processing capacities. Most input information is not known 
precisely, so that the values of many criteria are expressed in subjective  
or uncertain terms. The criteria, as well as their weight, could be subjectively 
expressed by linguistic variables. Thus, many researchers extended the MCDM 
approach for decision making problems with subjective criteria, interval data  
or fuzzy environment using grey system theory or fuzzy set theory.  

The grey system theory, developed by Deng [1982, 1988] is based upon 
the concept that information is sometimes incomplete or unknown [Jadidi, 
Hong, Firouzi, Yusuff, 2008; Liu, Lin, 2006]. Exactly, the theory is based  
on the degree of information known which is modeled by intervals. If the 
system information is unknown, it is called a black system, if the information  
is fully known, it is called a white system. And a system with information 
known partially is called a grey system. The fuzzy set theory cannot handle 
incomplete data and information, but is adequate to deal with uncertain  
and imprecise data [Kahraman, 2008; Chen, Hwang, 1992]. The advantage  
of the grey theory over the fuzzy theory is that the grey theory takes into 
account the condition of the fuzziness; that is, the grey theory can deal flexibly 
with the fuzziness situation. 

We can also consider single decision making and group decision making. 
Group decision making is more complex than single decision making because  
it involves many contradicting factors, such as: conflicting individual goals, 
inefficient knowledge, validity of information, individual motivation, personal 
opinion, power. In both multi-criteria decision making (MCDM) and group 
decision making (GDM), there are two steps: aggregation and exploitation.  
In MCDM, aggregation consists in combining satisfaction over different criteria 
while GDM problem consists in combining the experts’ opinions into a group 
collective one. Group decision making can be approached from two points  
of view. In the first approach, individual multi-criteria models are developed 
based on individuals’ preferences. Each decision maker formulates a multi- 
-criteria problem defining the parameters according to these preferences and 
solves the problem getting an individual solution set. Next, the separate 
solutions are aggregated by aggregation of operations resulting in the group 
solution. In the second approach, each decision maker provides a set  
of parameters which are aggregated by appropriate operators, providing finally  
a set of group parameters. Upon this set the multi-criteria method is applied  
and the solution expresses group preference [Rigopoulos, Psarras, Askounis, 
2008]. 
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Solving of each multi-criteria problem (individual or group decision) 
begins with the construction of a decision making matrix (or matrices). In such 
matrixes, values of the criteria for alternatives may be real, intervals numbers, 
fuzzy numbers or qualitative labels.  

Let us denote by },...,2,1{ KD =  a set of decision makers or experts.  
The multi-criteria problem can be expressed in −k  matrix format in the 
following way: 
 

   
 
 
   

 
1C  2C  …

nC  

1A  
kx11  

kx12  … k
nx1  

2A  
kx21  

kx22  … k
nx2  

… … … … … 
mA  

k
mx 1  

k
mx 2

… k
mnx  

 
where: 

− m2 A,,A,A ...1  are possible alternatives that decision makers have to choose
from, 

− n2 C,,C,C ...1  are the criteria for which the alternative performance is
measured, 

− k
ijx  is the −k decision maker rating of alternative iA  with respect to the

criterion jC  ( k
ijx  is numerical, interval data or fuzzy number). 

In this way for m alternatives and n  criteria we have matrix ( )k
ij

k x=X  

where k
ijx  is value of −i alternative with respect to −j criterion for −k

decision maker, n,=j ,...1,2,  .,...1,2, K=k  
The relative importance of each criterion is given by a set of weights 

which are normalized to sum to one. Let us denote by ]...[ 1
k
n

k
2

kk w,,w,w=W   

a weight vector for −k decision maker, where ℜ∈k
jw  is the −k decision 

maker weight of criterion jC  and .1...1 =w++w+w k
n

k
2

k  
In the case of one decision maker we write ,ijx  ,jw  X, respectively.  
Multi-criteria analysis focuses mainly on three types of decision 

problems: choice − select the most appropriate (best) alternative, ranking − 
draw a complete order of the alternatives from the best to the worst, and  
sorting − select the best k alternatives from the list. 
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2. The classical TOPSIS method 

In the classical TOPSIS method we assume that the ratings of alternatives 
and weights are represented by numerical data and the problem is solved  
by a single decision maker. Complexity arises when there are more than one 
decision makers because the preferred solution must be agreed on by interest 
groups who usually have different goals. The classical TOPSIS algorithm  
for a single decision maker and for group decision making is systematically 
described in Section 2.1 and Section 2.2, respectively.    

2.1. The classical TOPSIS method for a single decision maker 

The idea of classical TOPSIS procedure can be expressed in a series  
of following steps [Chen, Hwang, 1992; Jahanshahloo, Lofti, Izadikhah, 2006a]. 

Step 1. Construct the decision matrix and determine the weight of criteria. 
Let ( )ijxX =  be a decision matrix and ],...,,[ 21 nwwwW =  a weight vector, 
where ℜ∈ijx , ℜ∈jw  and .1...21 =+++ nwww  
Criteria of the functions can be: benefit functions (more is better) or cost 
functions (less is better).   

Step 2. Calculate the normalized decision matrix.  
This step transforms various attribute dimensions into non-dimensional 
attributes which allows comparisons across criteria. Because various criteria  
are usually measured in various units, the scores in the evaluation matrix X  
have to be transformed to a normalized scale. The normalization of values  
can be carried out by one of the several known standardized formulas. Some  
of the most frequently used methods of calculating the normalized value ijn   
are the following: 

,

1

2∑
=

=
m

i
ij

ij
ij

x

x
n  (2.1)

,
max iji

ij
ij x

x
n =  (2.1*)
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⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−

−

−

−

=

criteriontcosaisCif
minmax

max

criterionbenefitaisCif
minmax

min

i
ijiiji

ijiji

i
ijiiji

ijiij

ij

xx

xx

xx

xx

n  (2.1**)

for i = 1, … , m;  j = 1, … , n. 

Step 3. Calculate the weighted normalized decision matrix.  
The weighted normalized value ijv   is calculated in the following way: 

ijjij nw=v  for i = 1, … , m; j = 1, … , n. (2.2)

where jw  is the weight of the j-th criterion, .1
1

=w
n

=j
j∑  

Step 4. Determine the positive ideal and negative ideal solutions. 
Identify the positive ideal alternative (extreme performance on each criterion) 
and identify the negative ideal alternative (reverse extreme performance on each 
criterion). The ideal positive solution is the solution that maximizes the benefit 
criteria and minimizes the cost criteria whereas the negative ideal solution 
maximizes the cost criteria and minimizes the benefit criteria. 

Positive ideal solution +A  has the form: 

( ) .|,|,...,, 21
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
∈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∈== ++++

i
ij

i
ijn JjminvIjmaxvvvvA  (2.3)

Negative ideal solution −A has the form: 

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
∈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∈== −−−−

i
ij

i
ijn JjmaxvIjminvvvvA |,|,...,, 21  (2.4)

where I is associated with benefit criteria and J with the cost criteria,  
i = 1, … , m;  j = 1, … , n. 
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Step 5. Calculate the separation measures from the positive ideal solution 
and the negative ideal solution. 
In the TOPSIS method a number of distance metrics can be applied*.  
The separation of each alternative from the positive ideal solution is given as 

( ) ,
/1

1

p
n

=j

p+
jij

+
i vv=d ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∑   i = 1,2, … , m. (2.5)

The separation of each alternative from the negative ideal solution is given as 

( ) ,
/1

1

p
n

=j

p
jiji vv=d ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∑ −−   i = 1,2, … , m. (2.6)

Where 1≥p . For 2=p  we have the most used traditional n-dimensional 
Euclidean metric. 

( )∑ −
n

=j

+
jij

+
i vv=d

1

2
,    i = 1,2, … , m, (2.5*)

( )∑ −− −
n

=j
jiji vv=d

1

2
,  i = 1,2, … , m. (2.6*)

Step 6. Calculate the relative closeness to the positive ideal solution. 
The relative closeness of the i-th alternative Aj  with respect to A+  is defined as 

,+
ii

i
i d+d

d=R −

−

 (2.7) 

where ,10 ≤≤ iR  i = 1,2, … , m. 

Step 7. Rank the preference order or select the alternative closest to 1. 
A set of alternatives now can be ranked by the descending order of the value  
of .iR  
  

                                                      
* Possible metrics the first power metric (the least absolute value terms), Tchebychev metric or others [see 

Kahraman, Buyukozkan, Ates, 2007; Olson 2004]. 
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2.2. The classical TOPSIS method for group decision making 

In this part we explain the detailed TOPSIS procedure for group decision 
making based on the Shih, Shyur and Lee proposition [Shih, Shyur, Lee, 2007]. 

Step 1. Construct the decision matrixes and determine the weights  
of criteria for k-decision makers. 

Let ( )k
ij

k x=X  be a decision matrix, ]...[ 1
k
n

k
2

kk w,,w,w=W  weight vector  

for −k decision maker or expert, where ℜ∈k
ijx , ℜ∈k

jw , 1...1 =w++w+w k
n

k
2

k  
for .,...1,2, K=k  

Step 2. Calculate the normalized decision matrix for each decision maker. 
In this step some of the earlier described methods of normalization can be used. 
Let us assume that we use   

( )
.

1

2∑
m

=i

k
ij

k
ijk

ij

x

x
=r  

(2.8) 

In this procedure weights are manipulated in the next step. 

Step 3. Determine the positive ideal and negative ideal solutions for each 
decision maker. 

The positive ideal solution +kA  for k − decision maker has the form 

{ } .|)(,|)(,...,, 21
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
∈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∈== ++++

i

k
ij

i

k
ij

k
n

kkk JjrminIjrmaxrrrA  (2.9) 

The negative ideal solution −kA  for k- decision maker has the form: 

{ } ,|)(max,|)(min,...,, 21
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
∈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∈== −−−−

i

k
ij

i

k
ij

k
n

kkk JjrIjrrrrA  (2.10)

where  I  is associated with the benefit criteria and  J  with the cost criteria. 
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Step 4. Calculate the separation measures from the positive ideal solution 
and the negative ideal solution. 

Step 5.1. Calculate the separatation measure for individuals. 
The separation of i-th alternative Ai from the positive ideal solution +kA   
for each  k − decision maker is given as  

( ) ,
p

1

1
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∑

m

=j

p+k
j

k
ij

k
j

+k
i rrw=d   i = 1,2, … , m. (2.11)

The separation of i-th alternative Ai from the negative ideal solution −kA   
for each  k − decision maker is given as 

( ) ,
p

1

1
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∑ −−

m

=j

pk
j

k
ij

k
j

k
i rrw=d   i = 1,2, … , m, (2.12)

where 1≥p . For 2=p  we have the Euclidean metric. 

Step 5.2. Calculate the separation measure for the group. 

The aggregation for measure for the group measures of the positive ideal  +*
id  

and negative ideal solution −*
id  for the i-th alternative Ai is given by one of the 

operators: 

arithmetic mean: 

K

d
d

K

k

k
i

i

∑
=

+

+ = 1*      and     
K

d
d

K

k

k
i

i

∑
=

−

− = 1*  
(2.13)

 
or 

geometric mean: 

K
K

k

k
ii dd ∏

=

++ =
1

*      and     .
1

* K
K

k

k
ii dd ∏

=

−− =  (2.13*)

Step 6. Calculate the relative closeness to the positive ideal solution. 
The relative closeness of the alternative Ai to the positive ideal solution  
is defined as 
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+
ii

i
i d+d

d=R **

*
*

−

−

   for   i = 1,2, … , m (2.14)

where .10 * ≤≤ iR  
The larger the index value, the better the evaluation of the alternative. 

Step 7. Rank the preference order or select the alternative closest to 1. 
A set of alternatives can now be ranked by the descending order of the value  
of .*

iR  

3. The TOPSIS method with criteria values  
determined as interval 

In some cases determining the exact value of criteria is difficult  
and decision makers are usually more comfortable providing intervals to specify 
model input parameters. An interval number data formulation is a simple  
and intuitive way to represent uncertainty, which is typical of real decision 
problems. Here, the TOPSIS method using interval as the basis for evaluating 
value alternatives is described. However, we can also consider an interval 
weights description [Jadidi, Hong, Firouzi, Yusuff, 2008].    

3.1. The TOPSIS method with attributed values determined  
as interval for a single decision maker 

An algorithmic method which extends TOPSIS for decision-making 
problems with interval data was proposed by Jahanshahloo, Lofti, Izadikhah. 
This procedure can be described in the following steps [Jahanshahloo, Lofti, 
Izadikhah, 2006a]. 

Step 1. Construct the decision matrix and determine the weight of criteria. 
Let ( )ijx=X  be a decision matrix and ],...,,[ 1 n2 www=W  a weight vector, 

where [ ]ijijij xx=x , ,  ℜ∈ijij xx , , ℜ∈jw  and .1...1 =w++w+w n2  

Step 2. Calculate the normalized interval decision matrix.  

The normalized values ijij n,n  are calculated in the following way: 

( ) ( )( )∑
m

=i
ijij

ij
ij

x+x

x
=n

1

22
 for i = 1, … , m;  j = 1, … , n. (3.1) 
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( ) ( )( )∑
m

=i
ijij

ij
ij

x+x

x=n

1

22
 for i = 1, … , m;  j = 1, … , n. (3.2) 

The interval  [ ]ijij nn ,  is normalized value of interval [ ]ijij xx , . 

Step 3. Calculate the weighted normalized interval decision matrix.  
The weighted normalized values ijv  and ijv are calculated in the 

following way: 

ijjij nwv =  for i = 1, …, m;  j = 1, … , n, (3.3)

ijjij nwv =  for i = 1, …, m;  j = 1, … , n, (3.4)

where jw  is the weight of the j-th criterion, .1
1

=w
n

=j
j∑  

Step 4. Determine the positive ideal and negative ideal solutions. 
The positive ideal solution has the form +A : 

( ) .|,|,...,, 21
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
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⎜
⎜
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⎛
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⎠

⎞
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⎝

⎛
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i
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i
ijn JjvminIjvmaxvvvA  (3.5)

The negative ideal solution has the form −A : 

( ) ,|,|,...,, 21
⎟
⎟
⎟

⎠

⎞

⎜
⎜
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⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
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⎛
∈⎟

⎟
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⎞
⎜
⎜
⎝

⎛
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i
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i
ijn JjvmaxIjvminvvvA  (3.6)

where I  is associated with benefit criteria and  J  with cost criteria. 

Step 5. Calculate the separation measures from the positive ideal solution 
and the negative ideal solution. 

The separation of each alternative from the positive ideal solution is given as*: 

( ) ( )∑ ∑ −−
n

=j

n

=j

+
jij

+
jij

+
i vv+vv=d

1 1

22
, i = 1,2, … , m. (3.7)

                                                      
* Traditional TOPSIS applied to Euclidean norm is presented here. However, we can also use other metrics. 
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The separation of each alternative from the negative ideal solution is given as: 

( ) ( )∑ ∑ −−− −−
n

=j

n

=j
jijjiji vv+vv=d

1 1

22
, i = 1,2, … , m. (3.8)

Step 6. Calculate the relative closeness to the positive ideal solution. 
The relative closeness of the alternative Ai  with respect to +A is defined as: 

+
ii

i
i d+d

d=R −

−

 for  i = 1,2, … , m, (3.9)

where .10 ≤≤ iR  

Step 7. Rank the preference order or select the alternative closest to 1. 
The set of alternatives can now be ranked by the descending order of the value  
of .iR  

3.2. The TOPSIS method with attributed values determined  
as intervals for group decision making 

We assume here that values are considered as intervals and we have 
group of k − decision makers [Zavadskas, Turskis, Tamosaitiene, 2008].  

Step 1. Construct the decision matrixes and determine the weights  
of criteria for k − decision makers. 

Let ( )k
ij

k x=X  be a decision matrix, ],...,[ 1
k
n

k
2

kk ww,w=W  is weight vector  

for k − decision maker, where ⎥⎦
⎤

⎢⎣
⎡ k

ij
k
ij

k
ij x,x=x , ℜ∈

k
ij

k
ij x,x , ℜ∈iw , 

1...1 =w++w+w k
n

k
2

k  for .,...1,2, K=k  

Step 2. Calculate the normalized grey decision matrixes.  
This step transforms various attribute dimensions into non-dimensional 

attributes ⎥⎦
⎤

⎢⎣
⎡ k

ij
k
ij

k
ij r,r=r , which allows comparisons across criteria.  

The normalized values 
k
ij

k r,r ij  are calculated in the following way: 
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)(max
k
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i

k
ijk

ij
x

x
r =  ,       

)(max
k
ij

i

k
ijk

ij

x

xr =    (3.10)

for i = 1, … , m;  j = 1, … , n, k = 1,2, … , K. 

Step 3. Determine the positive ideal and the negative ideal solutions  
for each decision maker. 

The positive ideal solution +kA for k-decision maker has the following 
form: 

{ } .|)(,|)(,...,, 21
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The negative ideal solution −kA  for k-decision maker has the form: 
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where  I  is associated with benefit criteria and  J  with cost criteria. 

Step 4. Calculate the separation measures from the positive ideal solution  
and the negative ideal solution. 

Step 5.1. Calculate the separation measure for individuals. 
The separation of i-th alternative Ai from the positive ideal solution +kA   
for each  k − decision maker is given as  

  ( )
p

m

=j

pk
ij

+k
j

pk
ij

+k
j

k
j

+k
i rr+rrw=d
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⎟
⎠
⎞⎜

⎝
⎛ −−∑ ,  i = 1,2, … , m. (3.13)

The separation of i-th alternative Ai from the negative ideal solution  −kA   
for each  k − decision maker is given as 

  ( ) ( ) p
m

=j

pk
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ij
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⎜
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⎜
⎝
⎛ −−∑ −−− ,    i = 1,2, … , m. (3.14)

  



MULTI-CRITERIA DECISION MAKING MODELS... 215

If p = 2, then the metric is a weighted grey number Euclidean distance function. 
Equations (3.13) and (3.14) will be as follows: 

( ) ( )∑ ⎟
⎠
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k
ij

+k
j

k
ij

+k
j

k
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1

22

2
1 ,  i = 1,2, … , m.    (3.13*)

The separation of i-th alternative Ai from the negative ideal solution  −kA   
is given as 
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⎠
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2
1 ,    i = 1,2, … , m. (3.14*)

Step 5.2. Calculate the separation measure for the group. 

The aggregation of the measure for the group measures of the positive ideal +*
id  

and the negative ideal solution −*
id  for the i-th alternative Ai is given by: 

arithmetic mean: 

K

d
d
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or 
geometric mean: 

K
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k
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* K
K

k

k
ii dd ∏

=

−− =  (3.15*)

Step 6. Calculate the relative closeness to the positive ideal solution. 
The relative closeness of the alternative Ai  with respect to A+  is defined as 

+
ii

i
i d+d

d=R **

*
*

−

−

  for  i = 1,2, … ,  m, (3.16)

where .10 * ≤≤ iR  
The larger the index value, the better the evaluation of alternative. 

Step 7. Rank the preference order or select the alternative closest to 1. 
The set of alternatives can now be ranked by the descending order of the value  
of .*

iR  
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4. The quantitative and qualitative criteria  

in the TOPSIS method. Weights expressed  
by linguistic variable 

In the TOPSIS algorithm the quantitative criteria are scaled using their 
own real numbers and for representation of the imprecision of spatial data,  
and human cognition over the criteria of the theory of linguistic variables  
is used. A linguistic variable is a variable where values are words or sentences  
in a natural or artificial language. Especially, since traditional quantification 
methods are difficult to describe situations that are overtly complex or hard  
to describe, the notion of a linguistic variable is necessary and useful. We can 
use this kind of expression for rating qualitative criteria as well as to compare 
two evaluation criteria. 

The qualitative criterion can be described using linguistic variables; next 
the criteria ratings on the 1-9 number scale (Table 1) or on the 1-7 interval scale 
(Table 2) can be provided, respectively [Jadidi, Hong, Firouzi, Yusuff, Zulkifli, 
2008].  
 

Table 1 

The scale of alternative ratings for qualitative criterion in the case of classical TOPSIS method 

Scale Rating 
Poor (P)  1 
Medium poor (MP)  3 
Fair (F)  5 
Medium good (MG)  7 
Good (G)  9 
Intermediate values between the two adjacent 
judgments 

2,4,6,8 

 
Table 2 

 
The scale of alternative ratings in the case of interval TOPSIS method 

Scale Rating 
Very Poor (VP)  [0,1] 
Poor (P) [1,3] 
Medium poor (MP)  [3,4] 
Fair (F)  [4,5] 
Medium good (MG)  [5,6] 
Good (G)  [6,9] 
Very good (VG) [9,10] 
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Each decision maker individually uses linguistic variables transformed  
for numerical scale (Table 1) or interval scale (Table 2) to identify  
the alternative rankings for the subjective criterion. Then the rating value  
for group decision makers can be calculated using the following formula 

[ ] ,...1 1 K
ij

2
ijijij x++x+x

K
=x  (4.1)

where: 
−s

ijx  is the rating value of alternative iA  with the respect to quantitative 

criterion jC (crisp or interval) of −s decision maker n;=i ,...1,2,(
).,...1,2,,...1,2, K=sm;=j  

In this way for m  alternatives and n  criteria and −K decision makers 
we can obtain one aggregated matrix ( )ijxX =  where ijx  is value  
of  −i alternative with respect to  −j criterion for  .,...,2,1;,...,2,1 njmi ==   

The weights of the factors are subjective input, which directly influences  
the final evaluated result. In the evaluating system, the importance of every 
index is, in general, not equal, so they must be set different weight factors. 
Among many ways to set the weight factors are for instance the Delphi method 
or the AHP method [Olson, 2004]. The Delphi method is the most popular 
expert evaluating technique. The Delphi method is a forecasting and evaluating 
method both qualitative and quantitative which collects experts’ ideas 
anonymously, exchanges and corrects this information many times to reach  
a consistent idea and gives the subject a final evaluation according to  
the experts’ ideal. AHP (The Analytical Hierarchy Process) uses a hierarchical 
structure and pairwise comparisons. An AHP hierarchy has at least three levels: 
the main objective of the problem at the top, multiple criteria that define 
alternatives in the middle and competing alternatives at the bottom. The AHP 
method uses system analysis and continuously decomposes the evaluating 
indices according to the main evaluating indices of every level [Saaty, 1980]. 
The classical TOPSIS method does not consider a hierarchical structure 
consisting of main attributes and subattributes. This method evaluates  
the alternatives with respect to main attributes only with a single level.  
The common property of these methods is their ease of implementation, so this 
method is often used to obtain weight criteria.   

In the case where the criterion weights are linguistic variables,  
the weights can be expressed by the 1-9 scale shown in Table 3 [Jadidi, Hong, 
Firouzi, Yusuff, Zulkifli, 2008]. 
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Table 3 

 
The scale of criterion weights 

Scale Weight 
Very very low (VVL) 0,005 
Very low (VL) 0,125 
Low (L) 0,175 
Medium low (ML) 0,225 
Medium (M) 0,275 
Medium hight (MH) 0,325 
Hight (H) 0,375 
Very Hight (VH) 0,425 
Very Very Hight (VVH) 0,475 

 
The vector of attribute weights must sum up to 1; if not, it is normalized. 

Each decision maker individually uses linguistic variables (Table 3) to identify 
the criterion weights. Then the criterion weights for all decision makers can be 
calculated using the following formula 

[ ] ,...1 1 K
r

2
rrr w++w+w

K
=w  (4.2)

where:  
−s

rw is the weight of −r criterion for −s decision makers ;,...,2,1( nr =
).,...,2,1 Ks =  

5. Practical application 

In this section, to demonstrate the calculation process of the approaches 
described, two examples are provided.  

Example 1.  
A firm intends to choose the best offer (or ranking of the offers) from the set  
of proposals submitted by potential contractors. Two experts evaluate five 
proposals using several criteria. In order to simplify the calculation, only four 
criteria are considered: deadline of payment after receipt the goods (in days), 
unitary price (in euro), conditions of warranty and contractor reputation, 
C1, C2, C3, C4, respectively. The criteria C1, C3, C4 are benefit criteria,  
the greater values being better, and C2 is the cost criterion, the smaller values  
are better. Criteria C3, C4 are subjectively evaluated by experts on basic 



MULTI-CRITERIA DECISION MAKING MODELS... 219

available information and they are considered as linguistic variables, while  
the other criteria are scaled using their own real numbers, respectively. This  
is shown in Table 4. Based on Table 1, the decision matrixes for two decision 
makers are obtained (Table 5). 
 

Table 4 

Criteria rating values for two decision makers 

  C1 C2 C3 C4 

D1      
 A1 7 21 F&MP MG 
 A2 7 24 MG&F F&MP 
 A3 14 25 MP G& MG 
 A4 14 26 G MP 
 A5 21 35 MP &F F& MP 
      
D2      
 A1 7 21 F&MP MG&F 
 A2 7 24 MG F 
 A3 14 25 MP&P G &MG 
 A4 14 26 MG MP&P 

 A5 21 35 MP  MP 
 
 

Table 5 

Decision matrixes for two decision makers 

  C1 C2 C3 C4 

D1      
 A1 7 21 4 7 
 A2 7 24 6 4 
 A3 14 25 3 8 
 A4 14 26 9 3 
 A5 21 35 4 4 
      
D2      
 A1 7 21 4 6 
 A2 7 24 7 5 
 A3 14 25 2 8 
 A4 14 26 7 3 

 A5 21 35 3 3 
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Based on linguistic variables, the evaluation values of attribute weights for  
the first and second decision makers can be obtained and the results are shown  
in Table 6. The normalized criteria weights for each decision maker obtained 
using Table 3 are shown in Table 7. 
 

Table 6 
 

Criteria weights for two decision makers 

 C1 C2 C3 C4 

D1     
 L VH L ML 
     
D2     

 ML VVH VL L 
 
 

Table 7 
 

Normalized criteria weights for two decision makers 

 C1 C2 C3 C4 

D1     
 0,175 0,425 0,175 0,225 
     
D2     

 0,225 0,475 0,125 0,175 
 

CASE 1. Rank the preference order for individual decision makers 

Using formulas 2.1-2.7 the calculation results on data from Table 5 and Table 7 
and rank order for each decision maker are shown in Table 8 and Table 9, 
respectively.  
 

Table 8 

Calculation results for 1-decision maker 

Alternatives 

The separation  
of alternatives 

to positive ideal  
one 

The separation  
of alternatives 

to negative ideal  
one 

The relative closeness  
of alternatives  

to the positive ideal  
one 

Rank 

A1 0.107805 0.124281 0.535497 2 
A2 0.117942 0.090785 0.434945 4 
A3 0.096981 0.122181 0.557491 1 
A4 0.105379 0.112779 0.516961 3 
A5 0.141766 0.083486 0.370633 5 
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Table 9 

 
Calculation results for 2-decision maker 

Alternatives 

The separation  
of alternatives 

to positive ideal  
one 

The separation  
of alternatives 

to negative ideal  
one 

The relative closeness  
of alternatives  

to the positive ideal  
one 

Rank 

A1 0.112485 0.128548 0.533321 2 
A2 0.115014 0.113042 0.495676 3 
A3 0.082214 0.130468 0.613440 1 
A4 0.110660 0.104396 0.485436 4 
A5 0.141415 0.104894 0.425865 5 

 

CASE 2. Rank the preference order for group decision makers  
(1 method) 

The decision matrix is calculated using formula (4.1) and attributes weights  
of the criteria using (4.2). The results are shown in Table 10 and Table 11, 
respectively.   

 
Table 10 

 
Decision matrix for group decision makers 

 C1 C2 C3 C4 
A1 7 21 4 6,5 
A2 7 24 6,5 4,5 
A3 14 25 2,5 8 
A4 14 26 8 2,5 
A5 21 35 3,5 3,5 
 
 

Table 11 
 

Normalized criteria for group decision makers 

C1 C2 C3 C4 

    
0.20 0.45 0.15 0.20 

 
Using formulas 2.1-2.7 the calculation results on data based on Table 10  
and Table 11 and rank order for group decision making are shown in Table 12.  
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Table 12 

 
Calculation results for group decision making (1 method) 

Alternatives 

The separation  
of alternatives 

to positive ideal  
one 

The separation  
of alternatives 

to negative ideal  
one 

The relative closeness  
of alternatives  

to the positive ideal  
one 

Rank 

A1 0.107701 0.126396 0.539930 2 
A2 0.112581 0.102844 0.477401 4 
A3 0.088631 0.127144 0.589244 1 
A4 0.108991 0.107566 0.496711 3 
A5 0.141512 0.094110 0.399412 5 

 

CASE 3. Rank the preference order for group decision makers  
(2 method) 

Using formulas 2.8-2.14 in the case of the Euclidean metric (p = 2)  
and arithmetic mean (formula 2.13) the calculation results on data based  
on Table 5 and Table 7 and rank order for group decision making are shown  
in Table 13.  
 

Table 13 
 

Calculation results 

Alternatives 

The separation  
of alternatives 

to positive ideal  
one 

The separation  
of alternatives 

to negative ideal  
one 

The relative closeness  
of alternatives  

to the positive ideal  
one 

Rank 
 

A1 0.250522 0.222860 0.470783 3 
A2 0.253325 0.199743 0.440868 4 
A3 0.210667 0.255295 0.547889 1 
A4 0.235766 0.229436 0.493196 2 
A5 0.273169 0.211055 0.435863 5 
 

Remark 1. Let us observe that we obtain different rank order in Case 2  
and Case 3.   

Example 2. 

A firm intends to choose the best offer (or ranking of the offers) from the set  
of three proposals submitted by potential contractors. As in example 1, two 
experts evaluate each proposal using the same four criteria: deadline of payment 
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after receipt of the goods (in days), unitary price (in euro), conditions  
of warranty and contractor's reputation, C1, C2, C3, C4 respectively. The criteria 
C1, C3, C4 are benefit criteria, greater values being better, and C2 is the cost 
criterion, smaller values being better. Criteria C3, C4 are subjectively evaluated 
by the experts on basic available information and they are considered now  
as linguistic variables, and the other criteria are scaled using interval data, 
respectively. This is shown in Table 14.  

 
Table 14 

 
The interval decision matrix for two decision makers 

  C1  C2  C3 C4 

  1
i1x  1

i1x  
1
i2x  1

i2x    

D1        
 A1 0 7 20 22 P P 
 A2 7 14 22 24 G MG 
 A3 14 21 24 26 MP F 
 
        

  2
i1x  2

i1x  
2
i2x  2

i2x    

D2        
 A1 0 7 20 22 P MP 
 A2 7 14 22 24 MP P 
 A3 14 21 24 26 MP MP 

 
Based on Table 2, the decision matrixes of two decision makers are obtained 
(Table 15). 
 

Table 15 
 

The interval decision matrix for two decision makers 

  C1  C2  C3  C4  
  1

i1x  1
i1x  

1
i2x  1

i2x  
1
i3x  1

i3x  
1
i4x  1

i4x  

D1          
 A1 0 7 20 22 1 3 1 3 
 A2 7 14 22 24 6 9 5 6 
 A3 14 21 24 26 3 4 4 5 
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Table 15 contd. 

          
  2

i1x  2
i1x  

2
i2x  2

i2x  
2
i3x  2

i3x  
2
i4x  2

i4x  

D2          
 A1 0 7 20 22 1 3 3 4 

 A2 7 14 22 24 3 4 1 3 
 A3 14 21 24 26 3 4 3 4 

 
Based on linguistic variables the evaluation values of attribute weight for each 
decision maker can be obtained and the results are shown in Table 16.  

 
Table 16 

 
Criteria weights for two decision makers 

 C1 C2 C3 C4 

D1     
 ML VVH M L 
 
D2 

    

 ML VVH VL L 
 

The normalized criteria weights for two decision makers are shown in Table 17. 
 

Table 17 
 

Normalized criterion weights for two decision makers 

 C1 C2 C3 C4 

D1     
 0.196 0.413 0.239 0.152 
 
D2 

    

 0.225 0.475 0.125 0.175 
 
 

CASE 1: Rank the preference order for individual decision makers 

Using formulas 3.1-3.9 the calculation results on data from Table 15  
and Table 17 and rank order for each decision maker are shown in Table 18  
and Table 19, respectively.   
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Table 18 

 
Calculation results for 1-decision maker 

Alternatives 

The separation  
of alternatives 

to positive ideal  
one 

The separation  
of alternatives 

to negative ideal  
one 

The relative closeness  
of alternatives  

to the positive ideal  
one 

Rank 

A1 0.266630 0.084412 0.240462 3 
A2 0.121513 0.230392 0.654700 1 
A3 0.169564 0.191156 0.529928 2 
 
 

Table 19 
 

Calculation results for 2-decision maker 

Alternatives 

The separation 
of alternatives 

to positive ideal  
one 

The separation  
of alternatives 

to negative ideal  
one 

The relative closeness  
of alternatives  

to the positive ideal  
one 

Rank 

A1 0.195026 0.118375 0.377710 3 
A2 0.141770 0.141991 0.500388 2 
A3 0.084299 0.211994 0.715488 1 

 

CASE 2. Rank the preference order for group decision makers  
(1 method) 

The decision matrix is calculated using formula (4.1) and attributes weights  
of the criteria using (4.2). The results are shown in the Table 20 and  
the Table 21, respectively.   

 
Table 20 

 
Decision table for group decision making 

 C1  C2  C3  C4  
 1

i1x  1
i1x  

1
i2x  1

i2x  
1
i3x  1

i3x  
1
i4x  1

i4x  

         
A1 0 7 20 22 1 3 2 3,5 
A2 7 14 22 24 4,5 6,5 3 4,5 
A3 14 21 24 26 3 4 3,5 4,5 
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Table 21 

 
Normalized criteria weights for group decision makers 

C1 C2 C3 C4 

    
0.2105 0.4440 0.1820 0.1635 

 
Using formulas 3.1-3.9 the calculation results on data based on Table 20  
and Table 21 and rank order for group decision making are shown in Table 22.  

 
Table 22 

 
Calculation results for group decision making (1 method) 

Alternatives 

The separation  
of alternatives 

to positive ideal  
one 

The separation  
of alternatives 

to negative ideal  
one 

The relative closeness  
of alternatives  

to the positive ideal  
one 

Rank 

A1 0.217917 0.087577 0.286673 3 
A2 0.122574 0.172678 0.584850 2 
A3 0.110306 0.194664 0.638305 1 
 

CASE 3. Rank the preference order for group decision making  
(2 method) 

Using formulas 3.10-3.16 in the case of the Euclidean metric (formula  
3.13*-3.14*) and arithmetic mean (3.15) the calculations results on data based  
on Table 15 and Table 17 and rank order for group decision making are shown 
in Table 23.  

 
Table 23 

 
Calculation results for group decision making (2 method) 

Alternatives 

The separation  
of alternatives 

to positive ideal  
one 

The separation  
of alternatives 

to negative ideal  
one 

The relative closeness  
of alternatives  

to the positive ideal 
one 

Rank 

A1 0.224004 0.125446 0.358981 3 
A2 0.125382 0.223736 0.640861 2 
A3 0.173915 0.322996 0.650008 1 
 

Remark 2. Let us observe that we obtain the same rank order in Case 2  
and Case 3. 



MULTI-CRITERIA DECISION MAKING MODELS... 227

Remark 3. The TOPSIS method presents a universal methodology and  
a simplified practical model for ordering and choosing offers in buyer-seller 
exchange. This indicator system and evaluation model can be used widely in the 
area of bargaining process which is usually complex and uncertain. Negotiators 
have to consider qualitative issues such as price, time of payments, as well  
as quantitative ones such as reputation, power of negotiation, relationships 
between sides and so on. Moreover, human thinking is imprecise, lack  
of information, imprecision and evaluations are always restricted by some 
objective factors. The concept of the TOPSIS method is clear, the calculation  
is simple and convenient and the methodology can be extended and adjusted  
to specific environments. According to the TOPSIS analysis results, a ne-
gotiator can choose the most effective alternative that is possible to implement. 
The decision maker's evaluation could be based on linguistic variables, crisp  
or interval data. The example of the practical application proves that this 
method is efficient and feasible.  

Concluding remarks 

There are a variety of multiple criteria techniques to aid selection  
in conditions of multiple-criteria problems. One of them is the TOPSIS method, 
where the ranking of alternatives is based on the relative similarity to the ideal 
solution, which avoids the situation of having the same similarity index to both 
positive ideal and negative ideal solutions.  

The TOPSIS method is a practical and useful technique for ranking  
and selecting alternatives. In this paper we focused mainly on the concept of the 
TOPSIS algorithm for crisp and interval data. An extension of the TOPSIS 
technique to a group decision environment was also investigated.  

The high flexibility of the TOPSIS concept is able to accommodate 
further extensions to make best choices in various situations. Practically, 
TOPSIS and its modifications are used to solve many theoretical and real-world 
problems. In addition, the preferences of more than one decision makers can be 
also aggregated into the TOPSIS procedure. The classical TOPSIS have been 
extended according to the requirements of different real-world decision making 
problems providing support for interval or fuzzy criteria, interval or fuzzy 
weights to modeled imprecision, uncertainty, lack of information or vagueness, 
such as TOPSIS with interval data, Fuzzy TOPSIS, Fuzzy AHP and TOPSIS 
and group TOPSIS.  

In the TOPSIS model based on the theory of fuzzy sets the rating of each 
alternative is expressed in triangular or trapezoidal fuzzy numbers, the weight  
of each criterion is represented by fuzzy or crisp values, and different 
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normalization (for instance Euclidean, linear or others) are used*. The 
normalized fuzzy numbers can be calculated by using the concept of α-cuts 
[Jahanshaholoo, Lofti, Izadikhah, 2006b]. The TOPSIS model based on the 
intuitionistic fuzzy set (IFS) allows also to measure the degree of satisfiability 
and the degree of non-satisfiability, respectively, of each alternative evaluated 
across a set of criteria [Hung, Chen, 2009; Saghafian, Hejazi, 2005].  
The hierarchical TOPSIS method is developed to benefit both from  
the superiority of the hierarchical structure of AHP and ease of implementation  
of TOPSIS method [Kahraman, Buyukozkan, Ates 2007; Chiang, Cheng, 2009].  

In Polish literature, among many applications, the TOPSIS method  
(to rank objects) and analytical hierarchy process (to calculate weight  
of criteria) was employed to assess the socioeconomic development of rural 
Wielkopolska seen as a collection of counties [Łuczak, Wysocki, 2006],  
the fuzzy TOPSIS method based on α-level sets was employed to assess the  
level of people life in chosen counties in Wielkopolska Province [Łuczak, 
Wysocki, 2008], TOPSIS methods for crisp and interval data were used  
for ordering offers in buyer-seller transactions [Roszkowska 2009]. 
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