Who Gets to Build?

Designing Al Systems Without a Technical Background

Keena Williams

Founder, Struxa Al

Executive Summary

As Al tools become increasingly conversational, the barrier to building digital systems is shifting
away from technical execution and toward human judgment. Across creative, operational, and
business contexts, domain experts often identify clear opportunities for improvement, yet lack
the technical access to translate insight into functional tools. As a result, many ideas stall
between documentation and implementation.

This case study examines an Al-assisted development approach that separates judgment from
execution, enabling non-technical practitioners to design and deploy working systems without
traditional engineering workflows. Rather than positioning Al as a decision-maker, the model
treats Al as an execution layer operating within human-defined intent, constraints, and oversight.
Responsibility remains with the builder, while Al accelerates implementation.

Two system artifacts are presented to illustrate this approach: a Podcast Operations Command
Center designed to support human-led creative workflows, and truckCheck, a prototype
application designed to analyze terms and conditions and privacy policies to surface potential
areas of risk and concern. Together, these artifacts demonstrate how conversational

development enables builders to move from insight to execution while preserving accountability.

The implications extend beyond individual tools. As Al collapses the distance between idea and
execution, the quality of systems increasingly depends on the clarity of human intent embedded
in their design. This shift expands who gets to build, while elevating the importance of literacy,
specification, and human-in-the-loop architecture as foundational elements of responsible Al
system design.

Section |: The Problem — The Technical Bottleneck Between
Insight and Execution

Across creative, operational, and business contexts, domain experts regularly identify
opportunities for new tools, workflows, and systems. These insights often emerge from lived
experience and practical problem-solving. However, translating them into functional software
has historically required formal engineering skills, access to developers, or reliance on rigid
third-party platforms.

This dependency creates a persistent bottleneck. Ideas are documented, discussed, or
deferred, but rarely built. The distance between recognizing a problem and implementing a
solution results in lost momentum, diluted intent, or complete abandonment of otherwise
viable systems.

As Al tools become more capable, this bottleneck is beginning to shift. The central question is
no longer whether non-technical practitioners can build software, but how systems should be
designed when execution is increasingly delegated to Al. This shift introduces new
opportunities for access and speed, while also raising questions about responsibility,
oversight, and decision-making in Al-assisted development.

Section Il: The Al-Assisted Build Model — Separating
Judgment from Execution

This case study explores an Al-assisted development model that intentionally separates
human judgment from technical execution. Rather than treating Al as an autonomous
decision-maker, the model positions Al systems as execution layers operating within human-
defined intent, constraints, and oversight.

The approach is structured across three complementary layers:

Specification Layer (Human)

Definition of system intent, goals, success criteria, constraints, assumptions, and ethical
boundaries. This layer determines what the system is allowed to do and, critically, what it is
not.

Execution Layer (Al)

Al-assisted code generation, automation logic, and application scaffolding based on human
specifications. In this layer, Al accelerates implementation without owning judgment or
accountability.

Orchestration Layer (Human-in-the-Loop)
Ongoing review, intervention, iteration, and decision-making at key checkpoints throughout

the system lifecycle. This layer ensures alignment, correctness, and contextual awareness as
systems evolve.

This structure enables non-technical builders to focus on logic, outcomes, and responsibility
while preserving human authority over system behavior. The tools used to support this model
are secondary to the architectural principle itself: execution may be automated, but
judgment remains human-led.

Section lll: System Artifacts Produced

Using the Al-assisted build model described above, this project produced a small set of
functional system artifacts designed to test how non-technical practitioners can translate
domain expertise into working software. Each artifact prioritizes adaptability, human
oversight, and practical use over polish or commercialization.

Podcast Operations Command Center

The Podcast Operations Command Center is a modular, Al-assisted workflow designed to
support the end-to-end podcast production lifecycle. The system ingests raw audio and
video assets, generates transcripts, assists with editorial organization, and tracks production
stages across multiple episodes.

Rather than automating creative decisions, the system is intentionally structured to keep
humans in the loop at key checkpoints, including content selection, narrative shaping, and
final distribution. Al is used to accelerate execution and surface options, while authorship
and judgment remain human-led.

This artifact demonstrates how Al can function as an operational partner in creative
workflows without displacing human decision-making or eroding creative control.

StruckCheck (Prototype Application)

StruckCheck is a lightweight prototype application developed to examine how non-technical
builders can encode domain expertise into functional software systems using Al-assisted
execution. The application analyzes terms and conditions and privacy policies to surface
potential areas of risk, ambiguity, or concern, supporting review rather than automating
judgment or decision-making.

The system was developed without traditional backend or mobile engineering workflows.
Instead, system intent, behavioral constraints, and evaluation criteria were defined at the
specification level, with Al handling structural implementation and application scaffolding.
Human oversight remained central in determining what the system evaluates, how findings
are framed, and where interpretive limits are enforced.

StruckCheck illustrates how conversational development can enable subject-matter experts
to move from insight to execution while preserving human judgment, accountability, and
control over system behavior.

Section IV: Implications for Al System Design

Al-Assisted Build Model
Separating Judgment from Execution

i A ¢
Human Specification AlE e Human-in-the-Loop
& Judgment xecution Layer Oversight
Defines
Intent & goals behavior Code generation 5| Review &intervention
Constraints & limits Automation logic [teration & refinement
Success criteria Application scaffolding Accountability &

decisions

Ethical boundaries
N J _ 3

/[Refines specifications J

This diagram illustrates the separation of human judgment and Al execution in an Al-assisted build model.
Humans define intent, constraints, and oversight, while Al accelerates implementation within those boundaries.

Taken together, these artifacts illustrate a broader shift in how Al-enabled systems are being
designed and built. As development becomes increasingly conversational, technical
capability is no longer defined primarily by the ability to write code, but by the ability to
specify intent, define constraints, and exercise judgment across the system lifecycle.

One implication of this shift is a change in who gets to participate in building systems. Al-
assisted development lowers traditional barriers, enabling domain experts and non-
traditional practitioners to contribute directly to system creation. This expanded access
increases the diversity of perspectives shaping Al systems, while also increasing the
responsibility placed on builders to articulate goals, assumptions, and limits clearly.

A second implication is the centrality of human-in-the-loop architecture. When Al systems
handle execution, the placement of human review, intervention, and decision-making
becomes a foundational design choice rather than a secondary safeguard. Systems that lack
clearly defined oversight risk over-automation, misalignment, or erosion of trust.

This shift also reframes governance as a design practice. Responsible system behavior
increasingly emerges from how workflows are structured, how authority is distributed

between humans and machines, and how decisions are staged over time. In this sense,
architecture itself becomes a primary mechanism for accountability.

Finally, increased accessibility to building does not eliminate risk; it redistributes it. As more
individuals gain the ability to create Al-assisted systems, the potential for poorly specified
logic, unintended consequences, and unchecked automation grows. This makes literacy in
systems thinking, evaluation, and responsibility as essential as creativity or operational
insight.

As Al continues to collapse the distance between idea and execution, the quality of human
judgment embedded in systems will determine whether these technologies empower users or

simply accelerate existing failures at scale.

