ELECTRONICS AND EMBEDDED FIRMWARE FOR
UAVS

A Graduate Project Report submitted to Manipal Academy of Higher Education in
partial fulfillment of the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY
in

Mechatronics

Submitted by

Mukul Yadav

190929042

Under the guidance of

Internal Guide External Guide
Dr. Nikhil Pachauri Varun Raghavendra
Department of Mechatronics AIR Labs, 11Sc Bangalore

MANIPAL INSTITUTE OF TECHNOLOGY

{mr: MANIPAL INSTITUTE OF TECHNOLOGY

=)
«a&g MANIPAL
Uorggger™ (A constituent unit of MAHE, Manipal)

July 2023

4&'& MANIPAL INSTITUTE OF TECHNOLOGY

4w MANIPAL
Yo (A constituent unit of MAHE, Manipal)

Manipal
12/7/ 2023

CERTIFICATE

This is to certify that the project titled Electronics and Embedded Firmware for UAVs is a record
of the bonafide work done by Mukul Yadav (190929042) submitted in partial fulfillment of the
requirements for the award of the degree of BACHELOR OF TECHNOLOGY in
MECHATRONICS of Manipal Institute of Technology, Manipal, Karnataka (A constituent unit

of Manipal Academy of Higher Education, Manipal) during the year 2022-2023.

Dr. Nikhil Pachauri Dr. D.V. Kamath
Assistant Professor Professor & HOD
Department of Mechatronics Department of Mechatronics

MIT, Manipal MIT, Manipal

INTERNSHIP COMPLETION CERTIFICATE

Dr. Suresh Sundaram, Associate Professor +91-80-2293 2755 (Phone/Office)
Artificial Intelligence and Robotics Lab (AIRL) +91-80-23600134 (Fax/Office)
Department of Aerospace Engineering

Indian Institute of Science vssuresh@iisc.ac.in
Bangalore 560012 http://aero.iisc.ac.in/index.php/people/suresh-sundaram/

Date: 3" May 2023
CERTIFICATE

This is to certify that the internship project entitled “Electronics and Embedded
Firmware for UAVs” has been carried out by Mr. Mukul Yadav bearing, Manipal
Institute of Technology, Udupi, Karnataka. The project was carried out at Artificial
Intelligence and Robotics Laboratory, Department of Aerospace Engineering Located
at Indian Institute of Science (11Sc), Bangalore effect from 10" December 2022 to 30"

April 2023. It is certified that he has completed the project successfully.

o/
Suresh Sundaram

Prof. Suresh Sundaran

& Drafessor
ssociate Proiesse .
- ¢ Engineering

lore - 12.

Department of Aerospac

AL
Indian Institute ot Science. b

ACKNOWLEDGEMENTS

| hereby express my gratitude and extend my heartfelt thanks to all those who have supported
and guided me during my internship at AIR Labs. Firstly, I would like to thank my supervisor,
Mr. Varun Raghavendra, for providing me with the opportunity to work with him and his
support during the internship. I also thank the other folks at AIR labs for assisting me in times
of doubt and making me feel welcome. | am grateful to all the workmates who generously
shared their knowledge and expertise with me, helping me learn and grow both personally and

professionally.

A special mention goes out to Professor Suresh Sundaram from the Department of Aerospace,
I1Sc Bangalore, who, despite not being my direct supervisor, has enabled the work to happen

at AIR Labs. None of this would be possible without him.

I am also thankful to my friends and family for their support and encouragement throughout
my internship. Without their constant motivation, | would not have been able to make the most

of this opportunity.

I must also mention Dr. Nikhil Pachauri from the Department of Mechatronics. He was my
internal guide during this time and has provided valuable and constructive feedback for the
work | did.

Finally, I would like to express my deepest appreciation to MIT Manipal for providing me with

the impulse to pursue this internship.

ABSTRACT

This internship report provides an overview of the work done in electronics, with afocus on the
embedded software, flight control algorithms, and device drivers. The report begins by
introducing UAVs and their use in various industries, including surveillance, search and
rescue, and agriculture. The report then delves into the technical aspects of the project,
describing the hardware and software components used for the tasks carried out. The embedded
software for a UAV, which runs on a microcontroller, is developed using the C programming
language. The report covers the design and implementation of flight control algorithms,
including design principles of embedded software, and several custom PCBs. Furthermore, the
report highlights the importance of device drivers in a UAV's operation. Device drivers are used
to interface the microcontroller with sensors, actuators, and other peripheral devices used in the
UAV. The report concludes with a summary of the major results achieved and the lessons
learned during the internship. This internship report provides an in-depth insight into the tasks
carried out, and the challenges encountered while developingthe embedded software, flight

control algorithms, and device drivers.

CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT
LIST OF FIGURES
Chapter 1 INTRODUCTION
11 UAVs and Their Relevance in the Modern World
1.2 Components of a UAV
1.3 About Embedded Software
1.4 Control Algorithms for UAVs
1.5 Pixhawk: A Case Study
Chapter 2 LITERATURE REVIEW
2.1 Introduction
2.2 Methodology
2.3 Key Findings
2.4 Methodologies Employed
2.5 Conclusion
Chapter 3 OBJECTIVES AND METHODOLOGY
3.1 Objectives
3.2 Methodology
Chapter 4 RESULTS AND DISCUSSION
4.1 Building and Assembling Drones

4.2 Q Ground Control and Pixhawk 4

~N N o O

8-13

14
14
15-18

4.3 Influence of High Currents and Inductive Loads on PCB 18-19

design
4.4 Black Box Systems in Modern UAVs 19-20
4.5 Flight Controller 20-22
4.6 Flysky Transceiver 23-24
4.7 ESC Arming and Calibration 25-26
4.8 Designing and 3D Printing 26-28
4.9 IMU Testing Rig 29-30
4.10 Complementary and Kalman Filter 31-34
411 NMEA GPS Standard 34-36
412 Embedded Driver Development 36-38
4.13 Micro Drones 39-40
4.14 VL53 Series TOF Sensors 40-42
4.15 ESP-NOW Protocol 42-44
4.16 OpenOCD 44
4.17 NuttX RTOS 45-47
4.18 Real Time Clock 47-48
4.19 NRF24L01 48-49
Radio
Chapter 5 CONCLUSIONS AND SCOPE FOR FUTURE WORK 50

REFERENCES 01-52

LIST OF FIGURES

Figure Number Figure Title Page No.
3.1 CubelDE MCU Selection Page 9
3.2 MCU Configuration Page 9
3.3 Project Tree 10
34 Embedded Software Layers 10
3.5 OpenOCD with STM32 11
3.6 Tools Used for SoftwareDevelopment 11
3.7 PCB Design Workflow 12
3.8 Schematic Draft 12
3.9 PCB Layout 12
4.1 Drone System Block Diagram 14
4.2 QGroundControl Setup 15
4.3 Triangulation 15
4.4 Analysis 16
4.5 Flight Configuration Summary 16
4.6 UAYV Configuration Options 16
4.7 Sensor Calibration 17
4.8 Falisafes 17
4.9 Parameters 18

4.10

411

412

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

Examples of Flight Controllers
Flysky Transceiver

Flysky Channel Readings with
Arduino

3D Printing Work
IMU Testing Rig
IMU Visualization

Diagrammatic ~ Representation of
Complementary Filter

Kalman Algorithm

Degrees v Time Results of the
Complementary Filter applied on IMU
readings. Pitch (Green)and Roll (Red).
Complementary coefficient —0.02

Degree v Time Results of the Kalman
Filter applied on IMUreadings. Pitch
(Green) and Roll (Red). First Order
Low Pass Filter: 0.01 Gyro Alpha
0.1 Accel Alpha

Degree v Time Results of the Kalman
Filter applied on IMUreadings. Pitch
(Green) and Roll (Red). First Order
Low Pass Filter: 0.1 Gyro Alpha 0.5
Accel Alpha

22

23

24

26-28

29

29

31

32

33

33

34

Vi

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

431

4.32

4.33

4.34

4.35

4.36

4.37

4.38

NEO-6M GPS Data

Translation of NMEA
Sentences

Inclusions in MCU Header File

Inclusions in Peripheral

Specific Header File
GPIO Test

SPI Transmission Testing
I2C Transmission Testing
Scale of Micro Drone
TOF Sensors with STM32
ITM Output

One possible ESP-NOW
Configuration

Pair of ESP32s sending IMU
data back and forth

IMU Data Wirelessly
Transmitted

OpenOCD Debugging
Interface

Building NuttX RTOS
NuttX Shell
RTC Implementation

Two-Way Radio

35

36

37

37

38

38

38

40

41

42

43

43

44

44

46

46

48

49

vii

NOMENCLATURE

UAV Unmanned Aerial Vehicle
PCB Printed Circuit Board
ESC Electronic Speed Controller
IMU Inertial Measurement Unit

NMEA National Marine Electronics Association

GPS Global Positioning System

TOF Time of Flight

RTOS Real Time Operating System

CHAPTER 1
INTRODUCTION

1.1 UAVs and Their Relevance in the Modern World:

Unmanned aerial vehicles (UAVS), or drones, are revolutionizing the way we live, work,
and interact with the world around us [1]. With their ability to fly and collect data from
hard-to-reach places, they have become increasingly popular in recent years [2]. Their
versatility and range of applications have made them an indispensable tool in various

industries, including agriculture, construction, mining, search and rescue, and filmmaking
[3].

In agriculture, drones are used to monitor crop growth and detect crop diseases, providing
farmers with valuable information to improve crop yields and reduce crop losses [4]. In
construction, they are used to survey sites and provide real-time updates on the progress of
the project, making the construction process more efficient and cost-effective [5]. In search
and rescue, drones are being used to locate missing persons and provide aerial views of the

terrain, allowing rescuers to plan and execute rescue operations more effectively [6].

The use of drones has also extended to the military, where they are used for surveillance
and reconnaissance, and in some cases, for targeted attacks [7]. However, there are ethical
concerns regarding the use of drones in warfare and the potential for civilian casualties [8].
The use of drones has also raised privacy concerns, with many individuals worried about
the possibility of drones being used for surveillance [9].

Despite these concerns, the potential benefits of drones are significant, and their use is
likely to continue to grow in the years to come [10]. As the technology continues to
improve, drones will become even more versatile and useful, providing new opportunities

for businesses, researchers, and individuals [11].

1.2 Components of a UAV:

Frame: The frame is the basic structure of the UAV and provides support for all the other
components. Itis typically made of lightweight materials, such as carbon fiber or aluminum,

to minimize weight and increase maneuverability.

Motors and propellers: The motors and propellers are used to generate lift and provide
propulsion for the UAV. They are typically electric and can be controlled using a flight

controller to adjust speed and direction.

Flight controller: The flight controller is the "brain™ of the UAV and is responsible for
controlling the motors and other systems. It uses sensors, such as accelerometers and
gyroscopes, to measure the orientation and movement of the UAV and adjust the motor

speeds accordingly.

Battery: The battery provides power for the motors and other systems. It is typically a

rechargeable lithium-ion batterythat is chosen based on the size and weight of the UAV.

Sensors: Sensors are used to provide information about the UAV's environment and
orientation. This can include GPS for location tracking, barometers for altitude

measurement, and cameras for visual information.

Communication system: The communication system allows the UAV to transmit and
receive information with ground control stations and other UAVs. This can include radios,

Wi-Fi, and cellular communication.

Payload: The payload is any additional equipment or sensors that are carried by the UAV.

This can include cameras, sensors, and other equipment required for specific applications.

1.3 About Embedded Software:

Embedded software is a type of software that is designed to run on a specific hardware
platform, typically a microcontroller or microprocessor. It is designed to perform a specific
function, such as controlling a motor or reading data from a sensor. Embedded software is
used in a wide range of applications, including consumer electronics, automotive systems,

medical devices, and industrial automation.

One of the primary features of embedded software is its ability to run efficiently on low-
power devices. Unlike general-purpose software, embedded software is optimized to run on
a specific hardware platform, providing a high level of performance and efficiency. It
typically uses low-level programming languages like C and assembly, which allow the
software to interact directly with the hardware without the overhead of a higher-level

programming language.

Embedded software is also highly reliable, as it is designed to operate in real-time
environments where failures can have serious consequences. For example, embedded
software used in medical devices must be highly reliable to ensure patient safety. Similarly,
embedded software used in automotive systems must be highly reliable to ensure the safety

of the driver and passengers.

Another key feature of embedded software is its ability to work with limited resources.
Embedded devices often have limited memory, processing power, and storage space, which
means that the software must be designed to work within these constraints. This can be a
challenging task for developers, as they must find ways to optimize the software to work

with limited resources while still providing the necessary functionality.

Embedded software is essential to the operation of many modern devices, including UAVS,
medical devices, and automotive systems. In UAVs, embedded software is used to control
the flight of the drone, stabilize the drone in flight, and communicate with sensors and other
peripheral devices. In medical devices, embedded software is used to monitor patient health
and deliver appropriate treatments. In automotive systems, embedded software is used to

control the engine, transmission, and other systems in the vehicle.

1.4 Control Algorithms for UAVs

Control algorithms are an essential component of the flight control system of unmanned
aerial vehicles (UAVs). They are used to stabilize and control the flight of the UAV,
ensuring that it can fly safely and accurately. Control algorithms work by taking input from
sensors on the UAV and processing it to generate control signals that adjust the position,
speed, and direction of the UAV.[12]

There are several types of control algorithms used in UAV flight control systems, each with
its own strengths and weaknesses. The most common types of control algorithms are

proportional-integral-derivative (PID) controllers and model-based controllers.[13]

PID controllers are the most basic type of control algorithm used in UAV flight control
systems. They work by calculating an error signal that represents the difference between
the desired position or velocity of the UAV and its current position or velocity. The error
signal is then used to adjust the UAV's control inputs to bring it closer to the desired position
or velocity. PID controllers are simple and reliable, but they can struggle to handle complex

dynamics or external disturbances.[14]

Model-based controllers, on the other hand, use mathematical models of the UAV's
dynamics to generate control inputs. These models consider the physical properties of the
UAYV, such as its mass, aerodynamic properties, and propulsion system. Model-based
controllers are more complex than PID controllers, but they can provide more accurate and

robust control in complex environments or when dealing with external disturbances.[15]

Other types of control algorithms used in UAV flight control systems include adaptive
control, nonlinear control, and optimal control. These algorithms can provide more
advanced capabilities, such as automatic tuning, adaptive response to changing conditions,

and the ability to optimize performance under specific constraints.[16]

1.5 Pixhawk: A Case Study

Pixhawk is an open-source hardware and software platform used in unmanned aerial
vehicles (UAVs) for flight control and navigation. It is one of the most widely used flight
control systems in the UAV industry and is popular among hobbyists, researchers, and

commercial operators alike.

Pixhawk was developed by the open-source community as an alternative to commercial
flight control systems that were often expensive and proprietary. The first version of
Pixhawk was released in 2011, and since then, it has undergone several iterations, with the
latest version being Pixhawk 4. Pixhawk is designed to be highly modular, allowing users

to customize and expand the system as needed.

Pixhawk hardware consists of a main board and a set of peripheral boards, including GPS,
sensors, and communication modules. The main board contains the central processing unit
(CPU), memory, and interfaces for peripheral boards. The peripheral boards are connected
to the main board via a standardized interface, allowing for easy customization and

expansion of the system.

Pixhawk software is based on the open-source ArduPilot firmware, which provides a
comprehensive suite of flight control and navigation algorithms. ArduPilot is compatible
with a wide range of UAV platforms, including fixed-wing aircraft, quadcopters, and even
ground-based robots. It provides a range of features, including autonomous flight, mission

planning, and telemetry data logging.

One of the key features of Pixhawk is its support for a wide range of peripheral devices and
sensors. This includes GPS, inertial measurement units (IMUs), barometers, and airspeed
sensors, among others. Pixhawk also supports a variety of communication protocols,

including MAVLink, which is a common protocol used in the UAV industry.

Pixhawk has become an industry standard in the UAV industry, with a large and active user
community contributing to its ongoing development and improvement. It has been used in
a wide range of applications, from hobbyist drones to commercial surveying and mapping

operations.

The modular design and open-source software of Pixhawk make it an attractiveoption for
developers and operators looking for a customizable and flexible flight control system for
their UAVs.

CHAPTER 2
LITERATURE REVIEW

2.1 Introduction:

Unmanned aerial vehicles (UAVS) have witnessed significant advancements in recent years,
enabling their widespread applications across various industries. At the core of UAV flight
control systems lie control algorithms, which play a vital role in stabilizing and manoeuvring
the UAVs with safety and precision. This literature review aims to explore the findings of
several key studies and their methodologies related to control algorithms for UAV flight control

systems.
2.2 Methodology:

To conduct this literature review, a comprehensive search was performed across academic
databases and relevant sources. Five key studies were selected based on their relevance,
methodology, and contributions to the field of UAV control algorithms. The selected studies
include works by Valavanis [12], Yang et al. [13], Raffo et al. [14], Elbouchikhi and Veluvolu
[15], and Ding et al. [16].

2.3 Key Findings:

The reviewed studies reveal various control algorithm types employed in UAV flight control
systems, each offering unique strengths and weaknesses. Proportional-integral-derivative (PID)
controllers, as discussed by Valavanis (2017) and Raffo et al. (2017), represent a fundamental
and widely used algorithm. PID controllers calculate error signals to adjust controlinputs,
allowing UAVs to approach desired positions or velocities. While PID controllers are simple
and reliable, they may struggle with complex dynamics or external disturbances.

Model-based controllers, explored by Valavanis (2017), Elbouchikhi and Veluvolu (2020), and
Ding et al. (2018), utilize mathematical models of UAV dynamics. These models consider
physical properties like mass, aerodynamics, and propulsion, enabling more accurate and robust
control in complex environments. Model-based controllers offer enhanced performancebut are

more complex than PID controllers.

Additionally, adaptive control, nonlinear control, and optimal control algorithms are mentioned
in Valavanis (2017) and Ding et al. (2018). Adaptive control algorithms exhibit the ability to

dynamically adjust control parameters based on changing conditions. Nonlinear control
algorithms handle UAV dynamics that deviate from linear behavior. Optimal control algorithms

optimize performance based on specific constraints.

2.4 Methodologies Employed:

The methodologies employed in these studies involve theoretical analysis, mathematical
modeling, and experimental evaluations. Valavanis (2017) provides an extensive handbook
encompassing UAV control algorithms, incorporating theoretical concepts and practical
examples. Yang et al. (2016) focus on nonlinear flight control for small-scale UAVS,
emphasizing theoretical analysis and control algorithm design. Raffo et al. (2017) investigate
robust control for UAVs, encompassing theoretical insights and flight experiments.
Elbouchikhi and Veluvolu (2020) present a survey of nonlinear model-based control methods,
highlighting theoretical discussions and case studies. Ding et al. (2018) propose an optimal

control approach for UAV trajectory tracking, employing theoretical analysis and simulations.

2.5 Conclusion:

This literature review reveals that control algorithms for UAV flight control systems encompass
a range of methodologies and algorithmic types. The PID controllers represent a fundamental
approach, while model-based controllers offer enhanced accuracy and robustness. Adaptive,
nonlinear, and optimal control algorithms provide advanced capabilities to address dynamic
conditions and optimize performance. The findings of the reviewed studies contribute to the
understanding and development of UAV control algorithms, supporting the continued

advancement of UAV technology and applications in diverse fields.

CHAPTER 3
OBJECTIVES AND METHODOLOGY

3.1 Objectives
Following are the objectives of this internship:

e To gainanunderstanding ofthe principles of embedded software development and how
they apply to UAVs and associated tools.

e To understand and apply common control algorithms used in UAVSs, such as PID
(Proportional Integral Derivative) and Kalman filtering.

e To design components that aid in building UAVs and other robots, such as landing
gears, PCB enclosure, camera mounts and other parts.

e To learnhow to design PCBs (Printed Circuit Boards) as flight controllers for UAVS.

3.2 Methodology

To be able to make contributions in the area of embedded software, familiarity with a number
of tools is required. The bulk of the work being done involves STMicroelectronics’ STM32
line of microcontrollers, hence one must be familiar with the relevant toolchains, IDE and the

debugging tools.

Embedded Software:

The STM32CubelDE provides a comprehensive and user-friendly platform for software
development, debugging, and programming of STM32-based projects. The IDE provides a set
of software libraries, middleware, and examples for STM32 microcontrollers. This integration
simplifies the development process by providing ready-to-use code and peripheral drivers,
allowing one to focus on their application-specific functionality. The C programming language

shall be used for all purposes.

Upon creating a new project, the IDE prompts the user to select the MCU/Board they are

working with. This allows the IDE to create the necessary startup and linker scripts.

[T STM32 Project o X

Target Selection
{4y sTM32 target or STM32Cube example selection is required

| MEBIMPUISEIEEtonY| Board Selector | Example Selector

MCU/MPU Filters

B D Q Q Featu Block Diagr
Commercial ‘7»‘
| Part Number —_—
| Q v| -
! PRODUCT INFO v |
1 Segment ?
Eeles d New STM32H5 MCU series: more
g 5 performance & scalable security
Marketing Status >
Price ? MCUs/MPUs List: 3680 items Display similar itsms ¢ty Export
|
Package > nmmmmmmmmm\
| ¢r STM32C STM32.. Comin WLCSP 121 32k 6kB_ 10 48
Core ? o STM3...
| £r STM32C STM32 . Active 0.5503 WLCSP 121 32k 6kB.. 10 48
Coprocessor > r STM32C STM32.. Comin.. NA TSSOP20 16k 6kB._ 18 48
[Y STM32C.. . STM32.. Active 05353 TSSOP20 16k.. 6kB.. 18 48 ..
%7 STM32C.. " STM32.. Comin... NA UFQFPN203. 16k.. 6kB.. 18 48 .
MEMORY ¥ #r STM32C... STM32.. Active 05353 UFQFPN203.. 16k . 6kB.. 18 48 .
Flash From 010 4096 (KBytes) ¥r STM32C... STM32.. Active 0.7013 TSSOP20 32k. 6kB.. 18 48 .
® @ ¢r STM32C STM32.. Active 0.7013 TSSOP20 32k. 6kB.. 18 48
0 4096

3.1 CubelDE MCU Selection Page

The illustration below is the screen encountered should the user decide to graphically configure
the microcontroller. This screen generates code to initialise peripherals, interrupts, and the
clock. Alternatively, the user could create an empty project and write all the code from scratch.
The latter approach was used by the author while writing embedded drivers for a better

understanding of the internal workings of the MCU.

STM32F407VGTx
LQFP100

3.2 MCU Configuration Page
In case of auto initialised code, the user simply has to write the application in “main.c”. A

hardware abstraction layer is provided by STMicroelectronics to ease interaction with the

MCU’s peripherals.

[#5 Project Explorer X 25 7 & = B [@mainc X

« [T EMPTY 1 |/* USER CODE BEGIN Header */
> @ Includes 28 /*x
3 R R R R LR e L a T S T L
~ (2 Core - . R
| 4 * @file : main.c
> &lnc 5 * @brief : Main program body
"ESIE 6 kkkkkkkkkkkhkkhkhhkkhhkhkhkkhkkhhkhkrhhhkhhkkhkhkkhkhkhhkhkkhhhkkhkhhkhkhhhhhkhkhkhhkbkhkhhkhkk
» [mainc 7 * @attention
> [stm32f4x_hal_msp.c 8 *
> 8 stm32fdwcitc 9 * Copyright (c) 2023 STMicroelectronics.
o [syscallsc 10 i 211 rights reserved.
> 8 sysmem.c H
B 1314 12 *¥ This software is licensed under terms that can be found in the LICENSE file
; system_stm e 13 * in the root directory of this software component.
» & Startup 14 * If no LICENSE file comes with this software, it is provided AS-IS.
> 2 Drivers 15 *
. @ Middlewares 16 ERAA KK AE R R E A FE AR E AL I T A I I AR TR AR E AR A I A A IR T AR R KA AR IR AR I A A I I E AR T ALK EIAE
> (2 USB_HOST 17 */
[EMPTY.ioc iif ;: USE.Ili SODE END Header */ y
[STM32F407VGTX_FLASH.d 9|/° Includes -
= 20 #include "main.h"
[STM32FA0TVGTX RAMId 21 Binclude "usb host.n”
22
23=/* Private includes x/

24 /* USER CODE BEGIN Includes */
26 /* USER CODE END Includes */

288 /* Private typedef x/
29 /* USER CODE BEGIN PTD */

31 /* USER CODE END PTD */

32

33e/* Private define X/
34 /* USER CODE BEGIN PD */

35 /* USER CODE END PD */

/* Private macro */
3 /* USER CODE BEGIN PM */

/* USER CODE END PM */

s W W
© @

W o

/* Private variables x/
12C_HandleTypeDef hi2cl;
L

s

3.3 Project Tree
During the course of this internship, work was carried out on both the application layer and the

device driver layer. An illustration of the typical embedded software stack is shown below:

Application Layer
(Applications & Tasks)

Middleware Libraries

Device Drivers

Operating Environment

Hardware

Processor

3.4 Embedded Software Layers

The STM32CubelDE provides several options for debugging a user’s application. However, a
device to bridge the host (User PC) to the target (MCU) is needed while using a few STM32

10

boards. This device is the STLink programmer. Inexpensive clones of this device are often sold
by online retailers. In case of the programmer being a clone, it may be incompatible with the
STM32CubelDE. This is when a general debugging environment such as OpenOCD is useful.
It allows breakpoints, probing of expressions, and step-by-step execution. Once set up, it serves

as a highly versatile tool for finding elusive bugs.

3.5 OpenOCD with STM32
Following are the major hardware tools used to aid in embedded software development.

Starting at the top left and scanning counterclockwise, they are: STLink programmer,
STM32F1 MCU, USB logic analyser and an STM32F4 MCU.

3.6.Tools Used for Software Development

11

PCB Design:

Several PCBs were designed during the course of this internship, and KiCAD was used for this

purpose. Following is the workflow for PCB design with KiCAD.

SCHEMATIC FOOTPRINT NETLIST PCB LAYOUT DESIGN RULE

CAPTURE SELECTION GENERATION CHECKING

TESTING AND PCB PCB GERBER FILE
VERIFICATION ASSEMBLY FABRICATION GENERATION

3.7.PCB Design Workflow

Following is the schematic view, any idea for a circuit must be drafted here first.

ceee
sl
bodd
' Root (page 1)
in T T 5 T
<
33V vBus uz +33V 433V +33v +33V
ANSALL7-3]
mil { 3 2 RS RY
l.’-l; Jaz H 1y DL IS iy 5
(@sE5+] T = 2 ¥ Lo
mm "
— us
1A v (4]
GND
* 3 +3 4 3
DLy In Cann_giaxi n
5
(SPILWISO |
(5PIWosi |
—— I 1
t b4 [aw aam L —
l:l_ Lzces
I 8| 8|
s T Je Jo ke
“Ttos TTiaon 300 Ti00n TI0Gn
A4
ol GND c|
BL
+33v4 1208 +3L3
c6 c7 |
10n iu L
v
STNI2FIUSTITe
L GND SNe. L
GND
Sheek: /
ol File: Sample_BlueFIll klead_sch o
Title:
Size A5 Date: [Rev:
KiCad EDA Ficad (7.0.0) &= 171
T T g T

12

The schematic is then translated into a netlist, which dictates how the components are linked.

This netlist is then imported to a board layout screen where routing can be completed.

Appearance
Layers Objects | ¢ »

PO Fcu
| fokXd
B © r.Adhesive
M © 5.Adhesive
I © Fraste
B © B.Paste
@ Fsilkscreen
@ Bsilkscreen
M © FMask
@ B.Mask
@ User.Drawings
. e User.Comments
e User.Eco1
e User.Eco2
@ Edge.Cuts
B © Margin
B © r.courtyard
@ B.Courtyard
@ FFab
| o)
@ user.1
B O user2

» Layer Display Options

RN N

0

Presets (Ctrl+Tab):
All Layers 2
Viewports (Shift+Tab):

B-RYOoODN\|zmhot L X~

Selection Filter
All items (JLocked it

"%

[N

X ok Lk

h Footprints Text
—— Tracks Vias
Lt Pads Graphics|
4 @ zones Rule Are
Dimensions Other ite
Pads Vias Track Segments Nets Unrouted
129 21 164 47 0

3.9.PCB Layout
After a design rule check, Gerber files are generated which can be sent to a manufacturer to get

the PCB completed. This concludes the methodology used for completing repeated tasks during
the course of this internship. It is important to note that several other tools and methods may
have been used, yetthey were not significant/frequent enough to detail here. The author shall

cover them while speaking of all tasks individually.

13

CHAPTER 4
RESULTS AND DISCUSSION

4.1 Building and Assembling Drones:

Several drones were worked on during the internship. For example, a simple drone was
assembled using an ESP32 as a flight controller. The block diagram below illustrates the system

architecture:

Motor 1 Motor 2 MPUG050

Ox0

_ [4-In-1 Speed \ _

Controller
. { Switching)
4S Lipo > Regulator

4.1 Drone System Block Diagram

The ESP32 is equipped with wireless capabilities such as Wi-Fi and BLE. This makes control
of the drone possible without investing in a relatively expensive transceiver kit. The speed
controller receives PWM signals from the ESP32. It is worth noting that motors used in this
configuration require a PWM frequency of 500 Hz. The speed of the motors is mapped to a
pulse width of 1100 us to 2000 us. An MPU 6050 IMU captures attitude data and the ESP32
implements the appropriate control algorithm. A downside of using this system architecture

is that the drone stays feature limited.

14

4.2 Q Ground Control and Pixhawk 4:

Q Ground Control is an open-source ground control station (GCS) software designed for
unmanned aerial vehicles (UAVSs) and other autonomous systems. It provides a user-friendly
interface for mission planning, vehicle control, and monitoring of various aspects of
autonomous vehicles. Q Ground Control is widely used in the field of robotics, particularly in
the development and operation of drones. It features motion planning, vehicle control,
telemetry, monitoring, geofencing, among others. Q Ground Control is fully compatible with
Pixhawk flight controllers and using them together allows for a powerful combination for

controlling and monitoring unmanned vehicles.

_ e Monitoring Analysis
Installation Setu and and Log
P Control Review

Connection

Mission
Planning

Firmware
Updates

-

4.2 Q Ground Control Setup

The section below depicts Pixhawk and Q Ground Control in use and is similar to what the
author encountered while interacting with the combined system. Upon connection, the Q

Ground Control interface detects user location.

ited States

4.3 Triangulation

15

One can monitor multiple statistics in real time, including attitude, CPU and RAM usage and

temperature.

IO e Sy S Y S B

4.4 Analysis

4.5 Flight Configuration Summary
The same flight control firmware does not work forall UAV configurations. Our specific UAV

type can be selected as shown below.

4.6 UAV Configuration Options

16

Sensor calibration is an important setup step for any UAV.

4.7 Sensor Calibration

Multiple safety features are built-in to the flight control firmware instructing the vehicle what

to do in case of failures such as telemetry loss, geofence breach and power interruptions.

4.8 Falisafes

In some cases, fine tuning of parameters may be needed. The interface provides this feature

aswell. For example, PID sliders are provided for seamless tuning of the control algorithm.

17

4.9 Parameters

It can be seen how such projects make UAVs much more accessible for newbies. Pixhawk and
Q Ground Control provide a robust system for configuring a UAV for a wide range of

parameters.

4.3 Influence of High Currents and Inductive Loads on PCB design:

In one instance, the author was tasked with designing a PCB which can handle high currents
and serves an inductive load, such as a solenoid. There are several factors to be considered
while designing PCBs for such a task. [W1]

1. Trace Width and Thickness: High currents flowing through PCB traces generate heat
due to the resistance of the copper conductors. To prevent excessive temperature rise
and potential damage, the trace width and thickness should be carefully chosen to
minimize resistance and provide adequate current-carrying capacity. Design guidelines,
such as IPC-2152, can be followed to determine suitable trace dimensions based on

current levels.

2. Copper Pour and Power Planes: To distribute high currents evenly across the PCB,
copper pours and power planes are often employed. These large copper areas help
reduce the resistance and improve thermal dissipation. Adequate copper thickness and
sufficient clearance between copper pours and adjacent signal traces should be

maintained to avoid interference and signal degradation.

3. Voltage Drops and Power Integrity: High currents flowing through PCB traces can
cause voltage drops along the traces, especially for long or narrow traces with high
resistance. These voltage drops can negatively affect the performance of the circuit and

18

may lead to erroneous behaviour or damage. Proper power distribution strategies,
including minimizing trace lengths, using wider traces, and placing decoupling
capacitors near power pins, help mitigate these voltage drops and maintain power

integrity.

Electromagnetic Interference (EMI): Inductive loads, such as motors, solenoids, and
relays, generate magnetic fields that can induce noise and interference in nearby traces
or components. To minimize the impact of EMI, proper trace routing techniques should
be employed. Signal traces should be routed away from high-current paths or inductive
components, and differential pair routing or shielding techniques can be applied to

reduce the susceptibility to electromagnetic noise.

Magnetic Fields and Component Placement: Inductive loads produce magnetic fields
that can affect nearby sensitive components, including sensors, analogue circuitry, or
communication modules. Careful component placement and separation between
inductive loads and sensitive components are essential to minimize the coupling of
magnetic fields. Shielding techniques, such as using magnetic shields or placing
sensitive components on separate PCB layers, can provide additional protection.

Grounding and Return Paths: High currents require robust grounding strategies to
ensure proper return paths for the currents. Separate ground planes for high-current and
low-current sections, as well as the use of multiple ground vias, can help reduce ground
impedance and minimize ground loops. Adequate decoupling and bypass capacitors

should be placed near high-current components to maintain a stable ground reference.

Heat Dissipation: High currents flowing through PCB traces or components cangenerate
significant heat. Proper heat dissipation measures, such as adding thermal vias, heat sinks,
or thermal pads, should be implemented to prevent overheating and ensure the
reliability of the circuitry. Thermal simulations and calculations can be employed to

optimize heat dissipation and prevent temperature-related issues.

4.4 Black Box Systems in Modern UAVS:

Black box systems, also referred to as flight data recorders (FDRSs) or flight recorders, are

electronic devices installed in UAVs to capture and store critical flight data and information

during their operation. These systems are designed to withstand extreme conditions and provide

invaluable insights in the event of accidents, incidents, or system failures. Let's delve into some

key aspects of black box systems in modern UAVS:

19

Data Recording: Black box systems are equipped to record a vast array of data
parameters, including flight control inputs, sensor readings, flight trajectory, altitude,
airspeed, engine parameters, and communication data. This comprehensive data
collection offers investigators a detailed understanding of the UAV's behaviour and
performance leading up to an incident or accident.

Safety and Accident Investigation: Black box systems play a crucial role in accident
investigation and safety analysis. In the event of a mishap, the recorded data can provide
valuable insights into what caused the incident, aiding in the determination of
contributing factors, system failures, or human errors. This information is instrumental in

improving UAV design, identifying safety measures, and preventing future accidents.

System Performance Analysis: Black box systems provide a means to assess the
performance and efficiency of UAV systems. By analyzing the recorded data,
manufacturers and engineers can evaluate the behaviour of the aircraft under different
conditions, identify areas for improvement, and enhance system reliability and

performance.

Regulatory Compliance: Many regulatory authorities mandate the use of black box
systems in UAVSs, similar to their requirement in manned aircraft. These regulations
ensure that critical flight data is captured and can be utilized for safety analysis and
compliance verification. Black box systems aid in meeting these regulatory

requirements and help enhance the overall safety standards of UAV operations.

. Training and Simulation: The recorded flight data from black box systems can be
valuable for training purposes. UAV operators and pilots can use the data to analyze
their performance, evaluate decision-making processes, and enhance their skills
through simulation and training exercises. This enables operators to learn from past

experiences and develop strategies for improved flight operations.

Real-Time Monitoring: In some cases, black box systems are equipped with real-time
monitoring capabilities, allowing operators to receive live flight data and monitor UAV
performance during operations. Real-time data streaming can assist in making informed

decisions, detecting anomalies, and responding promptly to critical situations.

4.5 Flight Controller:

Flight controllers play a crucial role in the operation of Unmanned Aerial Vehicles (UAVS),

commonly known as drones. These electronic devices serve as the "brain™ of the UAV,

responsible for controlling and managing its flight dynamics, stability, and autonomous

20

functions. In this write-up, we will explore the key features and functions of flight controllers
in UAVS.

1. Control and Navigation: The primary function of a flight controller is to provide precise

control and navigation capabilities to the UAV. It interprets pilot inputs or commands.

from an autonomous system and translates them into control signals for the various
components of the aircraft, such as motors, servos, and actuators. Flight controllers
ensure the UAV responds accurately to control inputs, allowing it to perform

manoeuvres, maintain stability, and follow desired flight paths.

2. Sensor Integration: Flight controllers integrate various sensors to gather critical data
about the UAV's orientation, motion, and environmental conditions. These sensors
typically include accelerometers, gyroscopes, magnetometers, barometers, and Global
Navigation Satellite Systems (GNSS) receivers. By continuously monitoring sensor
data, the flight controller can make real-time adjustments to stabilize the UAV and

enable accurate position hold, altitude hold, and other flight modes.

3. Flight Modes and Autonomy: Flight controllers offer different flight modes to cater to
various operating scenarios. These modes can include manual mode (direct pilot
control), stabilize mode (self-levelling and stability-assisting), altitude hold mode,
position hold mode (using GPS or other positioning systems), autonomous waypoint
navigation, and even follow-me mode. These modes provide flexibility and autonomy,
allowing UAVs to perform a wide range of tasks, from aerial photography and

videography to surveying and inspection missions.

4. Flight Performance Optimization: Flight controllers employ sophisticated algorithms
and control schemes to optimize flight performance and stability. These algorithms
utilize sensor data and input signals to calculate control outputs that ensure smooth
flight, precise maneuverability, and resistance to disturbances like wind or turbulence.
PID (Proportional-Integral-Derivative) controllers are commonly used to adjust control

outputs based on the error between desired and actual states.

5. Telemetry and Communication: Flight controllers often support telemetry systems,
enabling real-time data transmission between the UAV and a ground control station.
Telemetry data includes vital information such as GPS coordinates, altitude, battery
voltage, motor RPM, and sensor readings. This data allows operators to monitor the
UAV's status, make informed decisions, and troubleshoot issues remotely.

Communication protocols like Wi-Fi, Bluetooth, or radio frequencies are used to

21

establish a reliable link between the flight controller and ground station.

Redundancy and Fail-Safe Measures: To enhance safety and mitigate potential failures,

advanced flight controllers incorporate redundancy and fail-safe features. Redundancy

involves redundant sensors, processors, or communication channels, ensuring the
availability of critical systems even in the event of a component failure. Fail-safe
mechanisms can trigger predefined actions, such as returning to a specified location,
descending to a safe altitude, or initiating an emergency landing, in case of

communication loss or critical system malfunctions.

Customization and Development: Many flight controllers offer open-source platforms
or software development Kkits (SDKs) that allow enthusiasts, researchers, and
developers to customize and extend their capabilities. This flexibility enables the UAV
community to experiment with new features, integrate additional sensors, or develop

specialized applications using the flight controller as a foundation.

4.10 Examples of Flight Controllers

22

4.6 Flysky Transceiver:

Flysky transceivers, also known as transmitters, are designed to provide a stable and responsive
connection between the operator and the RC vehicle. These transceivers typically operate on
the 2.4GHz frequency, which offers excellent signal strength and reduced interference

compared to lower frequency options.

One of the key features of Flysky transceivers is their compatibility with Flysky receivers. This
allows users to easily pair the transmitter with the corresponding receiver, ensuring seamless
communication between the operator and the RC vehicle. Flysky transceivers often incorporate
multiple channels, giving users the flexibility to control various functions of their RC vehicles

simultaneously.

4.11 Flysky Transceiver

Binding Procedure:

Prepare the transmitter and receiver: Ensure that both the transmitter and receiver are powered
off and have fully charged batteries installed. Make sure that any switches or knobs on the
transmitter that affect binding or pairing are in the correct position as per the manufacturer's

instructions.

23

Identify the binding procedure: Consult the user manual or documentation provided with the
transmitter and receiver to determine the specific binding procedure. Different brands and

models may have different methods for binding.

Put the receiver into binding mode: Most receivers have a small button, or a bind plug that

needs to be pressed or inserted to put them into binding mode.

Power on the receiver: Connect the receiver to the power source, usually the ESC (Electronic
Speed Controller) or a separate battery pack. The receiver's LED indicator lights may start

flashing rapidly to indicate it is in binding mode.

Power on the transmitter: Turn on the transmitter while holding down the specific button or
switch that initiates the binding process. The transmitter's LED or LCD screen may display a

message indicating it is in binding mode.

Establish the connection: Once the transmitter is in binding mode, it will attempt to establish a
connection with the receiver. The receiver's LED indicator lights may change their pattern or

stop flashing altogether, indicating a successful bind.

Verify the connection: Test the controls on the transmitter to ensure that they are properly
communicating with the receiver. Move the control sticks, switches, and knobs to verify that

they correspond to the movements or changes on the RC vehicle.

Finalize the binding process: Once you have confirmed that the transmitter and receiver are
bound successfully and the controls are working correctly, power off both the transmitter and

receiver.

Chl: -3 | Ch2: -3 | Ch3: -101 | Ch4: -3 | Ch5: -10 | Ch6: O
Chl: -3 | Ch2: -3 | Ch3: -101 | Ch4: -4 | Ch5: -9 | Ch6: 0
Chl: -2 | Ch2: -4 | Ch3: -101 | Ch4: -4 | Ch5: -9 | Ch6: 0
Chl: -3 | Ch2: -3 | Ch3: -101 | Ch4: -3 | Ch5: -10 | Ch6: 0
Chl: -3 | Ch2: -4 | Ch3: -101 | Ch4: -4 | Ch5: -9 | Ch6: 0
€hl: -1 | Ch2: -4 | Ch3: -101 | Ch4: -3 | Ch5: -10 | Ch6: 0O
Chl: -3 | Ch2: -3 | Ch3: -101 | Ch4: -3 | Ch5: -10 | Ch6: 0
Chl: -2 | Ch2: -4 | Ch3: -101 | Ch4: -4 | Ch5: -9 | Ch6: 0
Chl: -2 | Ch2: -4 | Ch3: -101 | Ch4: -3 | Ch5: -10 | Ch6: 0
Chl: -3 | Ch2: -3 | Ch3: -101 | Ch4: -3 | Ch5: -9 | Ch6: 0
Chl: -2 | Ch2: -4 | Ch3: -101 | Ch4: -4 | Ch5: -9 | Ch6: ©
Chl: -2 | Ch2: -3 | Ch3: -101 | Ch4: -3 | Ch5: -10 | Ch6: 0
Ch1:-SH|RCEh2:- 38| NEh3: -1 0T8|EEh4: -3 [N Eh5:8-9N|HCh6:50
Chl: -2 | Ch2: -4 | Ch3: -101 | Ch4: -4 | Ch5: -9 | Ch6: 0
Ghi==3BIRCh2: 8= 3 8N Ch3ia=10TH|NCh4=a=S | NEh5 = TON|NCh6 0
|
s Autoscroll Show timestamp Newline - 115200 baud - Clear output

4.12 Flysky Channel Readings with Arduino

24

4.7 ESC Arming and Calibration:

Arming and calibrating electronic speed controllers (ESCs) is an essential process in setting up

and configuring your RC vehicle's motor system. Arming refers to the procedure of enabling

the ESC to provide power to the motor, while calibration ensures proper synchronization

between the ESC and the transmitter's throttle input. Here is a general overview of the arming

and calibration process for ESCs:

1.

ESC Connection: Ensure that your ESC is correctly connected to the power source,
which is typically a battery pack. Verify that all connections between the ESC, motor,

and battery are secure.

Throttle Position: Set the throttle stick or trigger on your transmitter to its lowest

position. Make sure the throttle trim is centered or set to its lowest position as well.

Power on the Transmitter: Turn on your transmitter, ensuring that it is set to the correct
model or vehicle profile if applicable. This step is necessary for establishing

communication between the transmitter and the ESC.

Power on the ESC: Connect the battery to the ESC. Some ESCs may require specific
sequences or timing for power-on procedures, so refer to the ESC manual for any
specific instructions. Generally, you will connect the battery and wait for the ESC to
initialize.

Arming Confirmation: Once the ESC initializes, it will usually provide an audible beep
or visual indicator (such as LED flashing patterns) to indicate that it is armed and ready

for operation. This confirmation may vary depending on the brand and model of the
ESC.

Throttle Calibration: ESCs often require calibration to synchronize the transmitter's
throttle input range with the ESC's throttle response. The calibration process typically

involves the following steps:

a. Move the throttle stick or trigger on your transmitter to its highest position (full throttle).

The ESC may emit a specific beep or LED pattern to indicate that it recognizes the maximum

throttle input.

25

b. Move the throttle stick or trigger to its lowest position (idle or zero throttle). Again, the ESC
may provide a confirmation signal, usually a different beep or LED pattern, to indicate

recognition of the minimum throttle input.

c. Some ESCs may require an additional step, such as moving the throttle stick or trigger to the

neutral position (half throttle) and waiting for another confirmation signal.

7. Calibration Confirmation: After completing the throttle calibration process, the ESC
will usually emit a final confirmation signal, such as a series of beeps or LED patterns,

indicating that the calibration was successful.

8. Motor Testing: To ensure proper calibration and functionality, test the motor by
gradually increasing the throttle input from its idle position. Observe the motor's

response and verify that it accelerates smoothly and without any unexpected behaviour.
4.8 Designing and 3D Printing:

For a period, the author was tasked with designing and 3D printing components required for
several tasks. This could entail enclosures for custom PCBs, landing gears for drones and
camera mounts, etc.... The design was completed using Fusion360 and the slicer used was

Creality.
Some measures were needed to ensure the prints succeeded. These included:

e Printing of a raft or brim for adhesion.
e Low printing speed

e Higher bed temperatures

Following are some of the designs completed for the team:

80 Q-0 8-

26

27

4.13. 3D Printing Work
4.9 IMU Testing Rig:

To understand the limitations of a 6 Axis IMU, a mount previously designed for another

application was repurposed and used as a 2 DoF setup for the MPU 6050 to sit atop of. [W2]

The results were visualised using a webpage designed onthe ESP32.

28

4.14 IMU Testing Rig

@ ESPWeb Server x + = R
&« C A Notsecure | 192.168.1.114 T N ﬂ H
® MPU6050 @

GYROSCOPE ACCELEROMETER TEMPERATURE

X:0.76 rad/s X: -8.58 ms2 20.81°C
Y: 0.54 rad/s Y: -2.28 ms2 3D ANIMATION
Z:-0.18 radls

4.15 IMU Visualization
Observations:

e Movement of the cuboid is highly jittery. This implies the presence of high frequency
noise in the readings. A low pass filter can mitigate the issue.

e The cuboid is being drawn based on the readings from the gyroscope. Because of this,
the cube’s orientation drifts from the actual orientation over time. Readings from the

accelerometer need to be considered.

e Despite being in a stationery, the gyroscope readings are not zero. This implies the
presence of sensor bias which needs to be corrected.

29

Possible Remedies:

1.

Filtering Techniques: Implementing filtering algorithms can help reduce noise in IMU
readings. One common approach is to use a low-pass filter to smooth out high-
frequency noise while preserving the essential characteristics of the motion. This can
be achieved by applying techniques such as moving average filters, exponential filters,
or Kalman filters. Each filtering method has its own advantages and considerations, so
it's important to understand the specific requirements of your application and choose

the appropriate filter accordingly.

Sensor Calibration: Calibrating the IMU can significantly improve the accuracy of the
measurements and reduce noise. This involves compensating for any biases, offsets, or
non-linearities in the sensor readings. Calibration techniques often involve collecting
data from the IMU in a controlled environment and applying mathematical models or
calibration algorithms to estimate and correct the sensor errors. This can include

calibrating sensor biases, scale factors, and misalignments.

Sensor Fusion: Combining data from multiple sensors can help mitigate noise and
improve the overall accuracy of the measurements. Sensor fusion algorithms integrate
data from complementary sensors, such as gyroscopes, accelerometers, and
magnetometers, to obtain a more robust and accurate estimation of the device's
orientation and motion. Techniques like the Madgwick or Mahony filters, which utilize
sensor fusion algorithms like the Kalman filter or complementary filter, are commonly

employed to enhance the accuracy of IMU readings.

Sampling Rate and Data Processing: Adjusting the sampling rate of the IMU can have
an impact on the noise level. In some cases, reducing the sampling rate can help mitigate
high-frequency noise, as it effectively filters out rapid variations. Additionally, applyingsuitable
signal processing techniques, such as data smoothing or interpolation, can helpreduce noise and

improve the quality of the measurements.

Mechanical Isolation: Vibration and mechanical disturbances can introduce noise into
IMU readings. Mounting the IMU on a vibration-isolated platform or using anti-
vibration measures can minimize external disturbances and improve the accuracy of the

measurements.

30

4.10 Complementary and Kalman Filter:

The basic idea behind the complementary filter is to take advantage of the strengths of different
types of sensors by combining their measurements in a way that compensates for their
individual weaknesses. Typically, it involves combining the high-frequency response of one
sensor with the low-frequency response of another sensor to create a composite signal that is

more accurate across a wide range of frequencies.

In practice, the complementary filter works by applying a weighted sum of the sensor
measurements, where the weights are determined based on the desired frequency response
characteristics. For example, if one sensor provides accurate measurements at high frequencies
but is prone to noise or drift at low frequencies, while another sensor has a good low-frequency
response but is less accurate at high frequencies, the complementary filter can be designed to
emphasize the high-frequency measurements from one sensor and the low-frequency

measurements from the other sensor.

The filter is called "complementary” because it complements the strengths and weaknesses of
the individual sensors, combining their outputs in a way that compensates for their limitations.
By properly tuning the filter parameters, it is possible to achieve a more accurate and robust

estimation of the desired variable or state.

Low-Pass Filter

(). &l \
) (%] ———

Integral High-Pass Fiker (
il

Ops — |

0.

4.16 Diagrammatic Representation of Complementary Filter
Unlike the complementary filter, which is a relatively simple blending technique, the Kalman

filter is based on a rigorous mathematical framework and statistical principles. It is designed to
handle both deterministic and stochastic systems, taking into account the uncertainties and

noise present in the measurements and the system dynamics. [W3]
The Kalman filter operates in two main steps: the prediction step and the update step.

1. Prediction Step: In this step, the Kalman filter uses the system's dynamic model to
predict the state of the system at the next time step. It estimates the future state based
on the previous state estimate and the control input, considering the system's dynamics.

The prediction step also provides an estimate of the error covariance, whichrepresents

31

the uncertainty associated with the predicted state.

2. Update Step: In this step, the Kalman filter incorporates the measurements from the
sensors to update the state estimate. It compares the predicted state with the actual
measurements, taking into account the noise characteristics of the sensors. The update
step adjusts the state estimate based on the reliability of the measurements and the
predicted state. It also updates the error covariance to reflect the updated estimate's

uncertainty.

Initial

State Prediction
X0 - X;}:_)l = Axp,+ B

Y r.

P, 1 PP = AP AT 4 G

Y
k+— k+1
Innovation
-1
Ky =POHT (HPPHT + 0f)

X = chp) + Ky (— HXSCP))

P, = (I - KH)PY

4.17 Kalman Algorithm
Compared to the complementary filter, the Kalman filter offers several advantages:

Optimality: The Kalman filter is an optimal estimator in the sense that it minimizes the mean
square error between the estimated state and the true state, given the available measurements

and system dynamics.

Statistical Modelling: The Kalman filter explicitly models the noise and uncertainties
associated with the measurements and system dynamics. It uses statistical properties, such as

mean and covariance, to account for these uncertainties.

Dynamic Adaptation: The Kalman filter adapts to changes in the system and the measurement
characteristics by continuously updating its estimates and adjusting the blending of information
based on the measurements' reliability.

32

Robustness: The Kalman filter is robust to noise and disturbances in both the measurements
and the system dynamics. It can effectively filter out noise and provide accurate estimates even

in the presence of significant disturbances.

4.18 Degrees v Time Results of the Complementary Filter applied on IMU readings. Pitch
(Green) and Roll (Red). Complementary coefficient — 0.02

4.19 Degree v Time Results of the Kalman Filter applied on IMU readings. Pitch (Green) and
Roll (Red). First Order Low Pass Filter: 0.01 Gyro Alpha 0.1 Accel Alpha

33

4.20 Degree v Time Results of the Kalman Filter applied on IMU readings. Pitch (Green) and
Roll (Red). First Order Low Pass Filter: 0.1 Gyro Alpha 0.5 Accel Alpha

4.11 NMEA GPS Standard:

The NMEA GPS standard (NMEA 0183) defines several types of sentences, also known as
data messages, that convey specific information related to navigation and positioning. These
sentences are transmitted via the NMEA protocol and allow different marine electronic devices
to exchange data seamlessly. Following are some of the commonly used NMEA GPS sentences
[W4]:

1. GGA (Global Positioning System Fix Data): The GGA sentence provides essential
information about the GPS receiver's position and fix quality. It includes data such as

latitude, longitude, altitude, time, and the number of satellites in view.

Example GGA sentence:
$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

2. RMC (Recommended Minimum Navigation Information): The RMC sentence provides
essential navigation data, including the GPS receiver's position, velocity, and time. It

also indicates the status of the fix and the mode of operation.

Example RMC sentence:
$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1, W*6 A

3. GSA (GPS DOP and Active Satellites): The GSA sentence provides information about
the GPS receiver's overall satellite fix and the Dilution of Precision (DOP) values. It

includes details about the satellites being used for the fix and their relative contribution.

34

Example GSA sentence:
$GPGSA A,3,04,05,,09,12,,,24,,,,,2.5,1.3,2.1*39

4. GSV (GPS Satellites in View): The GSV sentence reports information about the
satellites in view of the GPS receiver. It provides data on the total number of satellites
in view, as well as details about each satellite's identification, elevation, azimuth, and

signal strength.

Example GSV sentence (part 1):
$GPGSV,3,1,11,01,40,083,46,02,19,308,41,06,19,001,48,07,06,266,44*71

5. VTG (Course Over Ground and Ground Speed): The VTG sentence provides
information about the vessel's course over ground (COG) and ground speed. It includes

data on the true heading, magnetic heading, ground speed, and speed units.

Example VTG sentence: $GPVTG,054.7,T,034.4,M,005.5,N,010.2,K*48
6. GLL (Geographic Position - Latitude/Longitude): The GLL sentence reports the current

geographic position, including latitude and longitude, along with the time of the fix. It

does not provide information about the fix quality or the number of satellites in view.
Example GLL sentence: $GPGLL,4916.45,N,12311.12,W,225444,A,*1D

These are just a few examples of the NMEA GPS sentences commonly used in marine
navigation systems. Each sentence contains specific information that facilitates accurate

positioning, course calculation, and other navigation-related tasks.

TERMINAL

$GNGSA,A,3,11,12,05,20,,,,,,,,,10.73,8.55,6.49*2F
$GNGSA,A,3,,,,55555255,10.73,8.55,6.49%2A
$GPGSV,2,1,06,05,37,184,38,11,63,337,39,12,32,332,32,20,63
,157,29*7D

$GPGSV, 2,2,06,24,,,22,39,29,268,32*4D
$GLGSV,1,1,02,,,,33,,,,30%64
$GNGLL,1300.84814,N,087734.21630,E,083319.080,A,A*75
$GNRMC,©83320.00,A,1300.84820,N,07734.21661,E,08.424, ,20042
3,,,A*60

$GNVTG, ,T,,M,©.424,N,0.785,K,A*35

$GNGGA, ©83320.00,1300.84820,N,07734.21661,E,1,04,8.55,951.
7,M,-86.2,M, ,*6E
$GNGSA,A,3,11,12,05,20,,,,,,,,,10.74,8.55,6.49%29
$GNGSA,A,3,,,,5555255,10.74,8.55,6.49%2D

$GPGSV, 2,1,06,05,37,184,38,11,63,337,39,12,32,332,32,20,63
,157,28*7C

$GPGSV,2,2,06,24, ,,22,39,29,260,32*4D

4.21 NEO-6M GPS Data

35

Latitude= 13.014133 Longitude= 77.570289
Raw latitude = +13
14132667
Raw longitude = +77
570293167
Raw date DDMMYY = 200423
2023

in HHMMSSCC = 8444100

44

41
Centisecond = ©
Raw speed in 1@eths/knot = 218
Speed in knots/h = 2.18
Speed in miles/h = 2.51
Speed in m/s = 1.12
Speed in km/h = 4.04
Raw course in degrees = 7006
Course in degrees = 70.06
Raw altitude in centimeters = ©
Altitude in meters = ©.00
Altitude in miles = ©.00
Altitude in kilometers = ©.00
Altitude in feet = ©.00
Number os satellites in use
HDOP = 1572

4.22 Translation of NMEA Sentences

4.12 Embedded Driver Development:

Embedded driver development is a critical aspect of software development for embedded
systems. It involves the creation of software drivers that enable the system to communicate
with various hardware components, such as sensors, actuators, and other peripheral devices.
Without proper driver development, embedded systems may not be able to function correctly

or may experience stability issues, which can lead to system failures and safety hazards.

The importance of embedded driver development can be seen in a variety of applications,
including UAVSs, automotive systems, medical devices, and industrial control systems. In these
applications, the embedded system must communicate with a range of sensors, motors, and
other devices, and the drivers must be designed to handle the specific requirements of each
device. The drivers must also be optimized for performance and efficiency, as embedded

systems often have limited processing power and memory resources.

36

Embedded driver development is a complex and challenging process that requires specialized
knowledge and skills. Developers must have a deep understanding of the hardware
components, as well as the software programming languages and tools used for embedded
systems. They must also be able to debug and troubleshoot driver issues, which can be

challenging in complex systems.

Bit Position
Definitions
NVIC Clock Enable
Addresses and Disable
Macros

MCU
Flash and Specific Peripheral
SRAM Details Definitions

addresses

Bus Base Perinheral Peripheral Register
Addresses eggsgra Definition Structure

Addresses

4.23 Inclusions in MCU Header File

Specific
Macros

Peripheral

Specific Handle
API Prototypes Details
Configuration
Structure

4.24 Inclusions in Peripheral Specific Header File

37

po Channel 0

4.25 GPIO Test

4.26 SPI Transmission Testing

4304
Analyzers

0o Channel0
® 12C-SCL . 2C @

> Trigger View &

Setup Write to [0x68] + NAK

o1 Channel 1

® 12C-SDA 955711063 ms 62

955724188 ms 85187 ps

4.27 12C Transmission Testing

38

4.13 Micro Drones:

Micro drones, also known as miniature drones or nano drones, are small unmanned aerial
vehicles (UAVs) that are characterized by their compact size and lightweight construction.
These drones are designed to be highly portable, manoeuvrable, and capable of performing a

variety of tasks in both indoor and outdoor environments.

The size of micro drones can vary, but they are typically small enough to fit in the palm of a
hand or even smaller. They are equipped with miniaturized components, including motors,

sensors, cameras, and batteries, which enable them to fly and carry out specific functions.

One of the key advantages of micro drones is their versatility. Due to their small size, they can
access areas that are challenging or impossible for larger drones or humans to reach. They can
navigate through tight spaces, fly close to objects, and even perform tasks in hazardous
environments, such as search and rescue missions in collapsed buildings or monitoring

dangerous chemical spills.

Micro drones find applications in various fields. In the military sector, they are used for
reconnaissance, surveillance, and intelligence gathering. They can provide real-time video
footage, capture images, and gather data from remote locations without endangering human
lives. Law enforcement agencies also utilize micro drones for monitoring crowds, conducting

aerial surveillance, and assisting in search operations.

Beyond military and law enforcement applications, micro drones have a range of civilian uses.
They are employed in aerial photography and videography, allowing photographers and
filmmakers to capture unique perspectives and stunning shots. Additionally, they have
applications in agriculture for crop monitoring, in construction for site inspections, and in

scientific research for studying wildlife and environmental monitoring.

Technological advancements have led to the development of sophisticated micro drones with
enhanced capabilities. Some micro drones are equipped with obstacle avoidance systems, GPS
navigation, autonomous flight modes, and advanced imaging technologies. These features
enable them to fly autonomously, track targets, and perform complex missions with minimal

human intervention.

However, the use of micro drones also raises concerns related to privacy and security. Their

small size and maneuverability make it easier for them to go unnoticed or be used for

39

unauthorized surveillance. This has prompted the need for regulations and guidelines to ensure
responsible and ethical use of micro drones.

4.28 Scale of Micro Drone

4.14 VL53 Series TOF Sensors:

The VL53 series of Time-of-Flight (ToF) sensors represents a breakthrough in distance and
proximity measurement technology. Developed by STMicroelectronics, these sensors have
gained significant popularity and have been widely adopted in various industries due to their
exceptional performance, reliability, and compact design.

The VL53 sensors utilize a specialized technique known as Single-Photon Avalanche Diode
(SPAD) array combined with advanced algorithms to accurately measure the distance of an
object with millimeter precision. By emitting an invisible laser pulse and measuring the time it
takes for the pulse to reflect back to the sensor, the VL53 sensors can determine the distance to

the target, even in challenging environments.

One of the key advantages of the VL53 series is its high accuracy. The sensors can measure
distances from a few millimetres up to several meters, offering precise and reliable results
across a wide range of applications. Whether it's object detection, gesture recognition, robotics,
or autonomous navigation, the VL53 sensors deliver consistent and dependable measurements,
enabling enhanced functionality and performance.

40

Speed is another remarkable feature of the VVL53 series. These sensors can perform distance
measurements in a fraction of a second, allowing for real-time monitoring and response. This
rapid response time makes them suitable for applications that require quick and dynamic

measurements, such as fast-moving objects or high-speed automation processes.

Additionally, the compact form factor of the VL53 sensors makes them easy to integrate into
various devices and systems. With their small footprint and low power consumption, these
sensors can be seamlessly integrated into smartphones, tablets, wearables, drones, robotics, and
10T (Internet of Things) devices. This versatility makes the VVL53 sensors highly adaptable to

a wide range of applications and industries.

Furthermore, the VL53 series offers a comprehensive set of features and functionalities to cater
to different application requirements. These include multi-zone operation, signal filtering,
ambient light suppression, and programmable thresholds. The sensors can also provide
additional information such as signal strength and target presence detection, enabling

developers to create sophisticated and intelligent applications.

4.29 TOF Sensors with STM32

41

-_— TIoWVIG Fivwiviiio BF LACLULOWICS “3 IJMU\JBS\.I ALV AR S AN AL I l'lhlll\lly ar?

Port0 X

rrunue Scrisvul . 077 nEal SISVl . £001 1n
Front Sensor: 629 mm Rear Sensor: 2663 mm
Front Sensor: 631 mm Rear Sensor: 2396 mm
Front Sensor: 1160 mm Rear Sensor: 2310 mm
Front Sensor: 732 mm Rear Sensor: 1707 mm
Front Sensor: 785 mm Rear Sensor: 1993 mm
Front Sensor: 697 mm Rear Sensor: 3050 mm
Front Sensor: 588 mm Rear Sensor: 2792 mm
Front Sensor: 566 mm Rear Sensor: 2040 mm
Front Sensor: 1170 mm Rear Sensor: 2011 mm
Front Sensor: 627 mm Rear Sensor: 2487 mm
Front Sensor: 736 mm Rear Sensor: 2306 mm
Front Sensor: 541 mm Rear Sensor: 2603 mm
Front Sensor: 663 mm Rear Sensor: 1961 mm

4.30 ITM Output

4.15 ESP-NOW Protocol:

The ESP-NOW protocol is a communication protocol developed by Espressif Systems
specifically for their ESP8266 and ESP32 series of microcontrollers. It provides a simple and
efficient way to establish wireless communication between ESP-NOW-enabled devices,
making it ideal for applications requiring low-power, low-latency, and peer-to-peer

communication.

ESP-NOW operates in the 2.4 GHz frequency band and utilizes the Wi-Fi hardware of ESP8266
and ESP32 chips to establish a direct link between devices without the need for a Wi-Fi access
point or router. This peer-to-peer communication eliminates the complexities associated with

traditional Wi-Fi networks, simplifying the implementation and reducing power consumption.

One of the key advantages of ESP-NOW is its low-latency communication. The protocol is
designed for near-real-time data exchange, making it suitable for applications that require quick
response times, such as sensor networks, home automation, remote control systems, and loT
devices. The minimal overhead and optimized data transmission enable rapid and efficient data

transfer between devices.

42

Another notable feature of ESP-NOW is its low-power operation. The protocol is designed to
minimize power consumption, allowing devices to operate on battery power for extended
periods. By leveraging the sleep modes and power-saving capabilities of the ESP8266 and
ESP32 chips, ESP-NOW devices can conserve energy while still maintaining a reliable

communication link.

Furthermore, ESP-NOW supports multicast and broadcast communication. This enables a
device to send data to multiple recipients simultaneously, simplifying scenarios where multiple
devices need to receive the same data or command. The multicast and broadcast capabilities of
ESP-NOW enhance scalability and flexibility in applications with multiple nodes or devices.
[Wo]

ESP-NOW

4.32 Pair of ESP32s sending IMU data back and forth

43

PROBLEMS OUTPUT

qul: -88.24 z Upload... v
Pitch: -42.77 2] Monito
Yaw: 0.26
Bytes received: 12

Roll: -88.24

Pitch: -42.81

Yaw: 0.25

Bytes received: 12

Roll: -88.29

Pitch: -42.79

Yaw: 0.24

DEBUG CONSOLE TERMINAL Heo otion

4.33 IMU Data Wirelessly Transmitted

4,16 OpenOCD:

Debugging using OpenOCD (Open On-Chip Debugger) is a powerful and versatile approach
to hardware debugging and programming of embedded systems. OpenOCD is an open-source

project that provides a debugging and programming interface for a wide range of
microcontrollers and processors.

workspace_1.12.0 - gps/Core/Src/gps.c - STM32CubeIDE

L] éve -0~ Q > s L
. 0 a @
vsarth (9 usartc gps.c X [amainc (3 gpsh -

HAL UART Receive IT(GPS USART, &rx_data, 1);

void GPS_UART_CallBack(){
i t= ‘\n' &

if (rx_data != rx_index < sizeof (rx_buffer)) {
rx_buffer[rx_index++] = rx data;
se

} else {

#if (GPS_DEBUG == 1)
GPS_print((char*)rx buffer);
#endif

5 vold GPS UART callBack(){}

if(GPS_validate((char*) rx_buffer))
GPS_parse((char*) rx_buffer);

rx_index = 6;

memset(rx_buffer, 0, sizeof(rx buffer));

}

HAL_UART Receive IT(GPS USART, &rx data, 1); e
size t lat = GPS.dec latitude;
size t lon = GPS.dec _longitude;
size t alt = GPS.altitude ft;

int GPS_validate(char *nmeastr){
char check([3];
char checkcalcstr[3];
int 1;
int calculated check; xtended-r Remote targ In: GPS UART CallBack

1=0;
calculated _check=0;

if(nmeastrlil == '$')

M| gps.elf

/9p!
Debug -

4.34 OpenOCD Debugging Interface

44

4.17 NuttX RTOS:

NuttX is a real-time operating system (RTOS) designed to provide a lightweight, scalable, and

reliable platform for embedded systems. It is open-source software released under the

permissive BSD license, making it accessible and customizable for a wide range of applications.

[wé]

Key Features of NuttX:

1.

Small Footprint: NuttX is designed to be highly efficient in terms of both memory usage
and execution speed. It has a small footprint, typically requiring as little as 10KB of

RAM and 50KB of ROM, making it suitable for resource-constrained devices.

POSIX Compliance: NuttX aims to provide a high degree of compatibility with the
Portable Operating System Interface (POSIX) standard. This allows developers familiar

with POSIX APIs to easily port and develop applications for NuttX.

Real-Time Capabilities: As an RTOS, NuttX provides real-time scheduling and
deterministic behavior. It offers a priority-based preemptive scheduler, allowing critical
tasks to execute within defined time constraints. It supports features like task scheduling, inter-
task communication, and synchronization mechanisms, such as semaphores and message

queues.

Modularity and Extensibility: NuttX follows a modular architecture, where
functionalities are organized into individual components. This modular design allows
developers to select and include only the necessary components, reducing the overall
memory footprint. Additionally, NuttX supports loadable kernel modules, enabling the

dynamic addition of new features without requiring a complete recompilation.

Device Support: NuttX provides support for a wide range of microcontrollers and
microprocessors, including ARM, MIPS, PowerPC, and more. It offers device drivers
for various hardware peripherals like UARTSs, SPI, 12C, Ethernet, USB, and file
systems. This broad device support makes it versatile and applicable to diverse

embedded systems.

45

= B3 ® o) 60s B

4.35 Building NuttX RTOS
NuttShell (NSH) NuttX-12.1.0-RCO
nsh> echo Welcome to NuttX!
ome to NuttX!

4.36 NuttX Shell

Process to Build NuttX for any Application:

1. Select Target Hardware: Determine the target hardware platform for your application.
NuttX supports a wide range of microcontrollers and microprocessors. Make sure to
choose a platform that is compatible with NuttX and suitable for your application's

needs.

2. Choose the Configuration File: NuttX provides a configuration file for each supported
hardware platform. Locate the appropriate configuration file for your target platform.

These files are typically found in the configs directory of the NuttX source code.

3. Customize the Configuration: Open the configuration file for your target platform and

46

modify the settings according to your application requirements. The configuration file
contains various options and macros that can be adjusted. Some common configuration

options include:

o System Clock: Set the system clock frequency to match your hardware

configuration.
e Memory Configuration: Specify the available RAM and ROM sizes.

e Scheduler and Task Configuration: Configure the task scheduling algorithm,

priority levels, and stack sizes.

o Device Drivers: Enable or disable the device drivers required for your hardware
peripherals.

o File Systems: Choose the appropriate file system support for your application.
o Networking: Enable or disable the networking stack and protocols as needed.

o Real-Time Features: Configure the real-time capabilities, such as timers and

synchronization mechanisms.

4. Build and Flash NuttX: Once you have customized the configuration file, build NuttX
using the provided build system (usually based on Makefiles or CMake). Ensure that
the build process includes your modified configuration file. After a successful build,

you will have an executable image ready to be flashed onto the target hardware.

4.18 Real Time Clock:

The STM32 features a Real Time Clock peripheral. The RTC provides accurate timekeeping
and calendar functions, making it useful in applications where keeping track of time is
essential. [W7]

To usethe STM32's RTC, the following steps are typically involved:

1. RTC Initialization: Configure the RTC module by setting the appropriate registers and
enabling the necessary functionalities. This includes setting the clock source, enabling

calendar mode, configuring alarms, and adjusting calibration settings.

2. Time and Date Setting: Set the initial time and date values for the RTC. This involves
configuring the hours, minutes, seconds, as well as the day, month, year, and day-of-

the-week.

47

3. Alarm Configuration: If needed, configure the alarm(s) by specifying the desired time

at which the alarm should trigger.

4. Interrupt or Event Handling: Configure interrupt or event handlers to respond to RTC
events, such as alarm triggers or tamper detection. These handlers can perform specific

actions or wake up the system from low-power modes.

5. Time Retrieval and Updates: Read the current time and date values from the RTC
registers whenever required. Update the RTC with the current time periodically or as
needed.

6. Backup Power Supply: Connect a backup battery or an external power source to the
RTC's backup power domain to ensure continuous timekeeping during power

disruptions.

7. Calibration: Optionally, perform RTC calibration procedures to adjust the clock

frequency and maintain accurate timekeeping.

g b ke r B L4 T P L

& Console [2! Problems {2 Executables &} Debugger Console (]

Port0 X

Starting Application...

Date: 16.03.23 Time: 10.20.30
Date: 16.03.23 Time: 10.20.31
Date: 16.03.23 Time: 10.20.32
Date: 16.03.23 Time: 10.20.33
Date: 16.03.23 Time: 10.20.34
Date: 16.03.23 Time: 10.20.35
Date: 16.03.23 Time: 10.20.36
Date: 16.03.23 Time: 10.20.37
Date: 16.03.23 Time: 10.20.38

4.37 RTC Implementation
4,19 NRF24L01 Radio:

The NRF24L01 is a popular and versatile radio frequency (RF) module used for wireless
communication in various applications. Manufactured by Nordic Semiconductor, the
NRF24L01 module offers reliable and low-power communication capabilities, making it

suitable for battery-operated devices and low-power wireless applications. [W8]

To use the NRF24L01 radio module, the following steps are typically involved:

48

1. Hardware Connection: Connect the NRF24L01 module to the host microcontroller
using the SPI interface. Ensure that the necessary power supply and signal lines are
properly connected. Configuration: Initialize the NRF24L01 module by configuring
various settings, such as data rate, channel, addressing mode, and power-saving features.
This is usually donethrough SPI commands and configuration registers.

2. Data Transmission: Prepare the data to be transmitted and send it using the appropriate
NRF24L01 commands and functions. The module handles packetization, error
checking, and retransmission automatically.

3. Data Reception: Set up the NRF24L01 module to receive data by configuring the
receiver mode and address. Retrieve the received data from the module’s receive buffer
using the host microcontroller.

4. Error Handling and Acknowledgment: Handle potential transmission errors by
checking the module's status registers and utilizing the automatic acknowledgment
feature. This ensures reliable data transfer and can trigger retransmission if necessary.

5. Power Management: Utilize the power-saving features of the NRF24L01 module to
optimize power consumption. Enable sleep modes during idle periods and wake the
module when necessary to conserve energy.

6. Testing and Optimization: Test the wireless communication between the NRF24L01
module and other devices to ensure reliable operation. Fine-tune parameters such as
channel selection, data rate, and antenna configuration for optimal performance in the

specific application environment.

main.cpp Radio Test » src X

}
loop() {

radio.stoplListening();
radio.write(&sendMessage, sendMessage)) ;
radio.startListening();

startTime = millis();
e (!radio.available() && (millis() - startTime < 1600

£ (radio.available
radio.read(&receivedMessage, (receivedMessage));
Serial.println("Rec ik : :

erial.nrintin("Na resnonse re

TERMINAL

: Hello from ri
: Hello from r

ello from

lello from

1lo fr

ello from

lello from

e: Hello from

Received respons sage: Hello from
Received response message: Hel

®0A0 ®1 @ v > @ A § [] SIDefaultRadioTest) & Auto Platfomio & [

n2, n
o i Q sern = d C®_ %0 O e [@ ‘ @ A N T

4.38 Two-Way Radio

49

CHAPTER S
CONCLUSIONS AND SCOPE FOR FUTURE WORK

The engineering process is a crucial framework that aligns with the development of embedded
software. Embedded systems refer to the integration of hardware and software components into
a dedicated function or application. As such, the engineering process provides a systematic
approach to designing, developing, and maintaining software for these embedded systems,

ensuring efficient and reliable functionality.

The first step in the engineering process is requirements analysis. This phase involves
understanding the objectives and constraints of the embedded software project. Engineers
gather and analyze the functional and non-functional requirements to define the scope and
purpose of the software. By clearly defining these requirements, engineers can establish a solid

foundation for the subsequent stages of development.

Following requirements analysis, the system design phase begins. This step involves
architecting the software system, including selecting appropriate hardware components and
determining the software architecture. Engineers consider factors such as system performance,
power consumption, memory utilization, and real-time constraints during this phase. They
create a detailed design that maps out the structure, interfaces, and behavior of the software,
ensuring it aligns with the overall embedded system's objectives.

Once the system design is in place, the implementation phase commences. Engineers start
coding the software based on the design specifications. They use programming languages and
tools suitable for embedded systems, taking into account resource limitations, real-time
requirements, and hardware integration. Thorough documentation and modular coding

practices are essential to facilitate maintenance and future updates.

Testing is a critical aspect of the engineering process in embedded software development.
Engineers perform various tests, including unit testing, integration testing, and system testing,
to verify the software's functionality, performance, and reliability. Testing helps identify and

rectify software defects, ensuring that the embedded system operates as intended.

Finally, the deployment phase involves the installation and configuration of the embedded

software on the target hardware.

50

REFERENCES

Journals/ Research Articles:

[1] Perez, D., & Blank, D. (2017). Drones: The Good, the Bad, and the Unknown. In The
Drone Debate (pp. 3-18). Routledge.

[2] Tomic, T., & Schiller, S. (2018). AUAV Revolution: A Socio-Technical Analysis of the
Drone Industry. In Human Aspects of IT for the Aged Population. Applications in Health,
Assistance, and Entertainment (pp. 237-249). Springer.

[3] Palanisamy, K., & Veeraraghavan, A. (2018). Drones for Smart Cities: Issues in Cyber-
Physical Systems. IEEE Internet of Things Journal, 5(3), 1923-1933.

[4] Giannakos, I., Diakakis, J., & VVozikis, A. (2020). Integrating drone and wireless sensor
network technologies for smart precision agriculture: System design and performance
evaluation. Sustainable Cities and Society, 61, 102334.

[5] Teizer, J., Cheng, T., Fang, Z., & Scherer, R. (2019). Adrone safety index to benchmark
safety performance for US construction projects. Journal of Management in Engineering,
36(2), 04019077.

[6] Ahad, M. A. R., & Kadir, A. (2019). A Review of Unmanned Aerial Vehicle for Search
and Rescue Operation. IOP Conference Series: Earth and Environmental Science, 260(1),
012002.

[7] Kreps, S., & Kaag, J. (2019). Drones and the Future of Armed Conflict: Ethical, Legal,
and Strategic Implications. International Security, 43(4), 7-73.

[8] Kreps, S., & Kaag, J. (2019). Drones and the Future of Armed Conflict: Ethical, Legal,
and Strategic Implications. International Security, 43(4), 7-73.

[9] Calo, R. (2013). The drone as privacy catalyst. Stanford Law Review Online, 64, 29-33.
[10] Tomic, T., & Schiller, S. (2018). AUAV Revolution: A Socio-Technical Analysis of the
Drone Industry. In Human Aspects of IT for the Aged Population. Applications in Health,
Assistance, and Entertainment (pp. 237-249). Springer.

[11] Bonney, J. A. (2020). Policy Implications ofthe Use of Drones for Environmental
Research. In Ecological Implications of Drone Ecology (pp. 265-285). Springer.

[12] Valavanis, K. P. (2017). Handbook of unmanned aerial vehicles. Springer.

[13] Yang, H., Xia, X., & Fu, M. (2016). Nonlinear flight control for small-scale unmanned
aerial vehicles. Control Engineering Practice, 50, 45-56.

[14] Raffo, G., Quang Do, M., Castillo, P., & Lozano, R. (2017). Robust controlof UAVs: A
flight control perspective. Annual Reviews in Control, 44, 294-308.

[15] Elbouchikhi, E., & Veluvolu, K. C. (2020). Nonlinear model-based control for quadrotor
unmanned aerial vehicles: Asurvey. Nonlinear Dynamics, 101(1-2), 97-120.

[16] Ding, Y., Liu, J., Ding, Z., Li, H., & Na, W. (2018). An optimal control approach for
trajectorytracking of unmanned aerial vehicles. Aerospace Science and Technology, 80, 110-
117.

Images:

Layers of Embedded Software: https://www.microcontrollertips.com/how-does-embedded-
software-work/

OpenOCD with STM32: https://elrobotista.com/en/posts/stm32-debug-linux/

Pixhawk and QGroundControl: https://www.youtube.com/watch?v=BNzeVGD8IZI&t=556s
Flight Controller:

https://www.unmannedtechshop.co.uk/product/foxeer-f722-flight-controller/

51

https://www.microcontrollertips.com/how-does-embedded-software-work/
https://www.microcontrollertips.com/how-does-embedded-software-work/
https://elrobotista.com/en/posts/stm32-debug-linux/
https://www.youtube.com/watch?v=BNzeVGD8IZI&t=556s
https://www.unmannedtechshop.co.uk/product/foxeer-f722-flight-controller/

https://mvww.fruugoindia.com/fast-delivery-fast-delivery-pixhawk-px4-autopilot-pix-248-32-
bit-flight-controller-safety-switch-buzzer-4g-sd-i2c-splitter-expand-module-usb/p-
154687319-327653921?language=en

Flysky Transceiver: https://www.youtube.com/watch?v=BACBNgaCnJU&t=1572s

Complementary Filter: https://www.researchgate.net/figure/Complementary-Filter-anglet-a-
anglet-1-gyro-dt-b-accelero-1_fig2_265915080

Kalman Filter: https://commons.wikimedia.org/wiki/File:Kalman-filter en.svqg
ESP-NOW Protocol: https://randomnerdtutorials.com/esp-now-esp32-arduino-ide/

Websites:

[W1] High current PCB Design: https://www.ourpch.com/high-current-pch.html

[W2] MPUG050 Visualiser: https://randomnerdtutorials.com/esp32-mpu-6050-web-server/
[W3] Filters: https://robottini.altervista.org/kalman-filter-vs-complementary-filter

[W4] NMEA GPS: https://www.gpsworld.com/what-exactly-is-gps-nmea-data/

[W5] ESP-NOW: https://randomnerdtutorials.com/esp-now-esp32-arduino-ide/

[W6] NuttX RTOS: https://nuttx.apache.org/docs/latest/

[W7] STM32 RTC: https://embedded-lab.com/blog/stm32s-internal-rtc/

[W8] NRF24L01.: https://howtomechatronics.com/tutorials/arduino/arduino-
wireless-communication-nrf24101-tutorial/

52

https://www.fruugoindia.com/fast-delivery-fast-delivery-pixhawk-px4-autopilot-pix-248-32-bit-flight-controller-safety-switch-buzzer-4g-sd-i2c-splitter-expand-module-usb/p-154687319-327653921?language=en
https://www.fruugoindia.com/fast-delivery-fast-delivery-pixhawk-px4-autopilot-pix-248-32-bit-flight-controller-safety-switch-buzzer-4g-sd-i2c-splitter-expand-module-usb/p-154687319-327653921?language=en
https://www.fruugoindia.com/fast-delivery-fast-delivery-pixhawk-px4-autopilot-pix-248-32-bit-flight-controller-safety-switch-buzzer-4g-sd-i2c-splitter-expand-module-usb/p-154687319-327653921?language=en
https://www.youtube.com/watch?v=BACBNgaCnJU&t=1572s
https://www.researchgate.net/figure/Complementary-Filter-anglet-a-anglet-1-gyro-dt-b-accelero-1_fig2_265915080
https://www.researchgate.net/figure/Complementary-Filter-anglet-a-anglet-1-gyro-dt-b-accelero-1_fig2_265915080
https://randomnerdtutorials.com/esp-now-esp32-arduino-ide/
https://www.ourpcb.com/high-current-pcb.html
https://randomnerdtutorials.com/esp32-mpu-6050-web-server/
https://robottini.altervista.org/kalman-filter-vs-complementary-filter
https://www.gpsworld.com/what-exactly-is-gps-nmea-data/
https://randomnerdtutorials.com/esp-now-esp32-arduino-ide/
https://nuttx.apache.org/docs/latest/
https://embedded-lab.com/blog/stm32s-internal-rtc/
https://howtomechatronics.com/tutorials/arduino/arduino-wireless-communication-nrf24l01-tutorial/
https://howtomechatronics.com/tutorials/arduino/arduino-wireless-communication-nrf24l01-tutorial/
https://howtomechatronics.com/tutorials/arduino/arduino-wireless-communication-nrf24l01-tutorial/

Student Name: Mukul Yadav

Annexure 1

PO &PSO Mapping

Register no: 190929042

Note: use atick mark if you have addressed that PO in your report

PO v' Tick | Pg.No Section No Guides Observation
PO1 v 14-49 4
PO2 v 6-7 2
PO3 4 1 1.1
PO4 v 31- 4.10

34

PO5 v 8-13 3
PO6
PO7 v 1 1.1
PO8
PO9 v [i
PO10 v 50 5
PO11 v 14-49 4
PO12 v 50 5

PSO v' Tick | Pg.No Section No Guides Observation
PSO1 v 14-49 4
PSO2 v 8-49 3,4
PSO3

Signature of Student:

Date: 12/07/23

Name and Signature of Guide:

Dr. Nikhil Pachauri

Annexure 2

PLO Mapping
Student Name: Mukul Yadav Register no: 190929042
Sl PLO v' Tick | Pg.No Section No Guides
Observation
1 C1. v 14-49 4
2 C2. v 6-7, 14-49 2,4
3 C3. v 8-13 3
4 CA4. v 6-7 2
5 Cb.
6 C6. v 14-49 4
7 C7. v 1-5 1
8 C8. v 1 1.1
9 Co.
10 C1o0. v 14-49 4
11 C11. v 14-49 4
12 C12. v 8-13 3
13 C13. v 8-49 3.4
14 C14. v 50 5
15 C15. v 14-49 4
16 C16. v 14-49 4
17 C17. v 14-49 4
18 C1s.

Note: use atick mark if you have addressed that LO in your report

Signature of Student:

Date: 12/07/23

Name and Signature of Guide:

Dr. Nikhil Pachauri

Annexure 3

Address of IET learning outcomes during project period

Answer the following questions with relevant to your Practice Scool work.

Explain the steps you followed to Investigate and define the problem in your project work (C4,
evaluate level)

Understand the basics of UAVs.

Use common hardware and tools used in that domain.

Revisit the principles of embedded development.

Tryto apply those principles from the ground up to UAV applications.

. What is the science, mathematics, statistics, engineering principles and other basic technology
you identified for design (Mechanical, Electronic, Physics, Chemistry, Automation) in your
project work? (C1, C2, C3, Application, Analysis, Evaluation of Science and Mathematics in
the project)

- Mechanical design in 3D printing

- Electronic circuit design

- Automation using embedded software

Have you considered the Environmental and sustainability limitations in your project work?
(C7, evaluate)
There is an implicit consideration of the environment and sustainability while discussing
the current relevance of UAVS.

Have you considered ethical dilemma, health, safety, security, and risk issues; intellectual
property; codes of practice and standards? Did you address any of these issues in your project
work? If so, Explain in detail. (C5, create)
UAVs have many ethical and social dilemmas accompanying them. Since they have a wide
range of applications, it is important to design safeguards for that specific application.

. What were the aesthetic issues faced and how it is addressed in your project in the design
phase? (C5, analysis)
The design of UAV components and the form factor of custom PCBs affect aesthetics and
had to be considered.

. Were there any health issues considered during design process. How it is addressed in your
project in the design phase? (C5, create)
- No specific health issues were encountered during the process.

. What were the safety, security and risk issues needed to be taken care of in the design stage?
(C10, create)
There was some light deliberation about the design of a practical Black Box System for a
UAV.

10.

11.

12.

13.

14.

15.

16.

17.

Were there any intellectual property issues needed to be taken care off? Have you come across
IP issues in the project phase? (C5, create)
- No IP issues were encountered in the project phase.

What are the codes of conduct and standards you needed to use in design phase and in other

phases of your project as well? (It may include codes of practice and standards for safety,

security, health, risk) Explain the legal issues, 1SO standards, IEC standards, etc. (C8, evaluate)
No standards were applied because of the nature of the work, but theoretical discussions
regularly reinforced the Drone Laws of India.

What is the general safety measure regulated in the industry where you did the project work?
(C8, evaluate)
The software component of the products in this industry has to be highly secure to prevent
hacking and misuse.

What were the professional ethics needed to be followed in general while you are doing the
project? (C8, evaluate)

- Punctuality

- Documentation

- Weekly Meets

Do you think ethics and professionalism needs to be paid attention by students during study?
If, yes, explain how it can be inculcated/introduced/implemented? (C8, evaluate)
Ethics and professionalism will be beneficial to students in their future careers. The
enforcement of the same lies with the management.

Do you think environmental and sustainability limitations; ethical, health, safety, security, and
risk issues; intellectual property; codes of practice and standards are sufficiently covered in the
courses you have studied in your curriculum? (C8, evaluate)
The above-mentioned issues have been discussed, although concentrated within a handful
of subjects.

Have you gone through online classes, or a crash course in which you are familiarized with
intellectual property rights as well as risk issues in professional environment? (C8, evaluate)
- Onmyown, I have viewed a video series covering IP laws.

In the beginning of your project did you evaluate environmental effects and sustainability
factors in your work? (C7, evaluate)
- No such specific discussions were carried out.

During your stay in the industry, have you realized the need for professional and ethical
conduct? Quote the context and explain. (C8, evaluate)

- Competency in work

- Clear communication with higher ups

- Punctuality

What are the professional codes of conduct you needed to imbibe during your stay in the
industry? (C8, evaluate)

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

- Competency in work
- Clear communication with higher ups
- Punctuality

Did you address any of limitations of your project work and have you improved the results
through continuous improvements in your project work? (C5, create)
The work carried out is not suitable for industry grade applications. The purpose of the
work carried out is to learn and develop skills.

How did you plan your project, deadlines, maintaining dairy of each stage and improved the

quality of the project (C14, understand)

- The project was planned by the management. The schedule was not harsh in any manner.
It was easy to adhere to deadlines.

While having Industrial training/ internship, what were the college practices which helped you
to abide by the professional ethics of the company environment? (C8, evaluate)
- No specific practices to be cited, but the experience in the college aided confidence.

During your stay in the industry, did you observe how the teamwork plays a role in engineering
process? (C16, apply)
- Yes, specialization is extremely important for a successful team.

Are you aware of the ethical clearance when you work in the field of health/medical
applications.? (C8, evaluate)
- Not relevant to the work done.

During your stay in industry, are you able to observe and understand certain management
techniques practiced in that industry. Explain in detail. (C14, understand)
- Apart fromweekly meetings, no management techniques can be cited.

Could you understand how they tackle project management and what tools and techniques is
adopted? (C14, understand)
Platforms such as Slack and Kredily are used for managing projects. Tasks are created by
the management and assigned to everyone.

During your stay in the industry, did you observe any engineering activity implemented to
promote sustainable development? (C7, evaluate)
Not applicable here.

Did you adopt any quantitative technique for any engineering activity related to your project?
(C3, evaluate)
Not applicable here.

What are the elements of your project work which addresses sustainable development and were
you able to apply quantitative techniques to analyze and achieve your project goals? (C7,
evaluate)

Not applicable here.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

How the company takes green initiative, environment related factors. (C7, evaluate)
Not applicable here.

During your stay in the industry, have you observed/sensitized about legal requirements
governing such activities in that industry? Explain. (C8, evaluate)
There are plenty of legalities required to establish and operate a UAV business. This is a
highly sensitive domain since misuse is incredibly common. The relevant parties need to
be aware of UAV laws of the territory.

Did your project need the understanding of relevant legal requirements governing engineering
activities you carried out as a part of your project work? Explain in detail. (C8, evaluate)
The work done was rather elementary, meaning no such legal requirements were
considered.

What are the legal, ethical practices you followed while working on project? (C8, evaluate)

- Using existing software, one needs to be aware of the license afforded to the user by the
author.The BSD license is one of the most unrestrictive licenses.

Are you sure that you abide IPR/copy right issues? (C15, apply)
- Being aware of IP laws, it is reasonable to affirm this position.

Have you observed any national/international standards in the workplace? How many are
relevant to your project work? List them. (C8, evaluate)
- Notapplicable here.

What online course you attended to improve your communication skills. Report writing, Oral
presentation, Software used for writing report. (c17, apply)
- Notapplicable here.

In your project, was it needed to tackle risk issues, including health & safety, environmental
and commercial risk, and of risk assessment and risk management techniques? Explain in
detail. (C5, create)

Apart from some general discussions, issues related to the same did not come up.

What are the cyber safety rules and precaution you were sensitized with, when you started
practice school, or started industrial training? (C9, evaluate)
When it comes to cyber safety, organizations often use proprietary softwares to ensure the
integrity of their work. No such software was used here.

How is an organization addressing a fire accident/human safety when working with machines?
(C9, evaluate)
Not applicable here.

38.

39.

40.

41.

42,

43.

Process of teamwork. How each of you are involved in the team? What part the work is
addressed by you.? (C16, evaluate)
My role was testing and development of embedded software/ basic electronics.

Have you filed patent, IPR, or published your work? Give more details. (C17, evaluate)
Not applicable here.

How you documented the literature review, your analysis on their results, discussion with the
guide and team members, provide the documents on weekly basis. Put as one chapter in final
report. (C4, evaluate).

All documents have been consistently and sincerely handed to the internal guide.

Have you sensitized about inclusion and diversity in the team? If yes, what are the
diversification in the team in terms of religion, gender, ethnicity, etc. What challenges you
come across in the team. (C11, apply). Indian constitution and acts related to caste, gender,
race discrimination.

Not applicable here.

How were you able to keep yourself updated with the technology? How you incorporated
advanced technology in your project. (C18, lifelong learning)
Online courses and staying aware of industry news assist in this matter.

Which are the laboratory skills you found applicable to your project. Explain. (C12, apply)
Patience, unit testing and concentration are most applicable here.

Annexure 4

Project/practice school classification

Student Name: Mukul Yadav Register no: 190929042

Note: Use atick mark to specify under which domain your practice school work falls into.
Table 1: classification based on project domain classification

Domain v Tick
Product
Application v
Review
Research
Management

Note: Use a tick mark to specify Societal impacts you considered during your practice school.
Table 2: classification based on societal consideration

Societal Impact v' Tick
ethics v

safety v

environmental

commercial v

economic v

social v

Signature of Student: Name and Signature of Guide:

Date: 12/07/23 Dr. Nikhil Pachauri

Student Details
Student Name

Register Number

Email Address

Practice School Details
Title

Practice School start
Date

Annexure 5

Company Details

Mukul Yadav

190929042 Section/ Roll B/12
No

mukuly.2001@gmail.com Phone No (M) 8094021222

Electronics and Embedded Firmware for UAVs

10 Dec 2022 Practice School 30 April 2023
End Date

Organization (Company) Details

Organization Name
Type of Organization

(Public Listed,
Private, PSU, Gowvt,
cooperative)

Full postal address with
pin code

Website address

Name of the CEO of the
Organization

AIR Labs, 11Sc Bangalore

Govt.

CV Raman Rd, Bengaluru, Karnataka
560012

https://iisc.ac.in/

mailto:mukuly.2001@gmail.com

Supervisor Details
Supervisor Name
Designation

Full contact address
with pin code

Email address

Internal Guide Details
Faculty Name

Full contact address
with pin code

Email address

Varun Raghavendra
Technical Associate

AIR Labs, CV Raman Rd, Bengaluru, Karnataka 560012

varuncr@iisc.ac.in Phone No (M) 96321 37643

Dr. Nikhil Pachauri

Department of Mechatronics, Manipal Institute of Technology,
Manipal — 576 104 (Karnataka State), INDIA

nikhil.pachauri@manipal.edu

mailto:varuncr@iisc.ac.in
mailto:nikhil.pachauri@manipal.edu

project

ORIGINALITY REPORT

/. Ao, 1os 5o,

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Submitted to Manipal Academy of Higher 1%
Education (MAHE)
Student Paper
Submitted to Manipal Universit

Student Paper p y <1%
homepage.eircom.net

Internet Source <1%
Submitted to NIIT Universit

Student Paper y <1%
Submitted to Universidad Carlos Ill de Madrid

Student Paper <1%
Submitted to Cranfield University

n Student Paper <1%
irm.am.szczecin.pl

Internet Source p <1%

'8 | promicro.tech.blog 1
Internet Source < %
Submitted to Uskiidar Universitesi

n Student Paper <1%

Submitted to Cankaya Universit
Student Paper y y <1%
www.nymtc.org <10
Internet Source A)
Submitted to University of Queensland
Student Paper <1%
Submitted to Independent University <1%
Bangladesh
Student Paper
Submitted to King's College
Student Paper <1%
Submitted to University of North Texas
Student Paper <1%
Submltte_d to Y|rg|n|a Polytechnic Institute and <1%
State University
Student Paper
mitted t '
guligmpapeerd 0 Cheshire College South and Wes <1%
Hanafy M. Omar, Rizwan Akram, Saad M.S. <1%

Mukras, Ahmed Alaa Mahvouz. "Recent
advances and challenges in controlling
guadrotors with suspended loads", Alexandria
Engineering Journal, 2023

Publication

http://www.nymtc.org/

Submitted to University of Technology, <1%
Sydney
Student Paper
dalspace.library.dal.ca

Internet Source <1%
Submitted to Associatie K.U.Leuven

Student Paper <1%

Ml Submitted to Dhirubhai Ambani Institute of <1
Information and Communication %
Student Paper

Submitted to University of Newcastle upon
Tyne <1y
Student Paper

ﬂJian Zhang, Lifeng Hao, Fan Yang, Weicheng
Jiao, Wenbo Liu, Yibin Li, Rongguo Wang, <1(y
0

Xiaodong He. "Biomimic Hairy Skin Tactile
Sensor Based on Ferromagnetic Microwires",
ACS Applied Materials & Interfaces, 2016

Publication

s bmitted to Liverpool John Moores

University
Student Paper

Submitted to University of Bristol

<1%

s

Student Paper

Submitted to Bloomington High School North

<1%

B

Student Paper

<1%

giljnrtr;geerd to Frederick University <1%
i:iﬁ;zszoijr§375-2806-l438.mystrlklngly.com < 1%
giljnrtr;gieerd to Central Queensland University <1%
Dulletin stsu.ed <L
e nalaoy <L
Henghui Dgng, Fei Xie, Hebo Shi, Yufe!’\g L, <1%
Shuoyan Liu, Chaoqun Zhang. "UV Resistance,
Anticorrosion and High Toughness Bio-based
Waterborne Polyurethane enabled by a
Sorbitan Monooleate", Chemical Engineering
Journal, 2022
Publication
popdlaton puwgov.ze <1
sucon suacs <1y
o alrvecom <1y
www.coursehero.com <1
Internet Source %

http://www.airlive.com/
http://www.coursehero.com/

www.researchgate.net
Internet Source < 10/0
Amin Al-Habaibeh, Bubaker Shakmak, Anup <1%

Athresh, Keith Parker, Omar Hamza. "Chapter
20 Extracting Energy from Flooded Coal Mines
for Heating and Air-Conditioning of Buildings:
Opportunities and Challenges”, Springer
Science and Business Media LLC, 2022

Publication

Dogan Ibrahim. "Event groups", Elsevier BV, <1%
2021
Publication

Exclude quotes On Exclude matches Off

Exclude bibliography On

http://www.researchgate.net/

