

TRADITIONAL

Module 1. Foundations Of Al

Foundations Of Al

Build a solid conceptual foundation before jumping into ML, Deep Learning, or GenAl.

- Introduction To Al
- Types of Al
- Subfields of Al
- Traditional vs GenAl
- How Al works?
- Ethics and Limitations of Al
- Foundational Tools & Language Required

Module 2. Maths and Stats

Maths and Stats For Al

Develop the mathematical thinking required to understand and work with ML models, without being overwhelmed by formal proofs.

1.Linear Algebra For Al

- Vectors
- Matrices
- Dot Product
- Matrix Multiplication

3.Calculus For AI

- What is a Derivative?
- Gradient & Gradient Descent (Graphical)
- Loss Functions (Simple Intuition) Mean Squared Error, Cross Entropy

2. Probability & Stats For AI

- Mean, Median, Mode (Central Tendency)
- Variance & Standard Deviation (Spread of data)
- Distributions (Normal, Uniform, etc.)
- Conditional Probability
- Bayes Theorem
- Expectation & Entropy
 Why randomness matters in Al decisions

Module 3. Machine Learning

Machine Learning

Build strong fundamentals in traditional ML
— understand the algorithms, concepts, and
real-world use cases.

1.What is Machine Learning?

- Definition of ML vs Traditional programming.
- Types of ML:
- Supervised Learning (with labeled data)
- Unsupervised Learning (no labels)
- Reinforcement Learning (reward based learning)

2.ML Pipeline Overview

- Data Collection
- Data Preprocessing
- Model Building
- Model Evaluation
- Model Deployment

3. Supervised Learning Algorithms

- Linear Regression
- K-Nearest Neighbors (KNN)
- Decision Trees
- Naive Bayes

4. Model Evaluation

- Train/Test Split
- Accuracy (correct predictions)
- Precision (true positives / predicted positives)
- Recall (true positives / actual positives)
- F1 Score (harmonic mean of precision & recall)

5.Bias-Variance Tradeoff

- Overfitting (memorizing noise)
- Underfitting (too simple model)
- Regularization (L1/L2)

6.Unsupervised Learning Basics

- K-Means Clustering (group similar data)
 - Dimensionality Reduction (PCA, t-SNE)

7.Basic Math Intuition

- Distance Metrics: Euclidean, Manhattan
 - Probability for Naive Bayes
 - Entropy for Decision Trees

Module 4. Deep Learning

Deep Learning Foundation

Build strong intuition and hands-on skill with neural networks — the core of modern AI.

- What is a Neural Network?
- The Perceptron (Building Block of NN)
- Activation Functions
- Forward Pass and Backpropagation (Intuition)
- Framework Familiarity (PyTorch or TensorFlow)
- Underfitting, Overfitting, and Regularization

Module 5. Natural Language Processing & Language Models

Natural Language Processing & Language Models

Understand how machines work with language and prepare the foundation for GenAl and Transformers.

- What is NLP?
- Text Preprocessing Basics
- Vectorizing Text
- Word Embeddings Vector Representations
- Core NLP Tasks (Classical Approach)
- Language Modeling Basics
- Tools for Modern NLP
- NLP Evaluation Metrics
- Bonus (Bridge to Transformers/LLMs)