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Te electroencephalogram (EEG) examination provides information on the brain’s electricity, especially in cases of epilepsy. Since
the characteristics of EEG signals are nonlinear and nonstationary, visual inspection becomes very difcult. To overcome this
problem, digital EEG signal processing was developed. Automatic epileptic EEG recognition is an area of interest on which much
research focuses. Te complexity approach to EEG signal analysis is interesting to be used as feature extraction, referring to the
nonlinear characteristics of the signal. Tis study proposed an automatic epileptic EEG classifcation method based on the
multiscale Hjorth descriptor measurement. EEG signals consisting of normal, interictal, and seizure (ictal) were simulated. Te
signal is scaled into new signals using the coarse-grained procedure on a scale of 1–20. Ten, the Hjorth parameter which consists
of activity, mobility, and complexity is calculated on the new signal. Tis process produces a feature vector that is used in the
classifcation stage. Support vector machine (SVM) is used to evaluate the proposed feature extraction method. Simulation results
showed that the Hjorth parameter on a scale of 1–15 yields 99.5% accuracy. Te proposed method is expected to be applied to
digital EEG for seizure detection and prediction.

1. Introduction

Bioelectrical signals carry information about a person’s
health status [1]. Bioelectrical signals are an accumulation of
biological processes at the cellular, tissue, organ, and organ
system levels. Some have very complex characteristics, in-
cluding the electroencephalogram (EEG). EEG is a signal
generated by brain cell activity coordinating body functions
[2]. EEG is essential in analyzing brain function abnor-
malities, for example, epilepsy. Epilepsy is the most common
neurological disorder due to the excessive activity of a group
of neuron cells in the brain [3, 4]. Epilepsy can trigger an
unprovoked seizure [5], requiring treatment so that the
worst conditions do not occur. It can be done by de-
termining treatment in patients by analyzing the pattern of
EEG signals. Visual inspection requires excellent skill and
precision, which tends to be time-consuming [6, 7]. Tis

requires high costs when analyzing signals in a large patient
population. Since the development of computer-based signal
computing methods, many researchers have developed
automatic recognition.

Characterizing and detecting epileptic EEG is an es-
sential step in studying epilepsy [8]. Tis will determine the
proper treatment for seizure prevention [4, 9]. Detections
include normal, preictal, interictal, and ictal stages. Re-
searchers have proposed automatic detection algorithms
with various mathematical approaches. Tis approach in-
cludes analysis of the time, frequency, and time-frequency
domain. Recently, complexity analysis on EEG signals has
been simulated [10]. Other methods such as deep learning
have been proposed in the detection of epileptic EEG as
reported in [11]. Tese studies aim to fnd the best per-
formance with the highest accuracy with low-cost com-
puting. To simulate seizure detection, the University of Bonn

Hindawi
Journal of Electrical and Computer Engineering
Volume 2023, Article ID 4961637, 11 pages
https://doi.org/10.1155/2023/4961637

https://orcid.org/0000-0001-9712-965X
https://orcid.org/0000-0002-2086-2156
https://orcid.org/0000-0003-0568-4424
https://orcid.org/0000-0003-1412-0428
https://orcid.org/0000-0003-3179-8900
https://orcid.org/0000-0001-9586-4511
mailto:achmadrizal@telkomuniversity.ac.id
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/4961637
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2023%2F4961637&domain=pdf&date_stamp=2023-12-12


shared an epileptic EEG dataset, with many studies pro-
posing various methods for detecting ictal EEGs on that
dataset.

A study by Martis et al. proposed a method for feature
extraction of epileptic EEG using empirical mode de-
composition (EMD) and entropy, and it produced the
highest accuracy of 95.3% [12]. Samiee et al. proposed the
rational discrete short time Fourier transform (DSTFT) for
feature extraction [13]. Tese features were classifed using
a multilayer perceptron (MLP) and produced the best ac-
curacy of 99.8%. However, simulations are only carried out
on two classes of data. Another study by Mohammadpoory
et al. proposed the weighted visibility graph entropy
(WVGE) to identify seizures from EEG signals. Experi-
mental results show that the proposed method produces the
highest accuracy of 97% for classifying normal, ictal, and
interictal [14]. Bhattacharyya et al. presented the tunable Q-
factor wavelet transform and KNN entropy for seizure
detection [15]. Tis study provides 100% accuracy but only
in two classes of normal and ictal data. However, feature
extraction methods using a time-frequency domain ap-
proach tend to require high computational costs. A study by
Tsipouras used the frequency approach for extracting EEG
spectral information in epileptic EEG classifcation. Tis
study obtained 98.8% accuracy for normal, interictal, and
ictal EEG classifcation [16]. Previous studies related to
epileptic EEG have shown high performance in classifcation
or detection. However, there are still opportunities in de-
veloping methods to improve accuracy and solve classif-
cation problems with more than two classes. Another issue is
developing a feature extraction method with low compu-
tational costs using a time domain analysis approach.

In this paper, we developed a new protocol for epileptic
seizure detection. Tis study is one of our concerns, whereas
in previous studies, a wavelet and entropy-based approach
was simulated. We proposed a multiscale Hjorth descriptor
as a method for feature extraction in epileptic seizure de-
tection. Tis multiscale method was adopted from the
previous study by Rizal et al. [17], where new signals will be
generated using coarse-grained procedures. Te new signals
which are generated are similar to the original signal, which
is sampled to N-scales. Hjorth parameters, namely, activity,
mobility, and complexity, are calculated at each scale, be-
coming a feature vector. A support vector machine with 10-
fold cross-validation was employed to evaluate the perfor-
mance of the proposed method, and the measured perfor-
mance parameter is accuracy. To test the robustness of this
method in epileptic seizure detection, we simulate it in six
scenarios. Tese scenarios are explained in Section 2. Te
protocol proposed in this paper can be recommended as
a powerful method for detecting epileptic EEG.

2. Materials and Methods

Figure 1 displays the procedure of the proposed method.Te
multiscale process was the coarse-grained procedure often
used to analyze ECG signals [18], lung sounds [19], and
others. Te Hjorth descriptor was measured on the signal
from this process to get the signal characteristics [17]. Ten,

we used SVM with 10-fold cross-validation to classify the
EEG signals. Tere was also a feature reduction in this
classifcation process to see the efect of the number of scales
on classifcation accuracy. Details of each method are
explained in the next sections.

2.1. Epileptic EEG Database. In this study, open access EEG
datasets were employed to evaluate the performance of the
proposed method. EEG data were recorded from epilepsy
patients and healthy subjects at Bonn University. All EEG
records were performed using a 128-channel amplifer
system with a sampling frequency of 173.61Hz and 12 bit
resolution. Te multichannel electrode recordings were
segmented into a 23.6 seconds of EEG recordings after re-
moving the artifacts from muscle and eye movements. Te
EEG dataset consists of 5 groups (F, N, O, Z, and S), each
group contains 100 EEG segments. Te F signal had EEG
records of seizure-free interval (interictal) conditions at the
epileptogenic zone, while N signal was EEG records of
seizure-free intervals (interictal) from hemisphere hippo-
campal formation. O and Z subsets are EEG records of
healthy volunteers with eyes closed and open, respectively.
Te S subset contained EEG records when the seizure oc-
curred (ictal activity) [20]. In general, the proposed method
was evaluated for ictal vs. nonictal classifcation. Te test
scenario consists of OZ-NF-S, OZNF-S, Z-N-S, Z-F-S, O-N-
S, and O-F-S. Figure 2 shows the examples of EEG signals
analyzed in this study.

2.2. Feature Extraction with Multiscale Hjorth Descriptor.
Hjorth descriptor had formerly functioned to analyze the
EEG signal on the time domain.Ten, Hjorth descriptor was
also used to analyze electromyogram (EMG) [21], ventricle
repolarization on ECG signal [22], and lung sound pro-
cessing [17]. Tis method includes three parameters, i.e.,
activity, mobility, and complexity [23], which are shown in
the following equations:

activity σx( 􏼁 � var(x(n)), (1)

where x(n) is the signal and σx is the variation of x(n) and

mobility Mx( 􏼁 �

��
σx
′

σx

􏽳

,

complexity(FF) �
Mx
′

Mx

,

(2)

where x′ and x″ are the frst-order and second-order x,
respectively.

We modifed the multiscale entropy as in the previous
research [17]. We changed the entropy with the Hjorth
descriptor to have a multiscale Hjorth descriptor. Te
multiscale process used is often referred to as a coarse-
grained procedure, as shown in the following equation:
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. (3)

2 Journal of Electrical and Computer Engineering

 1742, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2023/4961637 by M

orocco H
inari N

PL
, W

iley O
nline L

ibrary on [03/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Te sample in the previous simulation used up to 60
features, which were generated on a scale of 20. Te illus-
tration of the coarse-grained procedure is shown in Figure 3.

2.3. Evaluation with Support Vector Machine (SVM) Dan N-
Fold Cross-Validation. In this study, a support vector ma-
chine (SVM) is proposed to predict the qualitative char-
acteristics of EEG signals (seizure, interictal, and normal). In
this case, high accuracy is the main goal in research that
relies heavily on the quality of features as SVM input.
Terefore, feature selection scenarios are critical because
they afect accuracy. SVM was chosen because it has an
excellent ability in medical applications, one of which is to
classify EEG signals, as reported in research [1, 24, 25].

SVM is a linear classifcation with a hyperplane on a fat
plane as a separator between classes. However, many cases
must be resolved nonlinearly, so the SVM concept is de-
veloped to solve nonlinear issues using kernel tricks. SVM
can map the feature sets into new spaces, so separation
between classes becomes more assertive. From this expla-
nation, it is clear that SVM can fnd the best hyperplane to
separate two data classes [26]. Initially, SVM was designed

for binary classifcation problems. In multiclass applications,
slight modifcations are made by comparing one class to
another at the same time.Tus, this will result in n classifers,
where n is the number of classes with n hyperplanes [27].

Te best hyperplane is obtained by maximizing the
margins between sets of features from diferent classes.
Margin is the distance between the hyperplane and the
closest pattern in each data class (see Figure 4). Te most
consolidated position between the patterns of each class is
called the support vector. In this research, quadratic SVM
and cubic are used to compare linear SVM.

Since SVM is amethod that requires training (supervised
learning), this study uses N-fold cross-validation (NFCV) to
spilt training data and test data. In NFCV, each data class is
divided into N data sets.TeN− 1 data set is used as training
data, and one data set is used as test data. Te process is
repeated up to N times so that each data set has become test
data and training data [28]. Accuracy is taken from the
average of all trials conducted [17]. Te advantage of this
method is to avoid overftting. Te proposed method’s
performance parameter is the accuracy of the number of
samples correctly classifed by the system.

EEG Signal
Support
vector

machine

Coarse-
grained

Procedure

Hjorth
Descriptor

measurement

Classification
accuracy

Figure 1: Proposed method.
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Figure 2: Sample of EEG signal from Bonn University dataset. (a) Class Z, (b) class O, (c) class N, (d) class F, and (e) class Z.
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3. Results and Discussion

Figure 5 shows an example of a signal scaled using a coarse-
grained procedure on ictal EEG. Te sample size for each
level becomesN/τ (level).Te new signal is the average of the
closest sequential samples; therefore, there is no signifcant
change in signal shape visually. Ten, activity, mobility, and
complexity are calculated at each level as feature vectors.Te
average activity, mobility, and complexity values of normal,
interictal, and ictal EEG are presented in Figure 6. Te ictal
state has the highest activity value compared with others,
representing the excessive activity of neuronal cells. Te
activity value represents the power of the signal [23, 29, 30].
Figure 6 shows the activity values on all EEG stages tend to
decrease because the signal variation is reduced on a larger
scale. Hjorth mobility in the ictal state also tends to be higher
than normal and interictal on a scale of more than 7.

In contrast, Hjorth’s complexity in ictal EEG is the
lowest compared with others. Tis represents that the
complexity of EEG signals decreases during seizures, or it
can be thought that EEG waves tend to be stationary or more
regular. Based on studies [31, 32], ictal state is less complex

than other state. Finally, the performance evaluation of the
proposed method was carried out with SVM and 10-fold
cross-validation. We also broke down the feature into three
scenarios based on a scale of 1–5, 1–10, 1–15, and 1–20 to
evaluate the efect of scale on the accuracy. Since Hjorth
parameter produce three features from each scale, thus for
each scenario, there are 15, 30, 45, and 60 features, re-
spectively. Figures 7–12 show the accuracy results for all
scenarios.

Figure 6 shows the average activity, mobility, and
complexity value for each class using the scales from 1 to 20.
It is shown that the activity values of ictal decrease when the
scales rise. For mobility value, the value increases and begins
to fat when it reaches a scale of 10. Te complexity value is
similar to the activity values. It decreases on higher scales.
Activity value as shown in Figure 6(a) for normal and
interictal conditions tends to be the same for all scales. It can
be concluded that in interictal conditions, people with ep-
ilepsy are like in normal conditions where no seizure
symptoms occur. Te characteristics obtained indicate that
the activity is good enough to distinguish between seizures
and nonseizures (normal and interictal). Meanwhile, to
distinguish three conditions (normal, interictal, and sei-
zure), it is not enough to use one Hjorth parameter but must
combine all three with a particular scale. Roughly speaking,
it can be seen that for mobility, the three classes are separated
on a scale of 9–11, while for complexity, they are separated
on a scale of 7–9. In general, the use of the 1–20 scale is
adopted from the study by Costa et al. [18]; with a scale of 20,
the variance of the signal tends to decrease and become
stagnant. Testing will be carried out at the performance
measurement stage using a scale as in previous studies [17].

Figures 7–12 show the accuracy of the EEG classifcation
using three SVM kernels. Tey are linear, quadratic, and
cubic SVM kernels. Te feature is selected based on the
scales of the multiscale process. It is shown that the cubic
kernel produces higher accuracy results compared to the two
other kernels. Tis study achieves higher accuracy compared
to Dhar et al. [33], Wijayanto et al. [1], and Orhan et al. [34].
On the contrary, this study has lower performance com-
pared to studies by Li et al. [6] and Bhattacharyya et al. [15].
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Figure 3: Values of multiscale Hjorth for coarse-grained time series adapted from [18].
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Figure 4: Optimal hyperplane by SVM.
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Figure 5: Results of coarse-grained procedure on scale 1–5 on ictal EEG.
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Figure 6: Te average (a) activity, (b) mobility, and (c) complexity value of each class of data.
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Figure 7: Accuracy for scenario-1 (OZ-NF-S), the highest accuracy obtained at 98%.
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Figure 8: Accuracy for scenario-2 (OZNF-S), the highest accuracy obtained at 99.2%.
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Figure 9: Accuracy for scenario-3 (Z-N-S), the highest accuracy obtained at 98.7%.
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Figure 10: Accuracy for scenario-4 (Z-F-S), the highest accuracy obtained at 97.7%.
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Figure 11: Accuracy for scenario-5 (O-N-S), the highest accuracy obtained at 98.7%.
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Figure 12: Accuracy for scenario-6 (O-F-S), the highest accuracy obtained at 99.5%.
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However, this study can still compete in terms of the number
of features used.

Table 1 shows the comparison of the proposed method
with other studies that used multiscale analysis and the same
dataset. Te study by Orhan et al. [34] used discrete wavelet
transform (DWT), K-mean clustering, and multilayer per-
ceptron to obtain the highest accuracy by using 56 and 18
features. Dhar et al. [33] used 42 features from cross wavelet
transform and achieved the highest accuracy for ZO-NF-S.
Bhattacharyya et al. [15] obtained the highest accuracy of
99% and 98.6% for ZONF-S and ZO-NF-S, respectively, by
using 16 numbers of features. Li et al. used wavelet-based
nonlinear analysis and SVM obtained the highest accuracy
using 24 features [37]. Te result of the two studies men-
tioned above shows a higher accuracy compared to this
study. However, this study achieved a competitive result by
using fewer features. In addition, the feature extraction
method proposed in this study is simpler in computation.
Nicolaou and Georgiou [38] and Wijayanto et al. [1] used
fewer features than this study. Even so, our study achieves
higher accuracy in the ZONF-S case compared with the
study by Nicolaou and Georgiou [38] and Wijayanto et al.
[1]. Furthermore, this study has competing results for other
cases, even with better performance in the O-F-S case,
compared with Wijayanto et al. [1]. Te confusion matrix of
the result is shown in Figure 13.

Te study expanded its evaluation by incorporating
the CHB-MITdataset. In this supplementary analysis, the
researchers extracted both normal and ictal conditions
from the dataset, which includes recordings from 139
patients, encompassing a total of 196 seizure conditions.

Te ictal conditions were designated as the seizure class,
while the normal conditions were drawn from the time
immediately preceding the ictal events, matching the
duration of the seizure conditions. Applying the pro-
posed method to this dataset yielded an accuracy rate of
82.7%.

Tis research focuses on the development of a feature
extractionmethod, namely, the multiscale Hjorth descriptor.
For this reason, the classifer used is a classifer commonly
used today (SVM) so that it is easy to compare with other
feature extraction methods. Tis is shown in Table 1, where
many researchers use SVM as a classifer. Te use of more
advanced machine learning methods will be carried out in
the next research.

4. Conclusions

Tis paper proposes a method of classifcation of EEG
signals in the case of epileptics based on the Hjorth de-
scriptor. Hjorth descriptor is calculated on the ECG signal
after passing the coarse-grained procedure. Coarse-grained
procedures will produce EEG signals at various scales. Tis
process will make the signal dynamics more visible, making
it easier to distinguish using the Hjorth descriptor. Te
highest accuracy of 99.5% for three data classes uses 15
scales. Tese results indicate that the proposed method
provides higher accuracy compared to previous studies.
Some things can be done for further research. In addition to
exploration using a variety of other machine learning
methods, the investigation of other multiscale methods is an
exciting research topic in the future.
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Figure 13: Confusion matrix for each scenarios using 1–5 scales of CG.
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