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Extraction of Fetal Electrocardiogram by Combining Deep Learning
and SVD-ICA-NMF Methods

Said Ziani�, Yousef Farhaoui, and Mohammed Moutaib

Abstract: This paper deals with detecting fetal electrocardiogram FECG signals from single-channel abdominal lead.

It is based on the Convolutional Neural Network (CNN) combined with advanced mathematical methods, such as

Independent Component Analysis (ICA), Singular Value Decomposition (SVD), and a dimension-reduction technique

like Nonnegative Matrix Factorization (NMF). Due to the highly disproportionate frequency of the fetus’s heart rate

compared to the mother’s, the time-scale representation clearly distinguishes the fetal electrical activity in terms of

energy. Furthermore, we can disentangle the various components of fetal ECG, which serve as inputs to the CNN

model to optimize the actual FECG signal, denoted by FECGr, which is recovered using the SVD-ICA process. The

findings demonstrate the efficiency of this innovative approach, which may be deployed in real-time.
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1 Introduction

In recent years, a new vocabulary related to the advent of
artificial intelligence in our society has invaded scientific
literature. We frequently refer to allied technologies
such as deep learning when discussing artificial
intelligence. Deep Learning (DL) is an algorithm that
simulates the human brain’s operations using artificial
neural networks. Networks are composed of countless
layers of neurons, each receiving and interpreting
information from the layer beneath it. Deep learning
models tend to function well with vast volumes of data,
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but more conventional machine learning models cease
to improve after reaching a point of data saturation.
With the advent of big data and ever-more-powerful
computing components, power and data-intensive, deep
learning algorithms have outpaced the majority of
previous approaches over time. They appear capable
of resolving many health issues physicians encounter,
particularly the interpretation of biological signals
ECG, EMG, and EEG. In this paper, we will focus
on one of the most powerful algorithms of DL[1, 2]

and the Convolutional Neural Network (CNN)[3, 4].
CNNs are powerful programming models that allow
the recognition of images by automatically assigning
a label corresponding to the image’s class membership
to each image provided as input. Today, more than
17 million people die of cardiovascular disease yearly,
according to the World Health Organization (WHO).
In Morocco, cardiovascular diseases are the leading
cause of death. A heart defect can occur from the first
days of pregnancy, so vigilance must be increased, and
close monitoring of any newborn is necessary. Whether
inherited or not, congenital heart disease varies, while
remission depends on early diagnosis. Each year in
Morocco, an average of 6000 newborns suffer from
a heart defect or congenital heart disease. Prenatal
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pathology is often diagnosed at the onset of symptoms
in infants. According to specialists, early diagnosis, that
is, before birth or from the first weeks of pregnancy,
is made relatively late in Morocco. It is from there
that our scientific contribution will present a solution
that sets up a reliable tool capable of early detection
of heart defects: the Fetal ECG (FECG). FECG can
be monitored by placing electrodes on the mother’s
abdomen. However, it is feeble and muddled with
multiple sources of noise, most notably the Mother’s
ECG (MECG), whose amplitude is exceptionally high.
Several approaches for extracting FECG from signals
captured by electrodes implanted on the surface of
the mother’s body have been proposed in earlier
research[5–8]. However, these approaches necessitate a
high number of sensors and are hazardous to the fetus’s
health when more than two sensors are used[9–12]. In this
article, we propose a new approach by coupling the CNN
model with four mathematical tools from the numerical
and static analysis: Independent Component Analysis
(ICA)[13], Singular-Value Decomposition (SVD)[14],
Non-negative Matrix Factorization (NMF)[15], and
Empirical Mode Decomposition (EMD)[16]. These four
methods implement different models of the quasi-
periodicity of the cardiac signal. The CNN model[17]

exploits the images: spectrograms and scalograms
provided by the time-scale and time-frequency analysis
of the ECG signal presenting the mixture. In Section 2
of this paper, we will provide the methodology of fetal
signal extraction by explaining the general algorithm
followed by the fundamental steps implemented to
accomplish the objective. Section 3 will give the
simulation findings of the proposed approach applying
accurate data. In Section 4, the proposed approach’s
effectiveness, which uses a single sensor and is validated
using synthetic data and real recordings, will be
discussed and evaluated. Section 5 concludes this
paper.

2 Theoretical Background

2.1 Time-Scale Image (TSI)

2.1.1 Continuous Wavelet Transform (CWT)
The CWT[18, 19] of a signal x.t/ is defined as

T .a; b/ D
1
p
a

Z C1
�1

x.t/	�..t � b/=a/ dt (1)

where 	�..t � b/=a/ is the dilated and translated
wavelet.

2.1.2 TSI image conversion
The signal energy’s contribution at a particular scale a
and location b is

�.a; b/ D jT .a; b/j2 (2)

The plot of �.a; b/ presents the scalogram or the TSI.

2.2 SVD

Diagonalizing a matrix is generally very efficient for
computing matrix powers. Nevertheless, not all matrices
can be diagonalized. Thus, this method cannot be used
for rectangular matrices. In certain instances, SVD can
substitute diagonalization. SVD permits the separation
of a matrix into many orthogonal components[20]. A
matrix M of size m � n is separated as follows:

M D U˙V T (3)

where ˙ is a diagonal matrix of size m � n with
positive real coefficients, U and V are two real matrices
orthogonal of respective sizes m � m and n � n,
respectively, and “T” denotes the transposition. If we
decompose the time-scale image M , the columns ui

of U represent S frequency characteristics, and the
columns vi of V represent the temporal characteristics
of S ,

min.m;n/X
nD1

�i i � ui � v
T
i (4)

As a result, M is defined as the sum of uncorrelated
models ui � v

T
i , each with an associate amplitude of �i i .

Each frequency characteristic ui , therefore, corresponds
to a characteristic temporal vi , with the energy �2

i i .

2.3 NMF

Let X be an n � p matrix with only non-negative
values and no rows or columns containing just 0; r is
a sufficiently small integer chosen in front of n and p.
The non-negative factorization of the matrix X is the
search for two matrices,Wn�r andHn�r , whose product
approaches X and includes only positive or zero values,

X � W �H (5)

Factorization is resolved by obtaining a local maximum
of the optimization problem,

minŒL.X;W �H/C P.W;H/�W;H>0 (6)

L. / is a loss function evaluating the quality of the
approximation, and P is an optional function penalty;
L. / is typically also a criterion of least squares L � S .
P is an optional regularization penalty used to force the
desired properties of W and H matrices. Let Vij (see
Fig. 1) denote the matrix element we want to extract,
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Fig. 1 Extracting data.

and it suffices to build the proper row-column product to
extract the needed information[21].

3 Methodology

3.1 Global algorithm

An electrocardiogram sensor implanted in the mother’s
abdomen measures a combination of FECG and MECG
information (see Fig. 2)[22]. In mathematical terms, the
system is considered indeterminate since the number of
sources exceeds the number of observations. Thus we
may write

X D ˛ � sF C ˇ � sM CN (7)

where both ˛ and ˇ are actual, constant, and non-
approaching zero, and
sF is the FECG;
sM is the MECG;
X is a mixture of sF and sM ; and
N is the noise.
This analysis concentrates primarily on the

instantaneous mixture of linear components. Thus, we
will overlook the impact of noise N . Consequently, our
objective is to identify the sources sF and sM .

Fig. 2 Mixture signal.

Even though the FECG has a much lower amplitude
than MECG, the fetus’ cardiac rate is significantly higher.
This means that the wavesQ,R, and S (QRS complexes)
will be located in the time-scale and time-frequency
domains using Short-Time Fourier Transform (STFT)[23]

and Continuous Wavelet Transform (CWT) (see Fig. 3).
This makes it straightforward to locate all the points that
indicate the FECG and MECG. Due to its low amplitude,
the fetus’s contribution in terms of energy is very low.
However, the powerful heartbeat of the fetus makes it
easy to illustrate it in the time-frequency and time-scale
domains, which is the main focus of this work. In fact,
the factorization in NMF enables us to get the exact
contributions from both the mother and the fetus. This
is done by generating TSI and Time-Frequency Images
(TFI), which can be used to build databases with up
to 10 000 image data. These images are then fed into
CNN networks, which separate the FECG and MECG
signals. It is reported that TSI is used in the CNN model,
and TFI images are used in the separation process using
SVD-ICA methods. So, after capturing a mixture of
fetal and maternal electrocardiogram signals, employing
surface electrodes placed appropriately on the mother’s
abdomen. The fetal electrocardiogram is extracted using
the following global algorithm (see Fig. 4).

Fig. 3 Time-scale and time-frequency domain of mixture
signal.

Fig. 4 Representation of global algorithm.
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3.2 SVD-ICA for blind source extraction

The proposed model is founded on the equivalency
between the studied signal X , its TSI, and its TFI.
Dividing the signal into many sources entails separating
this TFI and TSI into multiple distinct TFIs and TSIs
meant to convey those sources. To provide context for
the concept of independence in these surroundings, we
must elaborate on underlying assumptions[23–26]. The
TSI is obtained by computing the modulus of a CWT
applied to the observed signal X.t/: Then, the TSI
coefficients are calculated to sort out the amplitude of a
specific frequency at a particular time. In the remaining
portions of this section, we’ll assume that the TSI image
is an m � n matrix (m frequency channels and n time
frames). First, TSI is the sum of an unusual number of
TSIs. These TSIs are meant to represent the sources,

TSI D
nX

iD1

TSIi (8)

Second, each TSIi is mainly composed of the product
of a temporal weight vector and a characteristic spectral
vector. We can now demonstrate the independence
of TSIi by defining it as the independence of the
vectors of correlating spectral characteristics perceived
as a sequence of observations of stochastic processes,
independent and identically distributed. These are
the assertions of the ICA, which is the reason it
uses statistical formalism[27–29]. Figure 5 presents the
algorithmic steps of the SVD-ICA model. First, we
determine the TSI, denoted M , of a time signal X.t/,

M D Un˙nV
T

n (9)

which results from an SVD, where the columns of Un

represent decorrelated spectral characteristics. These

Fig. 5 Algorithmic steps of the SVD-ICA model.

columns are then multiplied by an orthogonal matrix
P to ensure maximum independence. The model’s
notations are as follows:

Yn D VnP (10)

and
Vn D Un˙nP (11)

It is highlighted that, for the SVD, only a handful
of frequency and time characteristics, contributing
to approximately 99:9% of the signal’s energy, are
preserved. The MATLAB svd function performs SVD.
Whenever the ICA is applied to the columns of Un, Un

is multiplied by an orthogonal matrix P , such that the
columns of UnP are as independent as possible. The
model’s hypotheses indicate that the searched separate
components are the matrices,

TSIi D yiv
T
i (12)

where yi are the columns of UnP and vi are those of
Vn˙nP . To find the corresponding temporal signals, it is
necessary to invert the TSIs using the Inverse Continuous
Wavelet Transform (ICWT) algorithms.

3.3 Description of CNN model

As shown in Fig. 6, the original objective of our
algorithm is to predict the class of the input ECG
images TSI by separating them into two crucial output
components: by providing an image as input to the
network, it undergoes many convolutions, subsamples,
and a completely connected layer before producing
output. In the following paragraphs, we discuss the
crucial phases in our treatment.
3.3.1 Convolution process
The first step of our approach is the convolution process.
In this phase, we will cover feature detectors and

Fig. 6 CNN model.
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fundamentally neural network filters. The convolution
layer computes the output of neurons connected to
local regions or receptive fields in the input, among
each neuron generating a linear combination between
its weights and the local receptive field to which it is
connected in the input volume. So every computation
provides a feature map extracted from the input image.
Furthermore, we will use Rectified Linear Unit (ReLU)
to improve the non-linearity of data images.

3.3.2 Pooling and flattening
Throughout this section, we may explore the maximum
pooling that enables the CNN to recognize the image
displayed. After completing the previous two phases,
we should possess a database of grouped entities. As
indicated by the name of this phase, we will flatten our
columnar map of features. As shown in Fig. 7, various
characteristic cards from the previous step have been
joined. After the flattening phase, you have been left
with a long vector of input data, which is then transmitted
through all the artificial neural networks to be processed.

3.3.3 Full connection
In this phase, the input layer contains the data vector
created during the flattening step, which encodes all
functionality distilled over the previous stages. They are
already perfectly adequate for a high level of accuracy in
class recognition at this point. We will now progress to
the next degree of intricacy and precision. Establishing
a CNN significantly boosts the ability to classify images.
The artificial neural network must start by taking this
input and integrating the features into a more varied set
of properties. In the following section, we would like to
compile and import our database to ensure the system
can learn the two types of images.

1 1 0

4 2 1

0 2 1

1

1

0

4

2

0

0

2

1

Flattening

Pooled feature map

Fig. 7 Characteristic cards.

4 Result and Discussion

4.1 Result

4.1.1 Observed signal
The extraction of the FECG from cutaneous recordings
consists of a single channel extracted from the
international database Daisy[30]. We present three signals
evaluated from the mother’s abdomen, whereas only
a single signal is employed in our investigation. The
X.t/ signal shown in Fig. 8 is a mixture of FECG and
MECG signals, with the QRS complexes of each signal
being far more distinct despite the FECG’s smallish
amplitude. We will present the simulation results based
on the approach described in this work to determine the
MECG and FECG signals. Per the global algorithm (see
Fig. 2), we will start with constructing TSIs and the
TFIs which thanks to the CWT modules and the STFT.
Then we will apply, on the one hand, the NMF methods
to generate the target database of the CNN model. On
the other hand, the SVD-ICA methods will be applied
to create the FECG and MECG signals to be compared
with the outputs of the CNN model. All simulations are
done on Matlab 2019a and python 5.2.

4.1.2 SVD-ICA methods
Figure 9 shows the results obtained through the model
simulation described in Section 3.2.1. It is noted that
the SVD-ICA method enables the FECGt and MECGt
scalograms to be tested with the CNN model to
determine the images closest to reality, and once the test
is confirmed, we will proceed to the determination of the
ICWT to identify the accurate signals denoted FECGr
and MECGr. We also note that all iterations at the SVD-

Fig. 8 Observed signals.
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Fig. 9 FECGr and MECGr signals.

ICA algorithm level depend on the independence criteria
defining the ICA statistical methods implemented here
by the JADE algorithm[31].

4.1.3 Generation of data
Applying the NMF to the signal X.t/, which is
considered a matrix, allows us to isolate the fetal QRS
complexes from the maternal ones. To establish the
required database, we’ll next implement a time-scale
analysis by shifting the scale from 0.1 to 100 000.
The temporal representation of the submatrix Y.t/

extracted from X.t/ using the NMF is illustrated in
Fig. 10. Y4.t/ is the temporal representation of Y.t/ after
applying the data-adaptive multiresolution technique like
Empirical Mode Decomposition (EMD)[32] of submatrix
Y . Therefore, we can generate the required number of
TSI images by determining the modulus of CWT of each
Yi . It has been reported that the NMF and EMD tools can
be used to generate a mother database consisting of many
images used in the CNN test to classify the onrushing
shots. The two maternal and fetal databases result from
the richness of the wavelet processing. Therefore the
nature of the wavelet and the desired scales will change
each time. Figure 11 demonstrates a selection of these
images. Z.t/ is the mother temporal representation of
the submatrix related to the MECG and extracted from
X.t/ using the NMF. The TSI images of FECG and
MECG are given in Fig. 12 by using CWT combined
with NMF. On a scale from 1 to 10, 1 to 16, 1 to 20,
and 1 to 25. The data generated using the “mexh” and
“cgau2” wavelets are displayed in Fig. 13.

4.1.4 CNN model
In this, we endeavor to import and compile our database
to ensure that the machine can learn to differentiate
between the different types of images (Fig. 14a).

Fig. 10 Submatrix Y(t).

Fig. 11 Model data tree.

Afterwards, our database is separated into two classes
(training/test) (Fig. 14b). In the model’s training stage,
we chose 25 epochs representing a loop that repeats the
learning processing of the images over 254 turns. The
result is the following (Fig. 14c). The usefulness of
our model is then demonstrated by using it to predict
the classification of a manufacturer image. Graphs of
the findings are shown in Fig. 15. It’s a significant
improvement over the previous model, allowing for an
increased accuracy of 95%. As a last resort, increasing
the number of training iterations yields promising
outcomes.
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Fig. 12 TSI images of FECG and MECG.

Fig. 13 Data generated using the “mexh” and “cgau2”
wavelets.

Fig. 14 CNN model results.

4.1.5 Extracted signal FECG
After numerous iterations of SVD-ICA, the CNN
algorithm terminates the process when the recognized
signal resembles the ideal outcome generated from the
CWT-NMF model. Figure 16 provides the optimum

Fig. 15 Loss and accuracy for different models.

Fig. 16 Extracted signal FECG.

FECG signal. The classification of the fetal QRS
complex is depicted in the same diagram.

4.2 Discussion

The methods proposed in this work have provided
spectacular results. The extracted FECG signal has
an SNR ratio of approximately zero; furthermore, the
implementation and programming time is minimal.
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Compared with other recent works in the field[32–36], the
presented approach is much more reliable and accurate.
On the one hand, the process is based on very subtle
mathematics tools that can be developed numerically
even for twins and are easily implemented in real-time
using embedded systems such as DSP or Raspberry. On
the other hand, a remarkable added value of this paper
is that it combines the CNN model, one of the most
profound algorithms of Deep Learning, with the previous
mathematical methods. This tool ensures a comparison
with the ideal case and therefore makes it possible to
extract an FECG signal as close as possible to reality,
which leads to a reliable medical diagnosis based on a
single electrode, i.e, from a medical perspective, we will
avoid all the risks of using a lot of sensors to the health
of the mother and her fetus that come from the cables,
current waves, and electric tension. It is also noted that
the data used in the CNN model is self-generated, can
range into millions, and can be used by any researcher
or academic. Another database can be generated using
the time-frequency analysis based on the STFT tool.
Figure 17 shows the time-frequency images formed by
the STFT tool, subdivided by the SVD-ICA algorithm,
and spread out to millions by varying the properties
of the window, its width, nonequispaced fast Fourier
transforms, and the overlap using the spectrum function
on Matlab.

The CNN model has demonstrated its efficiency
through the results and graphs, which compare the
accuracy values to the loss values and demonstrate that
the model has a 94% performance level. This study may

Fig. 17 FECG and MECG spectrograms.

benefit us in expanding to a subsequent perceptual level,
such as separation using the K-means model.

The undeniable value of wavelets in biomedical
engineering is highlighted in this work. Additionally, it
is mentioned that this mathematical tool can be applied
to energy[37–39] and motor control[40, 41] for electric
vehicles.

5 Conclusion

This paper introduces an innovative approach for
processing biomedical signals, especially for monitoring
the fetal heartbeat using a single electrode implanted
in the mother’s abdomen. This research investigated
various mathematical algorithms, including ICA, SVD,
NMF, and EMD. The exciting aspect of our investigation
is the incorporation of artificial intelligence, notably the
CNN algorithm as a filtering and classification algorithm,
to assist us in identifying the temporal signal associated
with fetal electrical activity. It has been reported that the
invested model can also work effectively for twins by
simply increasing the number of epochs. Effectiveness is
proven by the optimal processing time of the developed
algorithms and the reliability of the reconstructed signal.
This reveals the potential for exploiting the proposed
approaches in cardiology and cardiopediatrics, given
that 1 out of 125 newborns die each year due to heart
defects that begin sadly in the first weeks of pregnancy
and can be easily identified and handled if we can recover
to the fetal electrocardiogram signal. This model allows
cardiologists to check for these irregularities in real-
time from a flying lab. Subsequently, this paper lays
the groundwork for researchers to integrate artificial
intelligence systems into the field of statistical learning
and signal processing, which involves the challenges of
data processing and big data.
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