Jesus Salva

Sequência de números é um assunto extremamente relevante, pois a partir desse estudo podemos extrair as ideias de proximidade entre elementos de conjuntos, e os próprios conjuntos, entre outras ideias incríveis.

Aqui, vamos assumir que $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$ e as operações realizadas em \mathbb{R} . Iniciaremos com uma máxima, proposição que não é provada, que é o alicerce da teoria, dizemos axioma. Uma afirmação com validade reconhecida. Nosso primeiro será o conhecido Principio de Boa Ordem:

Axioma 1 (PBO) Todo conjunto não-vazio de inteiros positivos possui um elemento mínimo.

Vamos definir sequência numérica.

Definção 1 Uma sequência numérica é uma função do conjunto dos naturais nos complexos,

$$f: \mathbb{N} \to \mathbb{R}$$

O número complexo f(n) é chamado n-ésimo termo da sequência.

Conhecida como o método babilônico, ou de Newton, para encontrar a raiz quadrada de um número r.

$$a(n) = \frac{a(n-1) + \frac{r}{a(n-1)}}{2} \tag{1}$$

onde $r \geq 0$.

Quando uma sequência numérica caminha para um valor dizemos que a sequência *converge* para algum valor. Para que a sequência (1) seja válida é preciso que seja convergente, pois cada número possui apenas uma única raiz quadrada. A baixo temos a definição formal de convergência.

Definção 2 A sequência (x_n) converge para y se, para todo $\epsilon > 0$ existe n, tal que

$$m > n \Rightarrow |x_m - y| < \epsilon$$
 (2)

A definição acima diz que a medida que n cresce a diferença entre o valor x(n) se aproxima de y.

Agora podemos provar que a a(n) converge. Ou seja, vamos provar que a medida que n cresce a(n) se aproxima de r.

Prova 1 A ideia é criar um conjunto de ϵ 's tais que para cada ϵ escolhido tenhamos um n (passo) que mantenha a verdadeira a condição $|a(n)-r| < \epsilon$.

A baixo temos duas relações importantes:

$$\left| \frac{|a(n-1)^2 - r|}{a(n-1)} \right| = \frac{\epsilon_{n-1}''}{|a(n-1)|} = \epsilon_{n-1}'$$
 (3)

$$|a(n)^{2} - r| = \epsilon_{n} = \frac{1}{4} \left| \frac{a(n-1)^{2} - r}{a(n-1)} \right|^{2}$$
(4)

Vamos analisar a escolha do ϵ Caso o $\epsilon_{n-1} = max\{\epsilon'_{n-1}, \epsilon''_{n-1}\}$. A escolha desse ϵ'_{n-1} garante ainda que $|a(n-1)-r| < \epsilon_{n-1}$. Observa-se que:

$$\epsilon_n < \epsilon_{n-1}$$
.

É fácil de verificar que $\epsilon_n, \epsilon_n^2 < \epsilon_{n-1}$. Isso implica que a escolha que $\max\{\epsilon_n, \epsilon_n^2\} < \max\{\epsilon_{n-1}, \epsilon_{n-1}^2\}$. Portanto, $\epsilon_{n+1} < \epsilon_n$. Por meio do axioma 1 pode-se provar que $\forall n (\epsilon_n < \epsilon_{n+1})$. Vou indicar o inicio da prova, tome um m como menor inteiro tal que $\epsilon_m > \epsilon_n$. Desse modo chegará, por absurdo, que o conjunto formado por tal afirmação é vazio.

Vamos associar o ϵ_n com o ϵ_0 através de $\epsilon_n = \frac{1}{4}\epsilon_{n-1}$, uma progressão geométrica. Temos portanto, $\epsilon_n = \frac{1}{4^n}\epsilon_0$. Para encontrarmos o n dependente de ϵ , basta fazer $n(\epsilon) = \frac{\log\left(\frac{\epsilon_0}{\epsilon}\right)}{\log 4}$. Isso significa que para que a(n) esteja a uma distância menor que ϵ de r basta dar $n(\epsilon)$ passos.

O programa destaca a escolha dos números para se obter a raiz por meio do método acima, a posição inicial, e o passo. Assim pode-se observar o comportamento da convergência tanto pelos números quanto pelo gráfico gerado no programa. O interessante é notar que obtém-se as raízes negativas também!

a

Glórias ao Grande Deus!