Please check the examination details below	v before entering your candidate information			
Candidate surname	Other names			
Pearson Edexcel International GCSE	Candidate Number			
Monday 20 January 2020				
Afternoon (Time: 1 hour 15 minutes)	Paper Reference 4CH1/2C			
Chemistry Unit: 4CH1 Paper 2C				
You must have: Calculator, ruler	Total Marks			

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

Information

- The total mark for this paper is 70.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

The Periodic Table of the Elements

4 Heilium 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4	λ
	Ţ
7 19 19 19 80 80 80 81 127 127 127 127 188 853	orted but not
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ive been rep
5 National N	s 112-116 ha authenticated
C carbon 6 Si silicon 112	omic number
3 B boron 5 A aluminishm 113 A 115 B	Elements with atomic numbers 112-116 have been reported but not fully authenticated
65 Zn 30 30 112 Cd cadmium 48 mercury 80	Elem
63.5 Cu copper 29 108 Ag silver 47 Au gold 79 79 [272]	Rg roentgenium 111
59 Ni nickel 28 28 106 Pd 46 Pallactium 46 Pt	Ds darmstadtium 110
	Mt meitnerium 109
1 Hydrogen 7 S6 Fe ricon 26 101 Ru ruthenium 44 44 76 76 77]	Hs hassium 108
E	Bh bohrium 107
mass bol number chromium 24 ohromium 24 showlybdenum 42 H84 W tungsten 74 Te66]	Sg seaborgium 106
relative atomic mass atomic (proton) number atomic (proton) number by 1 charaction atomic (proton) number contain molobium atomic (proton) number chromin atomic (proton) number atomic	Db dubnium 105
relati at atomic atomic atomic 48 Ti titanium 22 91 Ar Aronium 178 HF hafinium 72	Rf rutherfordium 104
■ "	Ac* actinium 89
9 Be beryllium 4 A 4 Ba calcluum 20 88 Sr strontium 38 barium 56 [226]	Ra radium 88
1 Li lithium 3 23 Na sodium 111 39 K potassium 19 85 Rb rubidium 37 133 Cs caesium 55	Fr francium 87

^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

		Answer A	LL questi	ons.		
1	This question is about elemen	nts, compounds	and mixtu	res.		
	(a) Name the element that be	urns with a lilac	flame.			(1)
	(b) Name the technique used	I to separate the	mixture o	f colours in black ink.		(1)
	(c) The box gives the names	of some substar	ices.			
	air bromine	magnesium	neon	sodium chloride	sulfur	
	Choose substances from t	the box to answe	er these qu	uestions.		_
	(i) Identify the compoun	d.				(1)
	(ii) Identify the mixture.					(1)
	(iii) Identify the non-meta	l element that is	a solid at	room temperature.		(1)

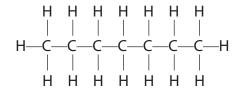
- **2** Crude oil is a mixture of hydrocarbons.
 - (a) Name the process used to separate crude oil into fractions.

(1)

(b) Give one use of the kerosene fraction.

(1)

- (c) One of the hydrocarbons in the refinery gas fraction is an alkane with the structural formula CH₃CH₂CH₂CH₃
 - (i) Give the name of this alkane.


(1)

(ii) Calculate the relative molecular mass (M_r) of this alkane.

(1)

 $M_{\rm r} =$

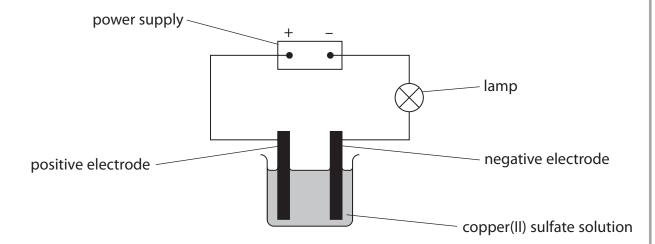
(d) One of the alkanes in the gasoline fraction has the displayed formula

(i) Determine the molecular formula of this alkane.

(1)

(ii) Give the general formula for the alkanes.

(1)


(e) Catalytic cracking is used to convert long-chain alkanes into shorter-chain alkanes.		
(i) Name the catalyst used in catalytic cracking.	(1)	
(ii) Explain why it is necessary to convert long-chain alkanes into shorter-chain alk	canes. (2)	
(f) Catalytic cracking also produces alkenes.		
$C_{11}H_{24}$ can undergo cracking to give pentane (C_5H_{12}) and two different alkenes.		
Complete the equation for this cracking reaction.	(2)	
$C_{11}H_{24} \rightarrow C_5H_{12} + \dots + \dots + \dots + \dots$		
(Total for Question 2 = 11 ma	rks)	

- 3 This question is about copper and its compounds.
 - (a) Copper is a metal used for electrical wiring.

Explain why copper is a good conductor of electricity.

(2)

(b) This apparatus is used to investigate the electrolysis of copper(II) sulfate solution with graphite electrodes.

Copper forms at the negative electrode and oxygen forms at the positive electrode.

(i) State what would be observed at each electrode.

(2)

negative electrode

positive electrode

(ii) The ionic half-equation for the reaction at the negative electrode is

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

State why this is a reduction reaction.

(1)

	(iii) Explain why the copper(II) sulfate solution becomes paler blue during the electrolys (2)	iis.
(c) When hydrated copper(II) sulfate crystals are heated, anhydrous copper(II) sulfate forms	5.
	A mass of 12.5 g of hydrated copper(II) sulfate crystals is heated in a crucible until all the water of crystallisation is removed.	
	A mass of 8.0 g of anhydrous copper(II) sulfate forms.	
	Show by calculation that the formula of hydrated copper(II) sulfate is CuSO ₄ .5H ₂ O	

 $[M_{\rm r} \text{ of CuSO}_4 = 159.5 \qquad M_{\rm r} \text{ of H}_2 \text{O} = 18]$

(Total for Question 3 = 11 marks)

(4)

4 A student investigates the reaction between sodium hydroxide solution and dilute sulfuric acid.

He does a titration to find the concentration of the sulfuric acid.

This is his plan for the titration. There are some mistakes and omissions in his plan.

- rinse a conical flask with the sodium hydroxide solution
- use a measuring cylinder to measure out 25 cm³ of the sodium hydroxide solution and add it to the conical flask
- add a few drops of methyl orange indicator to the conical flask
- rinse a burette with water and then fill it with the sulfuric acid
- add the acid from the burette to the conical flask until the indicator changes colour at the end-point of the titration
- record the final burette reading

	(a) Give the colour change of the methyl orange indicator at the end-point.		
	from to		
1	(b) Describe four changes that the student could make to improve hi	(4)	
2			
3			
4			

(c) The student then does the titration correctly.

He finds that 16.70 cm³ of the dilute sulfuric acid neutralises 25.0 cm³ of sodium hydroxide solution of concentration 0.200 mol/dm³

The equation for the reaction is

$$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$$

Calculate the concentration, in mol/dm³, of the sulfuric acid.

(3)

concentration of sulfuric acid =mol/dm³

(Total for Question 4 = 9 marks)

- **5** Oxygen can be prepared from hydrogen peroxide using a catalyst.
 - (a) Which is a correct statement about oxygen?

(1)

- ☑ A it burns with a squeaky pop
- **B** it relights a glowing splint
- C it turns blue litmus red
- ☑ D it turns limewater milky
- (b) Explain how a catalyst increases the rate of a reaction.

(2)

(c) The equation for the preparation of oxygen from hydrogen peroxide is

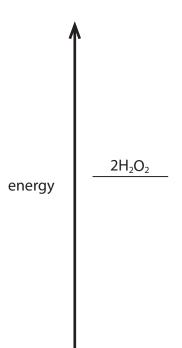
$$2H_2O_2 \rightarrow 2H_2O + O_2$$

This equation can also be written using displayed formulae to show all the covalent bonds in the molecules.

$$2H-0-0-H \rightarrow 2H-0-H + 0=0$$

The table gives the bond energies for these bonds.

Bond	Н—О	0—0	0=0
Bond energy in kJ/mol	463	143	498


(i) Use the values in the table to calculate the enthalpy change, ΔH , for the reaction. Include a sign in your answer.

(3)

$$\Delta H = k$$

(ii) Complete the energy level diagram to show the position of the products and the enthalpy change, ΔH , for the reaction.

(2)

(Total for Question 5 = 8 marks)

6	Ethanol, C₂H₅OH, can be manufactured from ethene and steam using a phosphoric	acid catalyst.
	(a) (i) State the temperature and pressure used in this manufacturing process.	(2)
tei	mperature	
pr	essure	
	(ii) Draw the displayed formula of ethanol.	(1)
	(b) Ethanol burns in a plentiful supply of air to form carbon dioxide and water.(i) Give the chemical equation for this reaction.	(2)
	(ii) When the air supply is limited, incomplete combustion occurs and carbon monoxide forms. State why carbon monoxide is poisonous to humans.	(1)
	(c) When ethanol reacts with ethanoic acid, an ester forms. Give the name of this ester.	(1)

- (d) Butanedioic acid and ethanediol react together to form a polyester and water.
 - (i) Give the name of this type of polymerisation.

(1)

(ii) Complete the equation.

Show only one repeat unit of the polyester.

(3)

+

HO—CH₂CH₂—OH

(Total for Question 6 = 11 marks)

7	This qu	uestion is about some Group 2 elements and their compounds.	
	(a) Cal	cium reacts with water to produce calcium hydroxide and hydrogen gas.	
	(i)	Give the word equation for this reaction.	(1)
1	(ii)	State two observations that would be made during this reaction.	(2)
2	(b) (i)	Describe how a pure, dry sample of the insoluble salt, barium sulfate, could be made from the two solids sodium sulfate and barium chloride.	(5)
	(ii)	Give an ionic equation for the reaction that occurs.	
		Include state symbols in your equation.	(2)

(c) When magnesium nitrate is heated, magnesium oxide, nitrogen dioxide and oxygen form.

The equation for the reaction is

$$2Mg(NO_3)_2(s) \, \rightarrow \, 2MgO(s) \, + \, 4NO_2(g) \, + \, O_2(g)$$

(i) What is the name for this type of reaction?

(1)

- A addition
- B combustion
- **D** neutralisation

(ii) Calculate the **total** volume, in dm³, of gas produced at rtp when 7.7 g of magnesium nitrate completely reacts.

[Assume that the molar volume of a gas at rtp is 24 dm³]

$$[M_{\rm r} \text{ of Mg}(NO_3)_2 = 148]$$

Give your answer to two significant figures.

(4)

total volume of gas =dm³

(Total for Question 7 = 15 marks)

TOTAL FOR PAPER = 70 MARKS