Please check the examination details belo	ow before entering your candidate information
Candidate surname	Other names
Centre Number Candidate Nu Centre Number Candidate Nu Pearson Edexcel Intern	national Advanced Level
Wednesday 22 Janu	ary 2025
Afternoon (Time: 1 hour 20 minutes)	Paper reference WCH16/01
Chemistry	
International Advanced Le UNIT 6: Practical Skills in	
You must have: Scientific calculator, ruler	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

This question is about experiments involving chromium ions or compounds containing chromium.	
(a) A small amount of chromium(III) sulfate was dissolved in deionised water, a solution containing a complex ion.	forming
(i) Give the colour of the solution formed.	(1)
(ii) State the formula of the complex ion.	(1)
(b) Sodium hydroxide solution was added slowly to the complex ion solution solid, Q , formed. The solid was then separated by filtering under reduced pressure.	until a
(i) State the formula of Q .	(1)
(ii) Draw a labelled diagram of the apparatus used to filter under reduced pressure.	(3)

DO NOT WRITE IN THIS AREA

gravity filtration.	(2)
(c) A sample of solid Q was added to manganese(IV) oxide and excess sulfuric acid. A redox reaction occurred forming a mixture containing dichromate(VI) ions, $Cr_2O_7^{2-}(aq)$.	
$3MnO_2(s) + 4H^+(aq) + 2\mathbf{Q}(s) \rightarrow 3Mn^{2+}(aq) + Cr_2O_7^{2-}(aq) + 5H_2O(l)$	
Describe what you would see in this reaction.	
	(2)
 d) Excess sodium hydroxide solution was added to a second sample of solid Q, forming a green solution. 	
(i) Give the formula of the complex ion that forms the green colour.	
	(1)
(ii) Name the type of reaction that has taken place.	(1)
	(-)
(Total for Question 1 = 12 m	arks)

2 This question is about synthetic dyes.

The compound 4-chlorophenol is used in the synthesis of a dye, called solvent orange 86.

(b) The student suggested using the apparatus shown to carry out the heating under reflux in Step **2**. There are **two** mistakes with this set-up.

Identify the two mistakes, in each case describing the problem that would occur due to this error.

You should assume the apparatus is supported using appropriate clamps.

(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c) Diazonium ions can react to form azo dyes. The ions are formed as shown.

The diazonium ions then react with phenol in alkaline solution to form the azo dye.

Procedure

Step 1 Two test tubes containing the reactants are left to stand in ice-water baths for five minutes as shown.

Step 2 The contents of test tube B are carefully poured into test tube A.

Step 3 The impure azo dye is separated by filtering under reduced pressure.

Step **4** The impure azo dye is recrystallised using ethanol as the solvent.

Step **5** The purified sample of azo dye is dried.

6

(i)	Give the systematic name of HNO_2 .	(1)
(ii)	State why the HNO_2 is formed when required in test tube A, rather than bought from a chemical supplier.	(1)
(iii)	Explain why the test tubes in Step 1 are left in an ice-water bath for five minutes.	(2)
(iv)	Explain why a student carrying out Step 4 was told to ensure they used the minimum amount of hot ethanol to dissolve the azo dye.	(3)

P 7 8 4 6 0 A 0 8 1 6

3 Compound **X** is a colourless, viscous liquid used in the manufacture of fragrances and resins.

Molecules of **X** contain the elements carbon, hydrogen and oxygen only and have **one** functional group.

- (a) Qualitative tests on **X** show that it
 - burns in air with a very smoky flame
 - forms an orange precipitate with 2,4-dinitrophenylhydrazine (Brady's reagent)
 - does not form a red precipitate when warmed with Fehling's solution
 - forms a yellow precipitate when warmed with iodine in sodium hydroxide solution.

Explain what can be deduced about the structure of **X** from **each** of these findings.

DO NOT WRITE IN THIS AREA

(b) Complete combustion of 4.70 g of X produces 13.80 g of carbon dioxide and 2.82 g of water.	
Determine the empirical formula of X.	(4)
(c) The molecular formula of X is the same as its empirical formula. Use this information, and your answers to (a) and (b), to deduce the structu	ure of X . (1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 3 = 9 marks)

4 Phenolphthalein is an indicator used in acid-base titrations. It can be represented by the simplified formula H₂In. When mixed with an excess of hydroxide ions it reacts rapidly, forming a pink solution, due to the ion In²⁻.

The pink colour then fades as the colourless ion $InOH^{3-}$ forms.

 $\begin{array}{rll} In^{2-}(aq) &+& OH^{-}(aq) &\rightarrow& InOH^{3-}(aq)\\ pink && colourless \end{array}$

(a) A student carried out an experiment to find the order of this reaction with respect to In^{2-} .

A solution of phenolphthalein was mixed with a large excess of potassium hydroxide solution.

The resulting solution contains In^{2-} of concentration 0.00500 mol dm⁻³.

The concentration of In²⁻ was measured over a time period of 300 seconds.

Time /s	Concentration of In^{2-} / mol dm ⁻³
0	0.00500
30	0.00380
60	0.00280
120	0.00150
150	0.00110
210	0.00060
270	0.00030
300	0.00020

11

DO NOT WRITE IN THIS AREA

		(2)
(v)	Explain why the results of this experiment do not allow the overall order of the reaction to be determined.	
	Justify your answer.	(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

A graph of ln(rate) against 1÷temperature was plotted using the data obtained.

(i) Calculate the activation energy for the reaction, using the gradient of the graph and the Arrhenius equation shown.

Give your answer to an appropriate number of significant figures, including a sign and units.

$$\ln k = -\frac{E_{a}}{R} \times \frac{1}{T} + \ln(\text{collision factor}) \qquad R = 8.31 \,\text{Jmol}^{-1} \,\text{K}^{-1}$$

(3)

(ii)	A value for ln(collision factor) of -4.4, given to two significant figures,
	was suggested by the student.

State whether or not you agree with this value. Justify your answer.

(Total for Question 4 = 14 marks)

TOTAL FOR PAPER = 50 MARKS

0 (8)	(18) 4.0 hetium 2	20.2 Ne neon 10 39.9 Ar argon 18	83.8 Kr krypton 36	131.3 Xe xenon 54	[222] Rn radon 86	ted		
7	(17)	19.0 F fluorine 9 35.5 CI chlorine 17	79.9 Br bromine 35	126.9 I iodine 53	[210] At astatine 85	oeen repor	175 Lu lutetium 71	[257] Lr lawrencium 103
ę	(16)	16.0 0 8 32.1 32.1 sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	[209] Po Polonium 84	116 have t nticated	173 Yb ytterbium 70	[254] No nobelium 102
ъ	(15)	14.0 N nitrogen 7 31.0 Phosphorus 15	74.9 AS arsenic 33	121.8 Sb antimony 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated	169 Tm thulium 69	[256] Md mendetevium 101
4	(14)	12.0 C carbon 6 28.1 28.1 Si silicon	72.6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb lead 82	itha	167 Er erbium 68	[253] Fm fermium 100
m	(13)	10.8 B boron 5 27.0 Al aluminium 13	69.7 Ga gallium 31	114.8 In indium 49	204.4 Tl thallium 81		165 Ho holmium 67	[254] Es einsteinium 99
2		(12)	65.4 Zn _{zinc} 30	112.4 Cd cadmium 48	200.6 Hg mercury 80	Elen	163 Dy dysprosium 66	[251] Cf californium 98
		(11)	63.5 Cu ^{copper} 29	107.9 Ag silver 47	197.0 Au ^{gold} 79	[272] Rg 111	159 Tb terbium 65	[245] BK berketium 97
5		(10)	58.7 Ni ^{nickel} 28	106.4 Pd palladium 46	195.1 Pt platinum 78	[271] [272] Ds Rg damstadtium roentgenium 110 111	157 Gd gadolinium 64	[247] Cm aurium 96
200		(6)	58.9 Co cobalt 27	102.9 Rh rhodium 45	192.2 Ir iridium 77	[268] Mt meitnerium 109	152 Eu europium 63	[243] Am americium 95
	1:0 Hydrogen	(8)	55.8 Fe iron 26	101.1 Ru ruthenium 44	190.2 Os osmium 76	[277] Hs hassium 108	150 Sm samarium 62	[242] Pu plutonium 94
		(2)	52.0 54.9 Cr Mn chromium manganese 24 25	[98] Tc technetium 43	186.2 Re rhenium 75	[264] Bh bohrium 107	[147] Pm promethium 61	[237] Np neptunium 93
-		mass bol umber (6)	52.0 Cr chromium 24	95.9 [98] Mo Tc molybdenum technetium 42 43	183.8 V tungsten 74	[266] Sg seaborgium 106	141 144 [147] Pr Nd Pm praceodymium neodymium promethium 59 60 61	238 U uranium 92
	Key	relative atomic mass atomic symbol name atomic (proton) number (4) (5) (6)	50.9 V vanadium 23	92.9 Nb niobium 41	180.9 Ta tantalum 73	[262] Db dubnium 105	141 Pr 59	[231] Pa protactinium 91
		relati atomic (4)	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf rutherfordium 104	140 Ce cerium 58	232 Th thorium 90
		(3)	45.0 Sc scandium 21	88.9 Yttrium 39	138.9 La* lanthanum 57	[227] AC* actinium 89	S	
2	(2)	9.0 Be beryllium 4 24.3 Mg magnesium 12	40.1 Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium 56	[226] Ra radium 88	* Lanthanide series	* Actinide series
~	(E)	6.9 Li litthium 3 23.0 23.0 23.0 Na sodium 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr francium 87	* Lanth	* Actini

16