| Please check the examination details belo | ow before ente | ering your candidate information | |---|--------------------|----------------------------------| | Candidate surname | | Other names | | | | | | Centre Number Candidate Nu | ımber | | | | | | | Pearson Edexcel Inter | nation | al Advanced Level | | Tuesday 22 October | 2024 | | | Morning (Time: 1 hour 45 minutes) | Paper
reference | WCH14/01 | | Chemistry | | O • | | International Advanced Le | vel | | | IINIT 1: Pates Equilibria | and Eur | thor | | UNIT 4: Rates, Equilibria a | ilia Ful (| iller | | Organic Chemistry | | | | | | | | You must have: | | Total Marks | | Scientific calculator, Data Booklet, rule | r | | | | | | ### Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions. - Answer the questions in the spaces provided - there may be more space than you need. # Information - The total mark for this paper is 90. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - In the question marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically, showing how the points that you make are related or follow on from each other where appropriate. - A Periodic Table is printed on the back cover of this paper. ### **Advice** - Read each question carefully before you start to answer it. - Show all your working in calculations and include units where appropriate. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ #### **SECTION A** # Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . **1** An ester has the structure shown. Which pair of reactants would form this ester, under suitable conditions? - A butanoic acid and propan-2-ol - **B** butanoyl chloride and propan-1-ol - C propanoic acid and butan-1-ol - D propanoyl chloride and butan-2-ol (Total for Question 1 = 1 mark) - 2 Which compound will have the **highest** boiling temperature? - A CH₃CH₂CH₂CH₂CH₃ - B CH₃CH₂CH₂CHO - C CH₃COCH₂CH₃ - □ CH₃CH₂COOH (Total for Question 2 = 1 mark) Use this space for any rough working. Anything you write in this space will gain no credit. **3** The steroid nandrolone has the structure shown. (a) How many chiral centres are present in nandrolone? (1) - A six - **B** seven - C eight - **D** nine - (b) Nandrolone is broken down in the body into the compound shown. What reactions have taken place to form the new bonds at position 1 and position 2? (1) - X B - ⊠ C | 2 | |---| | n | | | | n | | | | | (c) A sample containing $2 \times 10^{-9} \, \text{g cm}^{-3}$ of nandrolone was analysed using gas chromatography. The chromatogram produced is shown. A second sample containing $4\times10^{-9}\,\mathrm{g\,cm^{-3}}$ of nandrolone was also analysed using gas chromatography, under the same conditions. Which is the chromatogram produced by this second sample? 4 (Total for Question 3 = 3 marks) **4** A titration curve for the titration of an acid with a strong base is shown. What could be the formula of the acid? - A HX - \square **B** HX₂ - \square C H₂X - \square **D** H₃X (Total for Question 4 = 1 mark) **5** Ethanoic acid, CH₃COOH, can react with a hydrogensulfite ion, HSO₃. Which is a correct acid conjugate-base pair for this reaction? [K_a for ethanoic acid = 1.7×10^{-5} mol dm⁻³ K_a for hydrogensulfite ion = $6.2 \times 10^{-8} \, \text{mol dm}^{-3}$] | | | Acid | Conjugate-base | |---|---|------------------|---------------------------------| | X | Α | HSO ₃ | SO ₃ ²⁻ | | X | В | HSO ₃ | H ₂ SO ₃ | | X | C | CH₃COOH | CH ₃ CO ₂ | | X | D | CH₃COOH | CH₃COOH₂ ⁺ | (Total for Question 5 = 1 mark) - **6** Which indicator can be used to show the end-point of a titration between hydrochloric acid, HCl(aq), and ammonia solution, NH₃(aq)? - A universal indicator - **B** phenolphthalein - C phenol red - D methyl orange (Total for Question 6 = 1 mark) **7** Phenolphthalein is a very weak acid and it forms a colourless solution under acidic conditions. Sodium hydroxide is titrated against hydrochloric acid using phenolphthalein indicator. At the end-point, the solution is pink because phenolphthalein - A accepts hydroxide ions and becomes a cation - **B** accepts hydroxide ions and becomes an anion - C donates hydrogen ions and becomes a cation - **D** donates hydrogen ions and becomes an anion (Total for Question 7 = 1 mark) **8** The dissociation of water is an endothermic reaction. $$H_2O(l) \rightleftharpoons H^+(ag) + OH^-(ag) \Delta H$$ is positive $$[K_{\rm w} = 1.0 \times 10^{-14} \, {\rm mol^2 \, dm^{-6}} \, {\rm at} \, 298 \, {\rm K}$$ $K_{\rm w} = 2.92 \times 10^{-14} \, {\rm mol^2 \, dm^{-6}} \, {\rm at} \, 313 \, {\rm K}]$ What is the best **estimate** of the pH of water at 313 K? - **B** 7.0 - **■ C** 6.8 - **■ D** 5.8 (Total for Question 8 = 1 mark) Use this space for any rough working. Anything you write in this space will gain no credit. **9** Magnesium nitrate decomposes on heating as shown. $$Mg(NO_3)_2(s) \ \rightleftharpoons \ MgO(s) \ + \ 2NO_2(g) \ + \ 1/2O_2(g)$$ What is the expression for the equilibrium constant, K_p , for this reaction? - \square **A** $K_p = p(NO_2)^2 p(O_2)^{1/2}$ (Total for Question 9 = 1 mark) Use this space for any rough working. Anything you write in this space will gain no credit. **10** Which test can be used to distinguish between each of the pairs of compounds shown? (a) - A warm each compound with Tollens' reagent - **B** add sodium carbonate solution to each compound - **C** warm each compound with iodine under alkaline conditions - **D** add phosphorus(V) chloride to each compound (b) (1) (1) - A warm each compound with Tollens' reagent - **B** add sodium carbonate solution to each compound - C warm each compound with iodine under alkaline conditions - **D** add phosphorus(V) chloride to each compound (c) (1) - A warm each compound with Tollens' reagent - **B** add sodium carbonate solution to each compound - C warm each compound with iodine under alkaline conditions - **D** add phosphorus(V) chloride to each compound (Total for Question 10 = 3 marks) 11 Some thermodynamic information is shown for four reactions, W, X, Y and Z, at 298 K. | Reaction | ΔН | $T\Delta S_{ ext{system}}$ | |----------|--|--| | W | negative and with a larger negative value than $T\Delta S_{\text{system}}$ | negative | | Х | negative | positive | | Y | positive | positive and with a smaller positive value than ΔH | | Z | positive | negative | Which of these reactions are feasible at 298 K? - A X only - B W and X only - **D** W and Z only (Total for Question 11 = 1 mark) **12** Which isomer has the most peaks in its ¹³C NMR spectrum? - B - □ D (Total for Question 12 = 1 mark) **13** Ethanoyl chloride reacts with ammonia, forming ethanamide. $$CH_3COCl + NH_3 \rightarrow CH_3CONH_2 + HCl$$ The first step of the mechanism forms the intermediate shown. Which diagram shows the movements of electron pairs when ethanamide forms from this intermediate? (Total for Question 13 = 1 mark) **14** The compound shown reacts with **excess** LiAlH₄. (a) What solvent is used in this reaction? (1) - **A** ethanol - **B** ether - C ethyl ethanoate - **D** water - (b) What is the organic product that forms? (1) - \square A - \blacksquare B \frown \bigcirc OH - □ D ○ ○ ○ □ (Total for Question 14 = 2 marks) - **15** Which monomer could form a condensation polymer without needing a second type of monomer? - A HO(CH₂)₄OH - B HO(CH₂)₄COCl - \square C HO(CH₂)₄CH=CH₂ - D HO(CH₂)₄CH₂Cl (Total for Question 15 = 1 mark) **TOTAL FOR SECTION A = 20 MARKS** #### **SECTION B** ## Answer ALL the questions. Write your answers in the spaces provided. **16** An ester, \mathbf{X} , with the molecular formula $C_8H_{16}O_2$, has the structure shown. (a) Deduce the name of the alcohol used to synthesise **X** in a reaction with ethanoyl chloride. (1) (b) One of the proton environments in **X** is labelled 'a'. (i) Complete the labelling of this structure to show each of the other proton environments in **X**, clearly linking any that are the same. (2) (ii) Describe **three** ways in which the high resolution ¹H NMR spectrum can be used to distinguish between the **methyl** groups in **X**, other than **a**. (3) | |
 |
 | |--|------|------| | | | | | | | | | | | | (c) An isomer of **X** is a carboxylic acid with five peaks in its ¹³C NMR spectrum. Draw a possible skeletal structure for this carboxylic acid. (1) (d) The painkiller aspirin is also an ester, formed by the reaction of 2-hydroxybenzoic acid and ethanoic anhydride. Part of the mechanism for this reaction is shown. (i) Add a single curly arrow to Step 1 and a single curly arrow to Step 2 to complete this part of the mechanism. (2) (ii) State the role of the H⁺ ion in the synthesis of aspirin. (1) (Total for Question 16 = 10 marks) - 17 This question is about acids containing sulfur. - (a) Sulfuric acid reacts with sodium hydroxide solution as shown. $$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$$ Calculate the pH of the solution formed when $20.0 \, \text{cm}^3$ of sulfuric acid of concentration = $0.0720 \, \text{mol dm}^{-3}$ is mixed with $80.0 \, \text{cm}^3$ of sodium hydroxide solution of concentration = $0.240 \, \text{mol dm}^{-3}$. Give your answer to one decimal place. $$K_{\rm w} = 1.00 \times 10^{-14} \, {\rm mol}^2 \, {\rm dm}^{-6}$$ (6) (b) Sulfurous acid, H₂SO₃(aq), is a weak acid and dissociates as shown. $$H_2SO_3(aq) \rightleftharpoons HSO_3^-(aq) + H^+(aq)$$ It forms a buffer solution when mixed with sodium hydrogensulfite, NaHSO₃. (i) State what is meant by the term weak in this context. (1) (ii) State what is meant by the term buffer solution. (2) (iii) Calculate the mass of sodium hydrogensulfite that should be added to $50.0\,\mathrm{cm^3}$ of $0.0480\,\mathrm{mol\,dm^{-3}}$ sulfurous acid solution to form a buffer solution of pH = 2.18 $[K_a (H_2SO_3) = 1.54 \times 10^{-2} \text{ mol dm}^{-3}$ Relative formula mass of NaHSO₃ = 104.1] (5) (Total for Question 17 = 14 marks) - **18** This question is about carbonyl compounds such as ethanal, CH₃CHO. - (a) Ethanal reacts with the weak acid hydrogen cyanide to form a racemic mixture of hydroxynitriles. A small amount of sodium hydroxide solution, NaOH(aq), is also added to the reaction mixture. (i) Complete the mechanism for the reaction. Include curly arrows, the structure of the intermediate, and any relevant lone pairs and dipoles. (4) (ii) Explain why a small amount of sodium hydroxide solution is added to the reaction mixture, by considering the nature of the attacking species in the slow step. (2) (b) Deduce the rate equation for the reaction using the mechanism in (a)(i). (1) (c) Sketch a line on the axes to show how the concentration of ethanal affects the rate of this reaction. (1) Rate / $mol dm^{-3} s^{-1}$ [CH₃CHO] / mol dm⁻³ *(d) Carbonyl compounds can be identified from their 2,4-dinitrophenylhydrazine derivatives. Describe this process, including in your answer - observations you would see in the formation of the 2,4-dinitrophenylhydrazine derivative - an outline of the steps used to separate and purify the derivative, giving the purpose of each step - how the derivative is used to identify the original carbonyl compound. | Detailed descriptions of practical techniques are n | ot required. | (6) | |---|--------------|-----| - **19** This question is about the hydrolysis of halogenoalkanes with hydroxide ions. - (a) The initial rates for the hydrolysis of 2-bromobutane, CH₃CH₂CHBrCH₃, were obtained for different initial concentrations of the reactants. Both 2-bromobutane and the product formed in this reaction exist as pairs of stereoisomers. $$\mathsf{CH_3CH_2CHBrCH_3} \ + \ \mathsf{OH^-} \ \to \ \mathsf{CH_3CH_2CH(OH)CH_3} \ + \ \mathsf{Br^-}$$ | Experiment | Initial concentration of
2-bromobutane
/moldm ⁻³ | Initial concentration of hydroxide ions / mol dm ⁻³ | Initial rate of
reaction
/ mol dm ⁻³ s ⁻¹ | |--------------|---|--|---| | Experiment 1 | 0.150 | 0.150 | 0.027 | | Experiment 2 | 0.300 | 0.150 | 0.054 | | Experiment 3 | 0.450 | 0.300 | 0.162 | All rates were determined at the same temperature. | / : | \ C+-+- | 4 ! | | | rm stereois | | |------------|-----------|------------|------------|-----------|-------------|----------| | " | I STATE I | Mnat is r | ndant ni | / TNA TAI | m staranisi | nmar. | | ۱ı | , state i | viiat is i | iicaiit Di | , ,,,, | | σ | (1) (ii) Show that the data in the table are consistent with the $S_N 2$ mechanism for this hydrolysis of 2-bromobutane. (3) | (iii) | In one experiment, a single stereoisomer of 2-bromobutane was hydrolysed. | | |-------|---|-----| | | Explain the stereochemistry of the product of this reaction. | (3) | (b) 2-Bromo-2-methylbutane, $(CH_3)_2CBrCH_2CH_3$, can also be hydrolysed with hydroxide ions. The mechanism for the reaction is S_N1 . The reaction profile is shown. Explain how all the features of this reaction profile are consistent with an $S_{\scriptscriptstyle N} 1$ mechanism. | (Total for Question 19 = 10 |) marks) | |-----------------------------|----------| (3) | **TOTAL FOR SECTION B = 48 MARKS** #### **SECTION C** ## Answer ALL the questions. Write your answers in the spaces provided. - **20** This question is about Group 2 compounds. - (a) Barium carbonate, BaCO₃, decomposes at high temperatures as shown. $$BaCO_3(s) \rightarrow BaO(s) + CO_2(g)$$ (i) Calculate the standard entropy change for the system, $\Delta S_{\text{system}}^{\Theta}$. | Compound | Standard molar entropy
/JK ⁻¹ mol ⁻¹ | |-----------------|---| | BaCO₃ | 112.1 | | BaO | 70.4 | | CO ₂ | 213.6 | (2) (ii) The lowest temperature at which barium carbonate, $BaCO_3$, decomposes is 712 $^{\circ}$ C. Use this information and your answer from (a)(i) to calculate the standard enthalpy change of the reaction, in kJ mol⁻¹. Give your answer to an appropriate number of significant figures. (3) (b) Magnesium chloride, MgCl₂(s), is used in the manufacture of tofu from soya milk. An experiment was carried out to determine the enthalpy change of solution, $\Delta_{sol}H$, of anhydrous magnesium chloride, MgCl₂(s). 4.26 g of anhydrous magnesium chloride was added to 200 cm³ of deionised water in a polystyrene cup. The mixture was stirred to ensure all the solid dissolved to form a solution. The temperature of the solution rose by 6.8 °C. Calculate the enthalpy change of solution, $\Delta_{sol}H$, of anhydrous magnesium chloride, MgCl₂(s). Include a sign and units with your answer. [Specific heat capacity of the solution = $4.18 \,\mathrm{Jg^{-1} \, °C^{-1}}$] (3) - (c) The standard enthalpy change of solution, $\Delta_{sol}H^{\Theta}$, of anhydrous MgCl₂(s), can also be determined using a Hess Cycle. - (i) Complete the Hess Cycle shown by adding appropriate formulae, with state symbols, to the empty boxes. (1) [Lattice energy = $-2526 \, \text{kJ} \, \text{mol}^{-1}$ Standard enthalpy change of hydration of magnesium ions = $-1920 \, \text{kJ} \, \text{mol}^{-1}$] | (ii) | Calculate the standard enthalpy change of hydration of chloride ions, | |------|--| | | $\Delta_{hvd}H^{\Theta}[Cl^{-}(g)]$, using the cycle and data in (c)(i) and your answer to (b). | [If you did not obtain a final answer to (b) use a value of -155 kJ mol⁻¹. This is not the correct value.] (3) - (d) The theoretical lattice energy for magnesium chloride, MgCl₂(s), is −2326 kJ mol⁻¹. - (i) Give **two** assumptions used in theoretical calculations of lattice energy. (2) | Ž | | | | |---|---|--|--| | 0 | l | | | (ii) Explain the difference between the theoretical and experimental values for the lattice energy of magnesium chloride, $MgCl_2(s)$. (3) - (e) Hydrated barium chloride is a soluble, toxic salt. It can be formed from the reaction of barium carbonate with hydrochloric acid as shown. $$BaCO_3 + 2HCl + nH_2O \rightarrow BaCl_2 \cdot nH_2O + CO_2 + H_2O$$ A $5.00\,\mathrm{g}$ sample of barium carbonate reacted with $120\,\mathrm{cm}^3$ of $0.500\,\mathrm{mol}\,\mathrm{dm}^{-3}$ hydrochloric acid. (i) Show that the hydrochloric acid is in excess in this reaction. (2) 26 (ii) All of the barium carbonate reacted and produced 6.19 g of hydrated barium chloride. Calculate the relative formula mass of BaCl₂• nH₂O and hence deduce the value of n. (3) (Total for Question 20 = 22 marks) TOTAL FOR SECTION C = 22 MARKS TOTAL FOR PAPER = 90 MARKS | | 0 (8) | (18) | He He | 2 | 20.2 | Se l | 10 | 39.9 | ٩٢ | argon
18 | 83.8 | 궃 | krypton
36 | 131.3 | Xe | xenon
54 | [222] | R | radon
86 | | _ | | |---------------------------|-------|-----------------------------|-------|----------------------|---------------|------------------------|---------------|----------|------|------------------|------|-----------------|--------------------------|----------------|---------------------------------------|------------------|-----------------|----------------|-----------------|---------------|---|-------------------------------| | | ۰ L | | (17) | 19.0 | | - 6
- 6 | | | O) | + | | <u> </u> | + | | iodine 3 | [210] | | astatine
85 | | en reported | | | | | 9 | | | (16) | 16.0 | | oxygen r
8 | | S | | | | selenium b | 127.6 | | tellurium
52 | [506] | | polonium a | | 16 have be | cated | | | 5 | | | (15) | 14.0 | | nitrogen 7 | 31.0 | _ | phosphorus
15 | 74.9 | | | 1 | | | 209.0 | Bi | bismuth p | | Elements with atomic numbers 112-116 have been reported | but not fully authenticated | | | 4 | | | (14) | 12.0 | | 6 6 | 28.1 | Si | silicon pl | 1 | ge | E | | | | 207.2 | В | lead
82 | _ | tomic num | but not ful | | | m | | | (13) | 10.8 | a | 5
5 | 27.0 | ¥ | aluminium
13 | 69.7 | Ga | | 114.8 | ľ | indium
49 | 204.4 | F | thallium
81 | | ents with a | | | ents | | | | | | | | <u> </u> | | (12) | 65.4 | Zu | zinc
30 | 112.4 | В | cadmium
48 | 200.6 | Η̈́ | mercury
80 | | Elem | | | eriodic Table of Elements | 1.0 | | | | | | | | (11) | 63.5 | C | copper
29 | 107.9 | Ag | silver
47 | 197.0 | PΠ | gold
79 | [272] | Rg | oentgenium
111 | | | le of | | | | | | | (01) (6) | | | 58.7 | Ë | nickel
28 | 106.4 | Pd | palladium
46 | 195.1 | 7 | platinum
78 | [271] | Mt Ds Rg | darmstadtium r
110 | | | c Tabl | | | | | | | | | | 58.9 | ပိ | cobalt
27 | 102.9 | 뫈 | rhodium
45 | 192.2 | Ţ | iridium
77 | [368] | Mt | meitnerium
109 | | | riodic | | 1.0
H
hydrogen | - | | | | | | (8) | 55.8 | Fe | iron
26 | 101.1 | Ru | ruthenium
44 | 190.2 | os
O | osmium
76 | l | H | hassium
108 | | | The Pe | | | | | | | | | (2) | 54.9 | Wn | manganese
25 | [86] | բ | molybdenum technetium ruthenium 42 44 | 186.2 | Re | rhenium
75 | [264] | Bh | bohrium
107 | | | ⊨ | | | | | mass | ——
50 l | DOI | | | (9) | 52.0 | ъ | chromium manganese 24 25 | 95.9 | Wo | molybdenum
42 | 183.8 | > | tungsten
74 | [596] | Sg | dubnium seaborgium
105 106 | | | | | Key | relative atomic mass | atomic symbol | atomic (proton) number | | | (2) | 50.9 | > | vanadium
23 | 92.9 | g | niobium
41 | 180.9 | Ta | tantalum
73 | [262] | В | dubnium
105 | | | | | | | | relati | relativ | ato | atomic | | | 4 | 47.9 | ï | titanium
22 | 91.2 | Zr | zirconium
40 | 178.5 | Hf | hafnium
72 | [261] | Ř | | | | | | | | | | (3) | | | 45.0 | Sc | scandium
21 | 88.9 | > | yttrium
39 | 138.9 | La* | lanthanum
57 | [227] | Ac* | actinium
89 | | | 7 | | | (2) | 9.0 | Be | perywum
4 | 24.3 | Ag | magnesium
12 | 40.1 | Ca | calcium
20 | 87.6 | Sr | strontium
38 | 137.3 | Ва | barium
56 | [526] | Ra | radium
88 | | | - | | | (1) | 6.9 | ָב
ב | utmlum
3 | 23.0 | | _ | 39.1 | ¥ | potassium
19 | 85.5 | & | rubidium
37 | 132.9 | S | caesium
55 | [223] | F | francium
87 | ^{*} Lanthanide series | 169 173 | Er Tm Yb Lu | thulium ytterbium | 02 69 | [256] [254] | Fm Md No Lr | mendelevium nobelium la | | |---------|-------------|-------------------|-------|-------------|--------------|-------------------------|----| | 165 | 운 | holmium | 67 | [254] | Es | einsteinium | 00 | | 163 | ۵ | dysprosium | 99 | [251] | ᠘ | californium | 8 | | 159 | Тр | terbium | 92 | [245] | 쓙 | berkelium | 5 | | 157 | В | gadolinium | 64 | [247] | ق | anium | 2 | | | E | | | | Αm | americium | 40 | | 150 | Sm | samarium | 62 | [242] | Pn | plutonium | 2 | | [147] | Pm | promethium | 61 | [237] | ď | neptunium | S | | 144 | PZ | neodymium | 9 | 238 | _ | uranium | S | | 141 | Ą | praseodymium | 29 | [231] | Pa | protactinium | č | | 140 | Ö | cerinm | 28 | 232 | ₽ | thorium | 8 | ^{*} Actinide series