Please check the examination details belo	ow before entering your candidate information
Candidate surname	Other names
Centre Number Candidate Nu Pearson Edexcel Inter	national Advanced Level
Thursday 9 January	2025
Afternoon (Time: 1 hour 30 minutes)	Paper reference WCH11/01
Chemistry	
International Advanced Su UNIT 1: Structure, Bondin Organic Chemistry	•
You must have: Scientific calculator, ruler	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

SECTION A

Answer ALL the questions in this section.

You should aim to spend no more than 20 minutes on this section.

For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 What is the total number of **atoms** in 8.8 g of carbon dioxide?

	[<i>M</i> _r	valu	ie: $CO_2 = 44$	Avogadro con	stant, $L = 6.0$	02×10^{23}	mol ⁻¹]			
	×	Α	$1.2 \times 10^{\scriptscriptstyle 23}$							
	X	В	$\textbf{3.6}\times\textbf{10}^{23}$							
	X	С	1.2×10^{24}							
	X	D	$\textbf{3.6}\times\textbf{10}^{\textbf{24}}$							
							(Total for	Questior	n 1 = 1 mar	k)
2				ions are there in nesium nitrate, M		a solution	of			
	\mathbf{X}	Α	0.0020 mol							
	X	В	0.0040 mol							
	X	С	0.0060 mol							
	X	D	0.0080 mol							
							(Total for	Questior	n 2 = 1 mar	k)
3				ontaining the iso ss of 2.9908 $ imes$ 10		drogen a	nd oxyger	ı, hydroge	n-1 and	
	Wh	at is	the mass of a	an atomic mass (unit (amu) n	neasured	in grams?	1		
	[<i>A</i> ,	valu	es: oxygen-16	5 = 15.995 amu	hydrogen	-1 = 1.00	80 amu]			
	×	A	6.0185 × 10 ²	23						
	×	В	6.0221 × 10 ²	23						
	X	С	1.6605×10^{-1}	-24						
	\mathbf{X}	D	1.6616 × 10 ⁻	-24						
							(Total for	Questior	n 3 = 1 mar	k)
	X	D	1.6616 × 10	-24			(Total for	(Questior	Question 3 = 1 mar

4			n oxide of nitrogen.
			entage by mass of oxygen in this oxide is 69.57%.
			he relative molecular mass of this oxide?
	X	Α	78
	X	В	92
	×	C	106
	\times	D	109
			(Total for Question 4 = 1 mark)
5			erent solutions contain chloride ions. the solutions contain the same number of moles of chloride ions.
	Whic	ch so	olution contains a different number?
	×	A	15.0 cm ³ of 0.80 mol dm ⁻³ hydrochloric acid
	\times	В	10.0 cm ³ of 0.40 mol dm ⁻³ iron(III) chloride solution
	\times	С	10.0 cm ³ of 0.90 mol dm ⁻³ magnesium chloride solution
	\times	D	20.0 cm ³ of 0.60 mol dm ⁻³ sodium chloride solution
			(Total for Question 5 = 1 mark)
6	A sol	lutio	on contains 95 ppm of a solute.
Ū			ass of the solute is dissolved in 1 kg of this solution?
	X		95 g
		В	0.95 g
		c	0.095 g
		D	0.000095 g
		U	(Total for Question 6 = 1 mark)
			(Total for Question 0 – T mark)
7	A sar	mple	e of hydrated magnesium sulfate contains 43% by mass of water.
	Wha	t is t	he formula of this magnesium sulfate?
	\times	A	MgSO ₄ •9H ₂ O
	×	В	MgSO ₄ •5H ₂ O
	×	С	MgSO ₄ •2.5H ₂ O
	\times	D	MgSO ₄ •1.25H ₂ O
			(Total for Question 7 = 1 mark)
			3 P 7 8 4 5 5 A 0 3 2 8 Turn over ►

8	Etha	anoi	c acic	l can b	e prod	uced by the oxidation of butane.
						$2C_4H_{10} + 5O_2 \rightarrow 4CH_3COOH + 2H_2O$
	The	ato	m eco	onomy,	, by ma	ass, for the production of ethanoic acid is
	×	Α	13%)		
	×	В	67%)		
	X	С	77%	1		
	X	D	87%)		
						(Total for Question 8 = 1 mark)
9						ergies of the elements gallium (Ga), indium (In), Sn) are shown.
	Whi	ich v	values	are th	e first f	four ionisation energies of gallium?
	X	Α	557	1821	2705	5200
	X	В	579	1979	2963	6200
	X	C	709	1412	2943	3930
	X	D	762	1537	3302	4411
						(Total for Question 9 = 1 mark)
10	Sulf	fur h	as a h	nigher	melting	g temperature than white phosphorus, P₄.
	Whi	ich i	s a po	ossible	reason	for this?
	\times	Α			ecules l Is mole	have a greater permanent dipole than ecules
	X	В	sulfu	ur has s	stronge	er covalent bonds than phosphorus
	\times	C			a giant structu	covalent structure and phosphorus has a simple ire
	X	D	sulfu	ur mole	ecules ł	have more electrons than phosphorus molecules
						(Total for Question 10 = 1 mark)
	Use	thi	s spa	ce for a	any rou	ugh working. Anything you write in this space will gain no credit.

11 Which species are arranged in order of increasing radius? $\textbf{A} \quad \textbf{K}^{\scriptscriptstyle +} \ < \ \textbf{Ar} \ < \ \textbf{Cl}^{\scriptscriptstyle -} \ < \ \textbf{Br}^{\scriptscriptstyle -}$ \times \times **B** Cl^- < Ar < K^+ < Br^- X $\textbf{C} \quad \text{Br}^{-} \ < \ \text{Cl}^{-} \ < \ \text{Ar} \ < \ \text{K}^{+}$ \times \mathbf{D} Cl^- < Br^- < Ar < K^+ (Total for Question 11 = 1 mark) 12 Which cation would be the most polarising? Radius Charge X A small large X **B** small small X large С small \mathbf{X} **D** large large (Total for Question 12 = 1 mark)

13 In the gas phase, PCl_5 exists as molecules. They are trigonal bipyramidal.

Each chlorine atom can be replaced one at a time by a fluorine atom. The two axial chlorine atoms are replaced before the three equatorial atoms.

Which of the resulting molecules does **not** have a permanent dipole?

- A PCl₄F
- $\blacksquare \quad \mathbf{B} \quad \mathsf{PCl}_3\mathsf{F}_2$
- \square **C** PCl₂F₃
- \square **D** PClF₄

(Total for Question 13 = 1 mark)

P 7 8 4 5 5 A 0 6 2 8

- \times \times \times X
- 16 Which statement about the cracking of crude oil is true?

The cracking of crude oil

- **A** separates the mixture into pure compounds
- **B** separates the mixture into fractions
- **C** separates saturated from unsaturated compounds
- **D** decreases the average number of carbon atoms per molecule

17 Bromine and bromine water can be used to test for a carbon-carbon double bond. When **bromine water** reacts with 2-methylbut-2-ene, there is one major organic product.

Which is the skeletal formula of the **major** product?

(Total for Question 17 = 1 mark)

7

P 7 8 4 5 5 A 0 9 2 8

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- **21** Chloroethene and 1-chloropropene are the first two members of a homologous series. 1-Chloropropene exists as two geometric isomers.
 - (a) (i) Draw the **displayed** formulae of chloroethene and one geometric isomer of 1-chloropropene.

(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

chloroethene

1-chloropropene

(ii) Explain why chloroethene and 1-chloropropene are members of a homologous series.

(iii) Explain why 1-chloropropene exists as two geometric isomers, but chloroethene does not.	(3)
(b) Chloroethene and 1-chloropropene are both monomers.	
(i) Draw the structure of poly(1-chloropropene).	(2)

(ii)	The polymer of chloroethene, known as PVC, is used to make water pipes and gutters, which were previously made of metal.	
	Suggest two advantages of using PVC instead of metal in water pipes and gutters, other than cost.	(2)
		RITEINTH
		IIS AREA
	(Total for Question 21 = 11 mar	
		TWRITEI
		DO NOT WRITE IN THIS AREA
		EA
		DO NOT
		DO NOT WRITE IN THIS AREA
		ITHIS AR
		EA
12		

BLANK PAGE

	same energy.	(2)
(c)	Name the shape of the orbital occupied by the electron in the $n = 3$ energy level.	
(c)	Name the shape of the orbital occupied by the electron in the n = 3 energy level.	(1)
(c)		
(c)	Name the shape of the orbital occupied by the electron in the n = 3 energy level. (Total for Question 22 = 4 ma	
(c)		
(c)		
(c)		

23 Samples of germanium consist of five isotopes, four of which are stable. The fifth isotope, germanium-76, is radioactive but with a very long half-life.

This means that the isotopic composition is almost constant. The table shows data for four of the isotopes.

Atom	⁷⁰ Ge	⁷³ Ge	⁷⁴ Ge	⁷⁶ Ge
Mass number	70	73	74	76
Abundance / %	20.5	7.8	36.5	7.8

(a) (i) Calculate the mass number of the fifth isotope of germanium. The relative atomic mass of germanium is 72.6.

You must show your working.

(3)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(ii) Give the main reason why the answer in (a)(i) should not be quoted to more than 2 significant figures.

(1)

(b) The radioactive decay of germanium-76 forms stable atoms of selenium	n-76.
--	-------

Compare and contrast the atomic structure of an atom of germanium-76 with an atom of selenium-76.

(Total for Question 23 = 8 marks)

24 A sample of a volatile liquid **X** was vaporised. At 473 K and 110000 Pa, 3.50 g of **X** occupies 1.79 dm³. DO NOT WRITE IN THIS AREA (a) (i) Calculate the number of moles of **X** in the sample. $[R = 8.31 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}]$ Use pV = nRT(4) DO NOT WRITE IN THIS AREA (ii) Deduce the relative molecular mass of **X**. (1) (iii) Compound **X** contains 85.7% carbon and 14.3% hydrogen by mass. Calculate the empirical formula of **X**. (2) DO NOT WRITE IN THIS AREA (iv) Deduce the molecular formula of **X**. (1)

P 7 8 4 5 5 A 0 1 8 2 8

	d purple.			
State what can be deo	duced about the s	structure of X fi	om this experim	nent. (1)
(c) Identify, by name or fo answers to (a)(iv) and		ible structural i	somers of X usin	
				(2)
		(Tot	al for Question	24 = 11 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

25 Chlorine reacts with both alkanes and alkenes.	
(a) Three steps in the mechanism for the reaction of chlorine with butane to form 1-chlorobutane are shown.	DON
Step 1 $Cl_2 \rightarrow 2Cl_{\bullet}$	OTV
Step 2 Cl• + CH ₃ CH ₂ CH ₂ CH ₃ \rightarrow CH ₃ CH ₂ CH ₂ CH ₂ • + HCl	URIT
Step 3 $CH_3CH_2CH_2CH_2\bullet + Cl_2 \rightarrow CH_3CH_2CH_2Cl_2+ Cl_2\bullet$	Z
(i) Name the mechanism and type of this reaction.	(1)
(ii) Give the essential condition for Step 1 to occur.	(1)
(iii) Name the type of step illustrated by Step 3 .	(1) DO NOT WR
 (iv) A different type of step, other than the ones shown, also occurs in the reaction. Describe this type of step, including two possible examples which might occur in this reaction. 	(1) (4)
	DO NOT WRITE IN THIS AREA

(ii) Explain why chlorine reacts with alkenes even though it is not a polar molecule. (2)	(i)	State what is meant by the term polar molecule and why chlorine is not polar.	(2)
a polar molecule. (2)	 		
a polar molecule. (2)	 		
a polar molecule. (2)	 		
a polar molecule. (2)	 		
	(ii)		
(Total for Question 25 = 11 marks)	 		(2)
(Total for Question 25 = 11 marks)	 		
(Total for Question 25 = 11 marks)	 		
(Total for Question 25 = 11 marks)	 		
	 	(Total for Question 25 = 11 ma	rks)

26 Sulfur hexafluoride, SF_6 , is used in the electric power industry as an insulating gas. It can be used in this way as it is very unreactive.

Fluorine reacts with sulfur to form SF_6 . Impurities of S_2F_{10} and SF_4 also form and must be removed because they are too reactive.

(a) Give the name of the compound S_2F_{10} .

(1)

(2)

(b) Molecules of S_2F_{10} consist of two SF_5 units linked by a S—S bond.

Complete the dot-and-cross diagram of S_2F_{10} , showing the outer shell electrons. Use dots (•) for the sulfur electrons and crosses (**x**) for the fluorine electrons.

(c) Draw a dot-and-cross diagram of SF₄, showing all the outer shell electrons.
 Use dots (•) for the sulfur electrons and crosses (x) for the fluorine electrons.

(2)

(d) Complete the table showing clearly the shapes of the other two molecules and the F—S—F bond angles.

(4)

Molecule	Diagram	F—S—F bond angle						
SF_6	F F F F F F	90°						
S_2F_{10}								
SF4								

(e) Justify the shape around the sulfur atom in both SF_6 and SF_4 .

(3)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(3)

DO NOT WRITE IN THIS AREA

BLANK PAGE

BLANK PAGE

0 (8)	(18) 4.0 hetium	2	20.2 Neon 10	39.9 Ar	argon 18	83.8	Kr krveton	36	131.3	Xe	54	[222]	Rn	radon 86		ed							
7		(17)	19.0 F fluorine 9	^{35.5} Cl	chlorine 17	79.9	Br bromine	35	126.9	I	53	[210]	At	astatine 85		Elements with atomic numbers 112-116 have been reported but not fully authenticated	ſ	175	Lu Iutetium	71	[257]	5	lawrencium 103
9		(16)	16.0 O ^{oxygen} 8	32.1 S	sulfur 16	79.0	Se selenium	34	127.6	٦e	tellurum 52	[607]	P	polonium 84		.116 have b nticated		173	YD vtterbium	70	[254]	°N N	102
2		(15)	14.0 N nitrogen 7	31.0 P	phosphorus 15	74.9	As arsenic		121.8	Sb	antimony 51	209.0	Bi	bismuth 83		tomic numbers 112-116 hav but not fully authenticated		169 -	thulium	69	[356]	ΡW	mendelevium 101
4		(14)	12.0 C carbon 6	28.1 Si	silicon 14	72.6	Ge sermanium	32	118.7	Sn	20	207.2	PP D	lead 82		atomic nu but not f		167 -	Er erbium	68	[253]	E L	100 100
e		(13)	10.8 B boron 5	27.0 Al	aluminium 13	69.7	Ga	31	114.8	<u>r</u>	49	204.4	F	thallium 81		nents with		165	holmium holmium	67	[254]		einsteinium 99
3					(12)	65.4	Zn zinc	30	112.4	D C	caamium 48	200.6	Hg	mercury 80				163 7	Uy dvsprosium	66	[251]	Ç	californium 98
riodic Table of Elements				63.5	Cu	29	107.9	Ag	silver 47	197.0	٩n	gold 79	[272]	Rg roentgenium 111		159 I	I D terbium	65	[245]	BK	perketum 97		
) ,			(0)			58.7	nickel	28	106.4	Pd	palladium 46	195.1	£	platinum 78		DS darmstadtium 110		157 •	Gd gadolinium		[247]	Cm	апит 96
					(6)	58.9	Cohalt Cohalt	27	102.9	Rh	45	192.2		muibrii 77	[268]	Mt meitnerium 100		152 -	EU europium	63	[243]	Am	amencium 95
	1.0 Hydrogen	-			(8)	55.8	Fe iron	26	101.1	Ru	rutnenium 44	190.2	O S	osmium 76	[277]	HS hassium 108		150 2	Sa marium	62	[242]		plutonium 94
)			(2)	54.9	Mn	25	[98]	۲	tecnnetium 43	186.2	Re	rnenium 75		Bh bohrium	5	[147]	PM promethium	61	[237]	dN	neptunium 93		
:		mass bol umber]	(9)	52.0	Cr	24	95.9	Wo	molybdenum 42	183.8	3	tungsten 74	[266]	Sg seaborgium 106		144	NG neodvmium	60	238		uranium 92	
	ƙey	Key	relative atomic mass atomic symbol name atomic (proton) number		(2)	50.9	Vanadium vanadium	23	92.9		41	180.9	Ta	tantalum 73		dubnium 1.05	6	141	Pr NG PM Draseodymium neodymium promethium	59	[231]	Pa	protactinium 91
			relati ato atomic		(4)	47.9	Ti titanium	22	91.2	Zr	zirconium 40	178.5	ΗL	natnium 72	[261]	rutherfordium		140 140	Ce cerium	58	232	۲h	06
					(3)	45.0	SC scandium	21	88.9	≻	yttrium 39	138.9	La*	lantnanum 57	[227]	AC* actinium 80			SS				
2		(2)	9.0 Be beryllium 4	24.3 Mg	magnesium 12	40.1	Calcium	20	87.6	Sr	strontium 38	137.3	Ba	56	[226]	Ka radium 88	3		* Lanthanide series			* Actinide series	
-		(1)	6.9 Li lithium 3	t	sodium 11	39.1	K	19	85.5	Rb	37 37	132.9	ۍ ا	caesium 55	[223]	Fr francium 87	* Lanth			* Actini			

P 7 8 4 5 5 A 0 2 8 2 8

28