| Please check the examination details below before enter | ring your candidate information | |---|---------------------------------| | Candidate surname | Other names | | Centre Number Candidate Number | | | Pearson Edexcel Internation | al Advanced Level | | Wednesday 09 October 20 |)24 | | Afternoon (Time: 1 hour 30 minutes) Paper reference | WCH11/01 | | Chemistry | O • | | International Advanced Subsidiary UNIT 1: Structure, Bonding and Ir Organic Chemistry | · | | You must have:
Scientific calculator, ruler | Total Marks | ## Instructions - Use black ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - Fill in the boxes at the top of this page with your name, centre number and candidate number. - Answer all questions. - Answer the questions in the spaces provided - there may be more space than you need. ### Information - The total mark for this paper is 80. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling. - A Periodic Table is printed on the back cover of this paper. ### **Advice** - Read each question carefully before you start to answer it. - Show all your working in calculations and include units where appropriate. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ ### **SECTION A** # Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . 1 What is the molecular formula of naphthalene? - \blacksquare A $C_{10}H_8$ - B C₁₀H₁₀ - \square **C** $C_{12}H_{10}$ - \square **D** $C_{12}H_{12}$ (Total for Question 1 = 1 mark) 2 Magnesium azide is an ionic compound containing the azide ion, N_3^- . The empirical formula of magnesium azide is - A Mg₃N - **B** MgN₂ - C MgN₃ - \square **D** MgN₆ (Total for Question 2 = 1 mark) 3 How many oxygen **atoms** are there in 0.0100 mol of H₂SO₄? [Avogadro constant, $L = 6.020 \times 10^{23} \,\mathrm{mol}^{-1}$] - \triangle **A** 6.020 × 10²¹ - **B** 1.204×10^{22} - \square **C** 2.408 × 10²² - \square **D** 4.214 × 10²² (Total for Question 3 = 1 mark) 2 **4** Two identical sealed flasks, containing different gases, are side by side. Each flask contains one gas, with the gases at the same temperature and pressure. Flask **A** contains 4.0×10^{-3} mol of methane. Flask **B** contains 160 mg of a different gas. Which could be the gas in Flask **B**? - A argon - **B** carbon dioxide - C helium - **D** neon (Total for Question 4 = 1 mark) 5 Diphosphane, P₂H₄, reacts spontaneously with oxygen. $$xP_{2}H_{4} + yO_{2} \rightarrow P_{4}O_{10} + zH_{2}O$$ The equation for this reaction is balanced when - \triangle **A** x = 1 y = 6 z = 2 - **B** x = 2 y = 6 z = 2 - $X = 2 \quad y = 7 \quad z = 4$ - D x = 4 y = 9 z = 8 (Total for Question 5 = 1 mark) **6** Copper metal can displace silver from silver nitrate solution according to the equation shown. $$Cu + 2AgNO_3 \rightarrow 2Ag + Cu(NO_3)_2$$ 10 g of copper metal was added to an excess of silver nitrate solution. The silver metal was collected, washed with deionised water and left to dry. What is the mass of silver metal collected, assuming a 100 % yield? - A between 10 g and 20 g - B 20 q - ☑ C between 20 g and 40 g - **D** more than 40 g (Total for Question 6 = 1 mark) 7 This question is about the thermal decomposition of calcium nitrate. $$2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$$ What volume of gas is produced by the complete decomposition of 0.050 mol of calcium nitrate at room temperature and pressure (r.t.p.)? [Molar volume of a gas at r.t.p. = $24 \,\mathrm{dm^3 \,mol^{-1}}$] - \triangle **A** 600 cm³ - **B** $1.20\,\text{dm}^3$ - \square **C** 3.00 dm³ - \square **D** 6.00 dm³ (Total for Question 7 = 1 mark) **8** Ethanol is formed from glucose during fermentation. $$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$ What is the atom economy by mass for the formation of ethanol in this reaction? - A 26% - B 49% (Total for Question 8 = 1 mark) **9** The table shows some data about fundamental particles in an atom. | Particle | Mass / g | |----------|--------------------------| | electron | 0.0009×10^{-24} | | neutron | 1.6748×10^{-24} | | proton | 1.6725×10^{-24} | (a) An atom of hydrogen can be represented as ¹H. What is the mass, in grams, of this hydrogen atom? (1) - lacktriangle A 1.6725 imes 10⁻²⁴ - **B** 1.6734×10^{-24} - lacktriangle **C** 3.3473 imes 10⁻²⁴ - \square **D** 3.3482 \times 10⁻²⁴ - (b) Which of the particles would be deflected by an electric field? (1) - **A** electrons only - **B** electrons and protons only - C neutrons and protons only - **D** electrons, neutrons and protons (Total for Question 9 = 2 marks) - 10 This question is about the Period 3 elements Na, Mg, Al, Si, P, S and Cl. - (a) Which statement is **not** correct for these Period 3 elements? (1) - A atoms of Cl(g) have the highest first ionisation energy - \square **B** ions of Cl⁻(g) and S²⁻(g) have the same ionic radius - C atoms of Na(g) have the largest atomic radius - **D** atoms of P(g) have the most unpaired electrons - (b) The melting temperatures of these elements are shown in the table. | Element | Na | Mg | Al | Si | Р | S | Cl | |-------------------------|-----|-----|-----|------|-----|-----|-----| | Melting temperature / K | 371 | 922 | 933 | 1683 | 317 | 392 | 172 | Which of the elements has the strongest **intermolecular** forces? (1) - A Al - B Si - D S (Total for Question 10 = 2 marks) 11 Which row of the table shows properties consistent with the type of bonding shown? | | | Bonding | Solubility in water | Melting temperature | Electrical conductivity of solid | |---|---|----------|---------------------|---------------------|----------------------------------| | × | Α | ionic | soluble | high | poor | | × | В | ionic | soluble | low | good | | × | C | metallic | soluble | low | good | | × | D | metallic | insoluble | high | poor | (Total for Question 11 = 1 mark) - 12 Which ion is isoelectronic with a noble gas atom (Group 0/8)? - A H⁺ - B O⁻ - \square **D** Zn^{2+} (Total for Question 12 = 1 mark) **13** Cycloalkanes undergo free radical substitution reactions by the same mechanism as methane. Three isomeric cycloalkanes are shown. Isomer X Isomer Y Isomer **Z** Which react with chlorine to produce four different monochlorinated products? - A All 3 isomers - **B** Isomer **X** and Isomer **Z** only - □ Isomer Y and Isomer Z only - **D** Isomer **X** only (Total for Question 13 = 1 mark) **14** Polymerisation of alkenes occurs via a free radical mechanism. This reaction is started by the addition of small amounts of another compound. The structure of one of these compounds is shown. This can be represented as R—O—O—R where R— is Which step in the mechanism is an initiation step? $$\times$$ A $$R-O-O-R \rightarrow 2R-O^{\bullet}$$ $$2R-O-CH_2-CH_2^{\bullet} \rightarrow R-O-CH_2-CH_2-CH_2-CH_2-O-R$$ $$R-O^{\bullet} + CH_2=CH_2 \rightarrow R-O-CH_2-CH_2^{\bullet}$$ (Total for Question 14 = 1 mark) **15** This question is about cyclohexene, a cyclic alkene. (a) What is the general formula of cyclic alkenes such as cyclohexene? (1) - \square A C_nH_{2n-4} - \blacksquare **B** C_nH_{2n-2} - \square **C** C_nH_{2n} - \square **D** C_nH_{2n+2} - (b) Cyclohexene can form an addition polymer. Which diagram shows two repeat units of this addition polymer? (1) ☑ D (c) Cyclohexanol can be converted into cyclohexene. What mass of cyclohexanol is needed to make 7.20 g of cyclohexene, if the yield of this reaction is 72.0%? $[M_r \text{ values: cyclohexanol} = 100]$ cyclohexene = 82.0 (1) - **A** 4.25 g - **B** 5.90 g - 8.78 g X - X **D** 12.2 g (Total for Question 15 = 3 marks) **16** The molecule shown has two double bonds. Which is the correct identification for each double bond? - X Α - X В - X C - X D | Double bond 1 | Double bond 2 | |---------------|---------------| | Е | E | | Е | Z | | Z | E | | Z | Z | (Total for Question 16 = 1 mark) **TOTAL FOR SECTION A = 20 MARKS** **BLANK PAGE** #### **SECTION B** # Answer ALL the questions. Write your answers in the spaces provided. 17 Sodium hydroxide can be obtained as a hydrate, $NaOH \cdot xH_2O$. When heated, the water of crystallisation is lost, leaving anhydrous sodium hydroxide, NaOH, as shown in the equation. $$NaOH \cdot xH_2O \rightarrow NaOH + xH_2O$$ An experiment was carried out to determine the value of x in NaOH•xH₂O. ### **Procedure** - Step 1 Weigh and record the mass of a clean, dry crucible. - Step 2 Add approximately 1.0 g of NaOH•xH₂O to the crucible and record the mass. - Step 3 Heat the crucible and its contents until a constant mass has been reached. - Step 4 After allowing to cool, reweigh the crucible and the anhydrous solid. - Step 5 Calculate and record the mass of the anhydrous solid. Repeat Steps 1 to 5 using a different mass of the hydrated sodium hydroxide. #### Results | Mass of NaOH•xH₂O / g | Mass of NaOH / g | |-----------------------|------------------| | 1.00 | 0.69 | | 2.10 | 1.45 | | 3.50 | 2.41 | | 4.90 | 3.38 | | 6.60 | 4.55 | | 8.00 | 5.52 | - (a) (i) Complete a graph of the results by - plotting the points - · labelling the axes - including a straight line of best fit. (3) (ii) Use your graph to determine the mass of NaOH•xH₂O needed to form 4.0 g of NaOH. You must show your working on the graph. (1) (iii) Calculate the value of x in NaOH•xH₂O using your answer to (a)(ii) and the equation for the reaction. $$NaOH \cdot xH_2O \rightarrow NaOH + xH_2O$$ (3) (b) Sodium hydroxide also forms a heptahydrate, NaOH•7H₂O. Calculate the mass of this heptahydrate needed to make 250 cm³ of a solution of sodium hydroxide of concentration 0.150 mol dm⁻³. (2) (Total for Question 17 = 9 marks) **18** Molecules of isooctane, found in petrol, have eight carbon atoms. The skeletal formula of isooctane is shown. (a) Give the molecular formula, empirical formula and IUPAC name for isooctane. (3) Molecular formula Empirical formula IUPAC name (b) Isooctane and octane are isomers that are both found in crude oil. Octane has a boiling temperature of 125 $^{\circ}$ C, and isooctane has a boiling temperature of 99 $^{\circ}$ C. This difference in boiling temperature can be used to separate the two isomers in a laboratory. The technique is the same as that used to separate crude oil. (i) Name the technique that could be used for this separation. (1) (ii) Describe how this technique separates isooctane from octane. (2) - (c) Isooctane is added to petrol to increase its octane rating. Some high-performance engines need fuel with a higher octane rating. - (i) Write the equation for the complete combustion of isooctane. State symbols are not required. (1) (ii) Carbon monoxide and nitrogen monoxide are both pollutants produced in car engines. Describe how each pollutant is formed in car engines, including the conditions required. You may include appropriate equations. (4) | (iii) | Identify another pollutant, other than carbon dioxide, carbon monoxide and | |-------|--| | | nitrogen monoxide, produced in car engines. | (1) - (d) Isooctane reacts with an excess of chlorine to form a mixture of chlorinated compounds containing the same number of carbon atoms as isooctane. - (i) State the type and mechanism of this reaction. (1) (ii) Give the essential condition required. (1) (iii) One of the chlorinated compounds contains 44.1% carbon and 6.9% hydrogen by mass. Calculate the molecular formula of this compound. (3) (Total for Question 18 = 17 marks) **19** This question is about two reactions of propene. Reaction 1 $$H_3C$$ H $Cl-C-C-H$ $$H_3C$$ H $H-C-C-Cl$ H propene 2-chloropropane (major product) 1-chloropropane (minor product) Reaction 2 $$H_3C$$ H $HO-C-C-F$ (a) (i) Name the mechanism and type of reaction for Reaction 1. (1) (ii) Explain why the structures of the intermediates in Reaction 1 mean that 2-chloropropane is formed in greater yield than 1-chloropropane. (3) (b) Reaction 2 proceeds in two stages. Η The equation for the first stage is shown. $$CH_3CH = CH_2 + H_2SO_4 \rightarrow CH_3CH(OSO_2OH)CH_3$$ The mechanism for this reaction is the same as Reaction 1. Complete the mechanism by including the intermediate structure, curly arrows and relevant dipoles, charges and lone pairs. (4) (Total for Question 19 = 8 marks) | 0 The pe | eriods in the Periodic Table show trends in physical properties. | | |-----------------|---|-----| | (a) (i) | Explain the general trend in first ionisation energies for the Period 2 elements. | (2) | | | | | | | | | | | | | | (ii) | Explain which one of the elements from lithium to nitrogen deviates from this general trend. | (3) | (b) Identify the **Period 3** element that has the following successive ionisation energies. | lonisation energy / kJ mol ⁻¹ | | | | | | | | | | | | | | |--|--------|-------|--------|-------|-------|----------------|--------|--|--|--|--|--|--| | First | Second | Third | Fourth | Fifth | Sixth | Seventh Eighth | | | | | | | | | 1000 | 2251 | 3361 | 4564 | 7012 | 8496 | 27 107 | 31 671 | | | | | | | (1) (c) (i) The diagram shows the melting temperatures of the elements in Period 2 from lithium to nitrogen. Complete the diagram by putting crosses to show the approximate melting temperatures of boron and nitrogen. (2) | (ii) Explain why the melting temperature of carbon is high, with reference to its structure and bonding. | | |--|-------| | | (3) | (Total for Question 20 = 11 m | arks) | | | | | These AlCl ₃ a | aluminium and thallium are in Group 3 of the Periodic Table. elements form molecular compounds with chlorine with the formulae BCl ₃ , nd TlCl ₃ . The shape of these molecules depends on the electronic structures of oup 3 elements. | | |---------------------------|---|-----| |
(a) (i) | Give the electronic configuration of aluminium. | (1) | |
(ii) | Compare and contrast the electronic structures of boron, aluminium and thallium. | (2) | | | | | |
(iii) | Deduce, using electron-pair repulsion theory, the expected shape of BCl_3 , $AlCl_3$ and $TlCl_3$. Justify your answer. | (3) | | | | | | | | | |
 | | | - (b) Aluminium chloride is a solid at room temperature. At the relatively low temperature of 453 K it sublimes. - (i) A sample of 5.00 g of aluminium chloride was heated to 455 K at a pressure of 1.01×10^5 Pa. When all the aluminium chloride had vaporised, the final volume of gas was 700 cm³. Show that the data is consistent with the formula of aluminium chloride in the gas phase being Al₂Cl₆. [Gas constant $R = 8.31 \,\text{J}\,\text{mol}^{-1}\,\text{K}^{-1}$ Ideal gas equation pV = nRT] (3) (ii) Draw the dot-and-cross diagram for Al₂Cl₆. Use dots (•) for the electrons of aluminium and crosses (×) for the electrons of chlorine. (3) (c) Thallium also forms ions containing chlorine, for example the TlCl₄³⁻ ion. In this ion, the thallium atom has 10 electrons in its outermost shell. Phosphorus in phosphorus pentachloride, PCl₅, also has 10 electrons in its outer shell. Draw the shape of the $TlCl_4^{3-}$ ion and predict the bond angles. Include any lone pairs of electrons that influence the shape. (3) (Total for Question 21 = 15 marks) TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS **BLANK PAGE** **BLANK PAGE** | | 0 (8) | 4.0
He | helium
2 | 20.2 | Ne
Pe | neon
10 | 39.9 | Ā | argon
18 | 83.8 | 궃 | krypton
36 | 131.3 | Xe | xenon
54 | [222] | 윤 | radon
86 | | p _e | | | | | | | | | | |--------------------------------|-------|------------------|-------------|----------------|----------------------|--------------------------------|--|------------|--------------------|--------------------------------|----------|--------------------------|-------|-----------------|-----------------------------|----------------|------------------|-----------------|---------------|---|-------|-------------------------|---------------------|------------------|-------|---|----------------------------------|-------------------|---------------| | | 7 | | (17) | 19.0 | ш | fluorine
9 | 35.5 | บ | chlorine
17 | 79.9 | Ŗ | bromine
35 | 126.9 | Ι | iodine
53 | [210] | Αt | astatine
85 | | Elements with atomic numbers 112-116 have been reported but not fully authenticated | | 175 | ֖֖֖֖֖֖֖֖֖֖֖֖֖֖֜֞֜֞ | lutetium
71 | [257] | ֖֖֖֖֖֖֖֜֡֜֡֡֡֡֡֡֡֡ | lawrencium
103 | | | | | 9 | | (16) | 16.0 | 0 | oxygen
8 | 32.1 | s | sulfur
16 | 79.0 | Se | selenium
34 | 127.6 | <u>a</u> | tellurium
52 | [506] | 8 | polonium
84 | | 116 have b
iticated | | 173 | 9 | ytterbium
70 | [254] | ۶
ک | nobelium
102 | | | | | 2 | | (15) | 14.0 | z | nitrogen
7 | 31.0 | ۵ | phosphorus
15 | 74.9 | As | arsenic
33 | 121.8 | Sb | antimony
51 | 209.0 | Bi | bismuth
83 | | tomic numbers 112-116 hav
but not fully authenticated | | 169 | E; | thulium
69 | [526] | | mendelevium
101 | | | | | 4 | | (14) | 12.0 | U | carbon
6 | 28.1 | Si | silicon
14 | 72.6 | Ge | germanium
32 | 118.7 | Sn | 20 tị | 207.2 | Pp | lead
82 | | atomic nu
but not 1 | | 167 | 占 : | erbium
68 | [253] | | fermium
100 | | | | | m | | (13) | 10.8 | 8 | boron
5 | 27.0 | Ι | aluminium
13 | 69.7 | Ga | gallium
31 | 114.8 | In | indium
49 | 204.4 | F | thallium
81 | | nents with | | 165 | | holmium
67 | [254] | Es | einsteinium
99 | | | | ents | | | | | | | | | (12) | 65.4 | Zn | zinc
30 | 112.4 | 5 | cadmium
48 | 200.6 | Hg | mercury
80 | | Elen | | 163 | Δ | dysprosium
66 | [251] | ָל
ל | californium einsteinium
98 99 | | | | Elem | | | | | | | | | (11) | 63.5 | ŋ | copper
29 | 107.9 | Ag | silver
47 | 197.0 | Αn | plog
79 | [272] | Rg
roentgenium | | 159 | | terbium
65 | [245] | 8 | berkelium
97 | | | | The Periodic Table of Elements | | | | (10) | | | | | | | 'n | nickel
28 | 106.4 | Pd | palladium
46 | 195.1 | 꿉 | platinum
78 | [271] | [268] [271] | | 157 | | gadotinium
64 | [247] | E. | aurium
96 | | | | c Tab | | | | | | | | | (6) | 58.9 | ဝ | cobalt
27 | 102.9 | | rhodium
45 | 192.2 | ī | iridium
77 | [368] | Mt
meitnerium | 109 | 152 | Eu | europium
63 | [243] | Am | plutonium amencium
94 95 | | | | riodi | | 5. ≖ . | | (8) | | | | | | Fe | | 101.1 | | ruthenium
44 | 190.2 | S | osmium
76 | [277] | HS
hassium | 108 | 150 | Sm | samarıum
62 | [242] | | | | | | | he Pe | | | | | | | | | (2) | 54.9 | Wn | chromium manganese 24 25 | [86] | ည | molybdenum technetium 42 43 | 186.2 | Re | rhenium
75 | ı — | Bh
bohrium | 107 | [147] | P⊞ | promethium
61 | [237] | ď | neptunium
93 | | | | F | | | | ve atomic mass | relative atomic mass | mass | pol | number | | | (9) | 52.0 | ъ | chromium
24 | 95.9 | Wo | molybdenum
42 | 183.8 | > | tungsten
74 | [392] | Sg
seaborgium | 106 | 144 | P. | praseodymium neodymium prometniur
59 60 61 | 238 | | uranıum
92 | | | | | Key | | | ive atomic
I mic sym | elative atomic mas
atomic symbol | ive atomic | ive atomic mic sym | name
atomic (proton) number | | | (5) | 50.9 | > | vanadium
23 | 92.9 | å | niobium
41 | 180.9 | ٦ | tantalum
73 | l | Db | 105 | 141 | P | praseodymum
59 | [231] | | | | | | relat | atc | atomic | | | (4) | 47.9 | ï | titanium
22 | 91.2 | Zr | zirconium
40 | 178.5 | ¥ | hafnium
72 | [261] | Rf
rutherfordium | 104 | 140 | O | cerium
58 | 232 | £ ; | thorium
90 | | | | | | | | | | | | | (3) | 45.0 | SC | scandium
21 | 88.9 | > | yttrium
39 | 138.9 | La* | lanthanum
57 | [227] | AC* | 88 | | es | | | | | | | | | 7 | | (2) | 9.0 | Be | beryllium
4 | 24.3 | Mg | magnesium
12 | 40.1 | S | 0 | 87.6 | | strontium
38 | 137.3 | Ва | barium
56 | [526] | Ra
radium | 88 | | * Lanthanide series | | | * Actinide series | | | | | | _ | | (1) | 6.9 | <u>:</u> | lithium
3 | 23.0 | Na | sodium
11 | 39.1 | <u>~</u> | potassium
19 | 85.5 | & | rubidium
37 | 132.9 | ర | caesium
55 | [223] | Fr
francium | 87 | | * Lant | | | * Actin | | | |