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PREFACE

Many objects are obscure -to us not
because our perceptions are poor,
but simply because these objects
are outside of the realm of our
conceptions.

Kosma Prutkov

CONFESSION OF THE AUTHOR. My first acquaintance with
calculus (or mathematical analysis) dates back to nearly a quarter of
a century. This happened in the Moscow Engineering Physics Insti­
tute during splendid lectures given at that time by Professor D. A. Va­
silkov. Even now I remember that feeling of delight and almost hap­
piness. In the discussions with my classmates I rather heatedly insisted
on a simile of higher mathematics to literature, which at that time
was to me the most admired subject. Sure enough, these comparisons
of mine lacked in objectivity. Nevertheless, my arguments were to
a certain extent justified. The presence of an inner logic, coherence,
dynamics, as well as the use of the most precise words to express a ,vay
of thinking, these were the characteristics of the prominent pieces
of literature. They were present, in a different form of course, in
higher mathematics as well. I remember that all of a sudden elemen­
tary mathematics which until that moment had seemed to me very
dull and stagnant, turned to be brimming with life and inner motion
governed by an impeccable logic.

Years have passed. The elapsed period of time has inevitably
erased that highly emotional perception of calculus which has become
a working tool for me. However, my memory keeps intact that unusual
happy feeling which I experienced at the time of my initiation to this
extraordinarily beautiful world of ideas which we call higher mathe­
matics.

CONFESSION OF THE READER. Recently our professor of
mathematics told us that we begin to study a new subject which
he called calculus. He said that this subject is a foundation of higher
mathematics and that it is going to be very difficult. We have already
studied real numbers, the real line, infinite numerical sequences, and
limits of sequences. The professor was indeed right saying that com..
prehension of the subject would present difficulties. I listen very
carefully to his explanations and during the same day study the
relevant pages of my textbook. I seem to understand everything, but
at the same time have a feeling of a certain dissatisfaction. It is dif­
ficult for me to construct a consistent picture out of the pieces obtained
in the classroom. It is equally difficult to remember exact wordings
and definitions, for example, the definition of the limit of sequence.
In other words, I fail to grasp something very important.

Perhaps, all things will become clearer in the future, but so far
calculus has not become an open book for me. Moreover, I do not
see any substantial difference between calculus and algebra. I t seems
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that everything has become rather difficult to perceive and even more
difficult to keep in my memory.

, COMMENTS ·OF THE AUTHOR. These two confessions provide
an. opportunity to get acquainted with the two interlocutors in this
book. In Iact., the whole book is presented as a relatively free-flowing
dialogue between the AUTHOR and the READER. From one discus­
sion to another the AUTHOR will lead the inquisitive and receptive
READER to different notions, ideas, and theorems of calculus,
emphasizing especially complicated or delicate aspects, stressing the
inner logic of proofs, and attracting the reader's attention to special
points. I hope that this form of presentation will help a reader of the
.book in learning new definitions such as those of derivative, antideri­
'uattue, definite. integral, differential equation, etc. I also expect that
it will lead the reader to better understanding of such concepts as
numerical sequence, limit of sequence, and function. Briefly, these
discussions are intended to assist pupils entering a novel world of
calculus-.And if in the long run the reader of the book gets a feeling
of the intrinsic beauty and integrity of higher mathematics or even
.is appealed to it. the author will consider his mission as successfully
completed.
, Working on this book, the author consulted the existing manuals
and textbooks such as A 1gebra and Elements of A nalysis edited by
A. N. Kolrnogorov, as well as the specialized textbook by N. Ya.' Vi­
lenkin and S. I. Shvartsburd Calculus. Appreciable help was given
to the author in the form of comments and recommendations by
N. Ya. Vilenkin, B. M. Ivlev, A. M. Kisln, S. N. Krachkovsky, and
N. Ch. Krutitskaya, who read the first version of the manuscript.
I wish to express gratitude for their advice and interest in my work.
I· am especially grateful to A. N. Tarasova for her help in preparing
the manuscript. .



DIALOGUE ONE

INFINITE NUMERICAL·
SEQUENCE

AUTHOR. Let us start our discussions of calculus by
considering the definition of an infinite numerical sequence
or simply a sequence.

We shall consider the following examples of ~equences::

1, 2, 4, 8, 16, 32, 64, 128, (1}
5, 7, 9, 11, 13, 15, 17, 19, ... (2}
1, 4, 9, 16, 25, 36, 49, 64, .o. (3)-

1. V2, V3, 2, V5, Vtf, V7, 2 V2, ... (4}
1 234 5 6 7 8
2' 3' 4' 5"' 6"' 7"' 8"' 9"' · · · (5)
2, 0, - 2, - 4, - 6, - 8, - 10, - 12, ... (6)

111 1 1 1 1
1'2'3'4'5'6'7'8'... (7):

1 1 1 1
1, 2' 3, 4"' 5, ~, 7, "8' . . . (8}

l.

1 1 1 1 1 1
1, -1, 3' -3"' 5' -5' 7' -7··· (9}

2 1 4 1 618
1, 3' 3' 4' 5' 7' 7' 9' ... (10}

Have a closer look at these examples. What do they have­
in common?

READER. It is assumed that in each example there must
be an infinite number of terms in a sequence. But in general,.
they are all different.

AUTHOR. In each example we have eight terms of a
sequence. Could you write, say, the ninth term?

READER. Sure, in the first example the ninth term must.
be 256, while in the second example it must be 21.
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AUTHOR. Correct. It means that in all the examples
there is a certain law, which makes. it. possible to write down
the ninth, tenth, and other terms of the sequences. Note,
though, that if there is a finite number-of terms in a sequence,
one may fail to discover the law which governs the infinite
.sequence ,

READER. Yes, but in our case these laws are easily
recognizable. In example (1) we have the terms of an infinite
..geometric progression with common ratio 2. .In example (2)
we notice a sequence ofudd numbers starting from 5. In
.exarnple (3) we recognize a sequence of squares of natural
.numbers,

AUTHOR. Now let us look at the situation more rigo­
.rously. Let us enumerate all the terms of the sequence in
.sequential order, i.e. 1, .2, 3, ... , .n, .... There is a certain
law (a rule) by which each of these natural numbers is

-,assigned to a certain number (the corresponding term of
the sequence). In example (1) this a~rangement is as follows:

1 2 4 8 '16 32 ... 2n- t •• • (terms of the sequencey
ltttt t t
1 2 3 4 5 6 ... n ... (position numbers of the terms)

In order to describe a sequence it is sufficient to indicate
the term of the sequence corresponding to the number n,
i.e. to write down the term of the sequence occu.pying the
.nth position. Thus, we can formulate the following definition
-of a sequence.

Definition: . ,
We say that there is an infinite numerical sequence if every

natural number (position numbers is unambiguously placed
in correspondence with a definite number (term of the sequence)
.by a specific rule.

This relationship may be presented in the following
_general form

Yt Y2 Ys Y" Ys • • • Yn · · ·
1111! I
12345 .•. n ...

'The number Yn is the nth term of the sequence, and the whole
.sequence is sometimes denoted by a symbol (Yn).
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READER. We have been given a somewhat different
definition of a sequence: a sequence is a function defined on
a set of natural numbers (integers).

AUTHOR. Well, actually the two definitions are equiva­
lent. However, I am not inclined to use the term "function"
too early. First, because the discussion of a function "till
come later. Second, you will normally deal with somewhat
different Iuncttons, namely those defined riot on a set of
integers but on the real line or within its segment .. Anyway,
the above definition of a sequence is quite correct.

Getting back to our examples of sequences, let us look
in each case for an analytical expression (formula) for the
nth term. Go ahead. .

READER. Oh, this is not difficult. In example (1) it is
Yn = 2n .. In (2) it is Yn == 2n + 3. In (3) it is Yn == n2

•

In (4) it is Yn = Vn. In (5) it is Yn = 1- n~1 = n~1 •

In (6) it is Un =·4 - 2n. In (7) it is Yn = -!. . In the remain-
n

ing three examples I just do not know.
AUTHOR. Let us look at example (8). One can easily

see that if n is an even integer, then Yn = _1_, but if n is
n

odd, then Yn = n, I t means that
t ..

{
- if n=2k

Yn= n
n if n = 2k-1

READER. Can I, in this particular case, find a single
analytical expression for Yn?

AUTHOR. Yes, you can. Though I think you needn't.
Let us present Un in a diHerent form:

1
Yn =ann+bn­n

and demand that the coefficient an be equal to unity if n is
odd, and to zero 'if n is even; the coefficient bn should behave
in quite an opposite manner, In this particular case these
coefficients can be determined as follows:
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Consequently f

Yn = i [1- ( - 1)n] + 2
1
n [1+(- 1)n]

Do in the same manner in the other two examples.
READER. For sequence (9) I can write

Y =_1 [1-(-1)n]- 1 [1+(-1)n]
n 2n 2 (n-1)

and for sequence (10)

u«> 2~ [1-(-1)n]+2(n~f)[1+(-1)n]

AUTHOR. It is important to note that an analytical ex­
pression for the nth term of a given sequence is not necessa-'
rily a unique method of defining a sequence. A sequence can
be defined, for example, by recursion (or the recurrence­
method) (Latin word recurrere means to run back). In this
case, in order to define a sequence one should describe the
first term (or the first several terms) of the sequence and
a recurrence (or a recursion) relation, which is an expression
for the nth term of the sequence via the preceding one (or­
several preceding terms).

Using the recurrence method, let us present sequence (1),
as follows

Yl = 1; Yn = 2Yn-l

READER. It's clear. Sequence (2) can be apparently re­
presented by formulas

Yl == 5; Yn == Yn-l + 2

AUTHOR. That's right. Using recursion, let us try to
determine one interesting sequence

Yl == 1; Y2 = 1; Yn == Yn-2 + Yn-l

Its first' terms are

1,1,2,3,5,8,13,21, ". (11)1

This sequence is known as the Fibonacci sequence (or
numbers).

READER. I understand, I have heard something about.
the problem of Fibonacci rabbits.
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AUTHOR. Yes, it was this problem, formulated by Fibo­
nacci, the 13th century Italian mathematician, that gave
the name to this sequence (11). The problem reads as follows.
A man places a pair of newly born rabbits into a warren and
wants to know how many rabbits he would have over a cer-

n Yn

2

'3· Z

4- J

5 5

6 8

7 13

S!/mbol <) denotes one pair of rabbits

Fig. 1.

tain period of time. A pair of rabbits will start producing
offspring twomonths after they were born and every follow­
ing month one new pair of rabbits will appear. At the begin­
ning (during the first month) the man will have in his warren
only one pair of rabbits (Yl = 1); during the second month
he will have the same pair of rabbits (Yz = 1); during the
1hird month the offspring will appear, and therefore the
Humber of the pairs of rabbits in the warren will grow to
two (Y3 = 2); during the fourth month there will be one
more reproduction of the first pair (y 4 = 3); during the
fifth month there will be offspring both from the first and
second couples of rabbits (Ys = 5), etc. An increase of the
number of pairs in the warren from month to month is
plotted in Fig. 1. One can see that the numbers of pairs of
rabbits counted at the end of each month form sequence
(11), Le. the Fibonacci, sequence.

READER. But in reality the rabbits do not multiply in
accordance with such an idealized pattern. Furthermore, as
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time goes on, the first pairs of rabbits should obviously stop
proliferating.

AUTHOR. The Fibonacci sequence is interesting not
because it describes a simplified growth pattern of rabbits'
population. It so happens that this sequence appears, as if
by magic, in quite unexpected situations. For example, the
Fibonacci numbers are used to process information by com­
puters and to optimize programming for computers. However,
this is a digression from our main topic.

Getting back to the ways of describing sequences, I
would like to point out that the very method chosen to describe
a sequence is not of principal importance. One sequence may
be described, for the sake of convenience, by a formula for
the nth term, and another (as, for example, the Fibonacci
sequence), by the recurrence method. What is important,
however, is the method used to describe the law of correspon­
dence, i.e. the law by which any natural number is placed in
correspondence with a certain term of the sequence. In a

Yn

f 2 J t,. 5 6 7 8 9 10 n
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number of cases such a law can be formulated only by words.
The examples of such cases are shown below:

2, 3, 5, 7, 11, 13, 17, 19, 23, ...

3, 3.1, 3.14, 3.141, 3.1415, 3.14159,

(12)

(13)
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IH both cases we cannot indicate either the formula for the­
nth term or the recurrence relation. Nevertheless, you can
without great difficulties identify specific laws of correspon­
ileuce and put them in words.

READER. Wait a minute. Sequence (12) is a sequence of
prime numbers arranged in an increasing order, while (13}
i~, apparently, a sequence composed of decimal approxima-
tions, with deficit, for rt, .

AUTHOR. You are absolutely right.
READER. It may seem that a numerical sequence differs­

Irom a random set of numbers by a presence of an intrinsic
degree of order that is reflected either by the formula for
tho nth term or by the recurrence relation. However, the­
lust two examples show that such a degree of order needn't.
bo present.

AUTHOR. Actually, a degree of order determined by
Il formula (an analytical expression) is not mandatory. It.
is important, however, to have a law (a rule, a characteristic)
uf correspondence, which enables one to relate any natural
number to a certain term of a sequence. In examples (12)
lind (13) such laws of correspondence are obvious. Therefore,
12) and (13) are not inferior (and not superior) to sequences

!In

f ---_...........-~_.-.-. _.......-- - - - -- - ~ - - - ~ - - .--~

T • • T• ,
I I, T I t I I , ,

T (
, , I I r I

,
T I l

, i I I t , I
I I I I I I I I f

I I I I I , I , I I, I /
, I , I I I ,

I I I I I I '/ I I I

0 2 3 If 5 6 7 8 9 to n

Fig. 3

)-(11) which permit an analytical description ..
Later we shall talk about the geometric image (or map)

f a numerical sequence. Let us take two coordinate axes,
And y. We shall mark on the first axis integers 1, 2, 3, ...
. ., n, . . ., and on the second axis, the corresponding
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n• .10

I

I
I,

-;--:--.,
-~_._--+-----..

I I I

'-1

terms of a sequence, i.e. the numbers Yl' Y2' Y3' ••
• • . , Yn, · · . · Then the sequence can be represented by
a set of points M (n, Yn) on the coordinate plane. For example
Fig. 2 images sequence (4), Fig. 3 images sequence (5)
Fig. 4 images sequence (9), and Fig. 5 images sequence (10)

Yn
I

f
j

f
O....----+-........~.-~--=--___::......___=_-_=e___=......_____e~---___3 ...
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Fig. 4
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I I If: :
1 --r-...j--~ I ' I I
·.3 I : I I • I I I

I I I I I I , I , \

.0 f 2 3 4- 5 6 7 8 9 10 II

Fig. 5

As a matter of fact, there are other types of geometry
images of a 'numerical sequence. Let us retain, for example
only on'e coordinate y-axis and plot on it p.oints Yl, Y2'
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!la, • · ., Yn' • · • 'which map the terms of a sequence. In
Fig. 6 this method of mapping is illustrated for the sequences
that have been shown in Figs. 2-5. One has to admit that
the latter method is less descriptive in comparison with the
former method.

Sequence (4):

Yt
+

!lz
•

2
• • • +

3
• • • • .• • +•

Sequence (5) :

- I
o

Sequence (9):

!lz
. +
-t

!II !lz Y3
+ • • •••••

0.5

Ylt Y6 Y5 y" Yl
• ••• I ••• +

o f

Y
•

II

5eqllence (10):

U1 U5 Y3
I ••• i +
o 1.oJ

Fig. 6

Yz
+s.
J

!I~ Y6 y,
• ••• +

y

IlEADER. But in the case of sequences (4) and (5) the
~Pl~ond method looks rather obvious.

AUTHOR. It can be explained by specific features of
those sequences. Look at them closer.

IlEADER. The terms of sequences (4) and (5) possess the
following property: each term is greater than the preceding
Il-rrn

Yl < Y2 < Ya < · · · < Yn < · · ·
8-01673



It means that all the terms are arranged on the y-axis accord
ing to their serial numbers. A.s far as I know, such sequence,
are called increasing.

AUTHOR. A more general case is that of nondecreasini
sequences provided we add the equality sign to the abovi
series of inequalities.

Definition:
A sequence (Yn) is called nondecreasing if

Yl ~ Y2 ~ Ys ~ • • • ~ Yn~ • • •
A sequence (Yn) is called nonincreasing if

Yl ~ Y2 ~ Ys ~ • • • ~ Yn > · ··
N ondecreasing and nonincreasing sequences come under tlu

name of monotonic sequences.
Please, identify monotonic sequences among example!

(1)-(13).
READER. Sequences (1), (2), (3), (4), (5), .(11), (12),

and (13) are nondecreasing, while (6) and (7) are nonincreas
ing. Sequences (8), (9), and (10) are not monotonic.

AUTHOR. Let us formulate one more
Definition:
A sequence (Yn) is bounded if there are two numbers A and B~

labelling the range which encloses all the terms of a sequence

A ~ Yn~ B (n = 1, 2, 3, ...)

If it is impossible to identify such two numbers
(or, in particular, one can find only one of the two such
numbers, either the least or the greatest), such a sequence
is unbounded.

Do you find bounded sequences among our examples?
READER. Apparently, (5) is bounded.
AUrrHOR. Find the numbers A and B for it.

f
READER. A =2' B = 1.

AUTHOR. Of course, but if there exists even one pair
of A and B, one may find any number of such pairs. You
could say, for example, that A = 0, B = 2, or A = -100,
B = 100, etc., and be equally right.

READER. Yes, but my numbers are more accurate.



infinite NumerIcal Sequence t9

AUTHOR. From the viewpoint of the bounded sequence
definition, my numbers A and B are not Letter and not worse
than yours. However, your last sentence is peculiar. What
do you mean by saying "more accurate'T

READER. My A is apparently the greatest of all possible
lower bounds, while my B is the least of all possible upper
hounds.

AU1'HOR. The first part of your statement is doubtlessly
correct, while the second part of it, concerning B, is not so
self-explanatory. It needs proof.

READER. But it seemed rather~~obvious. Because all
the terms of (5) increase gradually, and evidently tend to
unity, always remainingjless... than unity.

AUTHOR. Well, it is right. But it is not yet evident
that B = 1 is the least number for which Yn~ B is valid
for all n: I stress the point again: your statement is not self­
ovident, it needs proof.

I shall note also thatL"self-evidence" of your statement
about B = 1 is nothing but your subjective impression; it
is not a mathematically substantiated corollary.

READER. But how to prove that B = 1 is, in this partic­
ular case, the least of all possible upper bounds?

AUTHOR. Yes, it can be proved. But let us not move
too fast and by all means beware of excessive reliance on
so-called self-evident impressions. The warning becomes
even more important in the light of the fact that the bounded­
ness of a sequence does not imply at all that the greatest A
or the least B must be known explicitly.

Now, let us get back to our sequences and find other exam-
ples of bounded sequences. _.

READER. Sequence (7) is also bounded (one can easily
find A = 0, B = 1). Finally, bounded sequences are (9)

(e.g. A = -1, B = 1), (10) (e.g, A = 0, B = 1), and (13)

le.g. A = 3, B = 4). The remaining' sequences are un­
bounded.

AUTHOR. You are quite right. Sequences (5), (7), (9),
(10), and (13) are bounded. Note that (5), (7), and (13) are
bounded and at the same time monotonic. Don't you feel
that this fact is somewhat puzzling?

READER. What's puzzling about it?
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AUl'HOR. Consider, for example, sequence (5). Note
that each subsequent term is greater than the preceding
one. I repeat, each term! But the sequence contains an
infinite number of terms. Hence, if we follow the sequence
far enough, we shall see as many terms with increased magni­
tude (compared to the preceding term) as we wish. Neverthe­
less, these values will never go beyond a certain "boundary",
which in this case is unity. Doesn't it puzzle you?

,"READER. Well, generally speaking, it does. But I notice
that we add to each preceding term an increment which grad­
ually becomes less and less.

AUTHOR. Yes, it is true. But this condition is obviously
insufficient to make such a sequence bounded. Take, for
example, sequence (4). Here again the "increments" added
to each term of the sequence gradually decrease; nevertheless,
the sequence is not bounded.

READER. We must conclude, therefore, that in (5) these
"increments" diminish faster than in (4).

AUTHOR. All the same, you have to agree that it is not
immediately clear that these "increments" may decrease
at a rate resulting in the boundedness of a sequence.

READER. Of course, I agree with that.
AUTHOR. The possibility of infinite but bounded sets

was not known, for example, to ancient Greeks. Suffice
it to recall the famous paradox about Achilles chasing
a turtle.

Let us assume that Achilles and the turtle are initially
separated by a distance of 1 km, Achilles moves to times
faster than the turtle. Ancient Greeks reasoned like this:
during the time Achilles covers 1 km the turtle covers 100 m,
By the time Achilles has covered these 100 m, the turtle
will have made another 10 m, and before Achilles has cov­
ered these 10 m, the turtle will have made 1 m more, and
so on. Out of these considerations a paradoxical conclusion
was derived that Achilles could never catch up with the
turtle.

This "paradox" shows that ancient Greeks failed to grasp
the fact that a monotonic sequence may be bounded.

READER. One has to agree that the presence of both the
monotonicity and boundedness is something not so simple
to understand.
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AUTHOR. Indeed, this is not so simple. It brings us
close to a discussion on the limit of sequence. The point
is that if a sequence is both monotonic and bounded, it
should necessarily have a limit.

Actually, this point can be considered as the "beginning"
of calculus.

DIALOGUE TWO

LIMIT OF SEQUENCE

AUTHOR. What mathematical operations do you know?
READER. Addition, subtraction, multiplication, divi­

sion, involution (raising to a power), evolution (extracting
n root), and taking a logarithm or a modulus.

AUTHOR. In order to pass from elementary mathematics
.to higher mathematics, this "list" should be supplemented
with one more mathematical operation, namely, that of
finding the limit of sequence; this operation is called some­
times the limit transition (or passage to the limit). By the
way, we shall clarify below the meaning of the last phrase
of the previous dialogue, stating that calculus "begins"
where the limit of sequence is introduced.

READER. I heard that higher mathematics uses the opera­
tions of differentiation and integration.

AUTHOR. These operations., as we shall see, are in essence
nothing but the variations of the limit transition.

Now, let us get down to the concept of the limit of sequence.
Do you know what it is?

READER. I learned the definition of the limit of sequence
However, I doubt that I can reproduce it from memory.

AUTHOR. But you seem to "feel" this notion somehow?
Probably, you can indicate which of the sequences discussed
nhove have limits and what the value of the limit is in each
case.

READER. I think I can do this, The limit is 1 for sequence
(!l), zero for (7) and (9), and rt for (f3).

AUTHOR. That's right. The remaining sequences have
no limits. . '
I i
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READER. By the way, sequence (9) is not monotonic ....
AUTHOR. Apparently, you have just remembered the end

of our previous dialogue wlu re it was stated that if a sequence
is both monotonic and bounded, it has a limit.

READER. That '5 correct. But isn't this a contradiction?
AUTHOR. Where do you find the contradiction? Do you

think that from the statement "If a sequence is both moncton
ic and bounded, it has a limit" one should necessarily draw
a reverse statement like "If a sequence has a limit, it must
be monotonic and bounded"? Later we shall see that a neces­
sary condition for a lim.it is only the boundedness of a se­
quence. The monotonicity is not mandatory at all; consider,
for example, sequence (9).

Let us get back to the concept of the limit of sequence.
Since you have correctly indicated the sequences that have
limits, you obviously have some understanding of this
concept. Could you formulate it?

READER. A limit is a number to which a given sequence
tends (converges).

AUTHOR. What do you mean by saying "converges to a
number"?

READER. I mean that .with an increase of the serial
number, the terms of a sequence converge very closely to
a certain value.

AUTHOR. What do you mean by saying "very closely"?
READER. Well, the"differencel,between the values of

the terms and the given number will become infinitely
small. Do you think any additional explanation is needed?
: AUTHOR. The definition of the limit of sequence which
you have suggested can at best be classified as a subjective
impression. We have already discussed a similar situation in
the previous dialogue.

Let us see what is hidden behind the statement made
above. For this purpose, let us look at a rigorous definition
of the limit of sequence which we are going to examine in
detail.

Deftnitlon:
The number a is said to be the limit of sequence (Yn) if for

any positive number 8 there is a real number N such. that for'
all n > N the following inequality holds:

I Y1\ - a , < e (1~



Ltmu of Sequence 23

READER. I am afraid, it is beyond me to remember such
n definition.

AUTHOR. Don't hasten to remember. Try to comprehend
this definition, to realize its structure and its inner logic.
You will see tha t every word in this phrase carries a definite
nnd necessary content" and that no other rlefinition of the
limit of sequence could be more succinct (more delicate,
even) .

First of all, let us note the logic of the sentence. A certain
U11mber is the limit provided that for any E > 0 there is
11 number N such that for all n > N inequality (1) holds.
[n short, it is necessary that for any E a certain number N
should exist. .

Further, note two "delicate" aspects in this sentence.
First, the number N should exist for any positive number e.
Ohvioualy, there is an infinite set of such e. Second, in­
ertuality (1) should hold always (i.e. for each E) for all n;» N.
Rut there is an equally infinite set of numbers n!

READER. N ow, tho definition of the limit has become
more obscure.

AUTHOR. Well, it is natural. So far we have been examin­
illg the definition "piece by piece". It is very important
that the "delicate" features, the "cream", so to say, are spot­
lnd from the very outset. Once you understand them, every­
'.hing will fall into place.

In Fig. 7a there is a graphic image of a sequence. Strictly
speaking, the first 40 terms have been plotted on the graph.
Let us assume that if any regularity is noted in these 40
terms, we shall conclude that the regularity does exist
ror n > 40.

Can we say that this sequence converges to the number a
(in other words, the number a is the limit of the sequence)?

READER. It seems plausible.
AUTHOR. Let'lus, however, act not on the basis of our

impressions but on the basis of the definition of the limit
of sequence. So, we want to verify whether the number a is
the limit of the given sequence. What does our definition of
toe limit prescribe us to do?

READER. We ShOl11d take a positive numher 8.

AUTHOR. Which number?
R~f\DER. Probably .. it must be small enough,
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AUTHOR. The words "small enough" are neither here
nor there. The number 8 must be arbitrary.

Thus, we take an arbitrary positive 8. Let us have a look
at Fig. 7 and layoff on the y-axis an interval of length e,
both upward and downward from the same point a. Now,
let us draw through the points y = a + Band y = a - s
the horizontal straight lines that mark an "allowed" band
for our sequence. If for any term of the sequence inequality
(f) holds, the points on the graph corresponding to these
terms fall inside the "allowed" band. We see (Fig. 7b) that
starting from number 8, all the terms of the sequence stay
within the limits of the "allowed" band, proving the validity
of (1) for these terms. We, of course, assume that this situa­
tion will realize for all n > 40, i.e. for the whole infinite
"tail" of the sequence not shown in the diagram.

Thus, for the selected e the number N does exist. In
this particular case we found it to be 7.

READER. Hence, we can regard a as the limit of the
sequence.

AUTHOR. Don't you hurry. The definition clearly ampha­
sizes: "for any positive E". SO far we have analyzed only one
value of B. We should take another value of E and find N
not for a larger but for a smaller B. If for the second e the
search of N is a success, we should take a third, even smal­
ler B, and then a fourth, still smaller B, etc., repeating
oach time the opera tion of finding N.

In Fig. 7c three situations are drawn up for 8 1, e~, and 83

(in this case 8 1 > 8 2 > 83). Correspondingly, three "allowed"
hands are plotted on the graph. For a greater clarity,
each of these bands has its own starting N. We have chosen
N] =7, N 2=15, and N 3=27.

Note that for each selected e we observe the same situa­
lion in Fig. 7c: up to a certain n, the sequence, speaking
figuratively, may be "indisciplined" (in other words, some
terms may fallout of the limits of the corresponding "allowed"
hand). However, after a certain n is reached, a very rigid
law sets in, namely, all the remaining terms of 'the sequence
(their number is Infinite) do ~tay within the band.

READER. Do we really have to check it for an infinite
number of s values?
A~JTHOR. Certainly not. Besides, it is impossible. W~
( • .... ~ t., "I
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must be sure that whichever value of 8 > 0 we take, there is
such N after which the whole infinite "tail" of the sequence
will get "locked up" within the limits of the corresponding
"allowed" band.

READER. And what if we are not so sure?
AUTHOR. If we are not and if one can find a value of 81

such that it is impossible to "lock up" the infinite "tail" of
the sequence within the limits of its "allowed" hand, then a
is not the limit of our sequence.

READER. And when do we reach the certainty?
AUTHOR. We shall talk this matter over at a later stage

because it has nothing to do with the essence of the defini­
t.ion of the limit of sequence.

I suggest that you formulate this definition anew. Don't
try to reconstruct the wording given earlier, just try to put
it in your own words.

READER. I II try. The number a is the limit of a given
sequence if for any positive e there is (one can find) a serial
number n such that for all subsequent numbers (i.e. for the
whole infinite "ta il" of the sequence) the following inequality
holds: I Yn - a I < B.

AUTHOR. Excellent. You have almost repeated word by
word the definition that seemed to you impossible to remem­
ber.

READER. Yes, in reality it all has turned out to be quite
logical and rather easy.

AUTHOR. It is worthwhile to note that the dialectics of
thinking was clearly at work in this case: a concept becomes
"not difficult" because the "complexities" built into it were
clarified. First, we break up the concept into fragments,
expose the "complexities", then examine the "delicate"
points, thus trying to reach the "core" of the problem.
Then we recompose the concept to make it integral, and, as
a result, this reintegrated concept becomes sufficiently
simple and comprehensible. In the future we shall try first
to find t he internal structure and internal logic of the con­
cepts and theorems.

I helieve we can consider the concept of tho limit of se­
quence as thoroughly analyzed. I should like to add that,
as a result, the meaning of the sentence "the sequence con­
verges to a" has been explained. J remind you that initially

,f ;': r
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t.lris sentence seemed to you as requiring no additional expla­
nations.
·-READER. At the moment it does not seem so self-evident
nny more. True, I see now quite clearly the idea behind it.

AUTHOR. Let us get back to examples (5), (7), and (9).
Those are the sequences that we discussed at the beginning
nf our talk. To begin with, we note that the fact that a
~nquence (Yn) converges to a certain number a is convention­
nlly written as

limYn=a

(i t. rends like this: "The lim it of Yn for n tending to infinity
i~ a").

lJsing the definition of the limit, let us prove that

lim .+n .. = i;
'n-+OO n 1

lim~=O
n-s ee n

lim {2~ [t - {-1)IIJ-2(nf_f) [1+( -1)"]} = O~·
~~OO ~~

Y011 will begin with the first of the above problems.
READER. I have to prove that

lim +n .. =1
71-+00 n I

r choose an arbitrary value of B, for example, 8 = 0.1.
AU''fHOR. I advise you to begin with finding the modulus

of 1u« - a ,.
READER!"In this case, the-modulus is

In~f -t 1= n~1 :.;

AUTHOR. Apparently e needn't be specified, at least at.
the beginning.

READER. O.K. Therefore .. for an arbitrary positive value
of B, I have to find N such that for all n > N the following
inequality holds

f
n+~ <i e
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AUTHOR. Quite correct. Go on.
READER. The inequality can be rewritten in the form

tn>-,-1•
It follows that the unknown N may be identified as an inte­

gral part of! - 1. Apparently, for all n > N the inequalitye
in question will hold.

AUTHOR. That's right. Let, for example, e = 0.01.
tREADER. Then N =--1 = 100 -1 = 99.e

AUTHOR. Let e = 0.001.
READER. Then N =1--1 = 999.e
AUTHOR. Let e = 0.00015.
READER. Then ~ - 1 = 6665.(6), so that N = 6665.

AUTHOR. It is quite evident that for any e (no matter
how small) we can find a corresponding N.

As to proving that the limits of sequences (7) and (9) are
zero, we shall leave it to the reader as an exercise.

READER. But couldu'f the proof of the equality

lim +nt = 1 be simplified?
n ... oo n

AUTHOR. Have a try. .
READER. Well, first I rewrite the expression in the follow-

ing way: lim +111 = lim ~. Then I take into con-
n ...oo n n"'oo t +_

n

sideration that with an increase in n, fraction .!. willn
tend to zero, and, consequently, can be neglected against

unity. Hence, we may reject 1- and have: lim : = 1.
n n ..oo

AUTHOR. In practice this is the method generally used.
However one should note that in this case we have assumed,

first, that lim ~ = 0, and, second, the validitr of the
n ...QO
q c>
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ollowing rules

lim Zn

1. Xn n-+oo
IID-=-.--

n-+oo Yn 11m Yn
n-+oo

lim (xn +zn) = lim Xn + lim Zn
n-+oo n-+oo n-+oo

20

(2)

(3)

1 1
where X n = 1, Yn = 1 + -, and Zn = -. Later on wen n
shall discuss these rules, but at this juncture I suggest
that we simply use them to compute several limits. Let us
d iscuss two examples. .

Example 1. Find limaSn=6
i

.
n-+oo n

IlEADER. It will be convenient to present the computa­
tion in the form

1 lim (3--!.)
. 3n-1 . 3--;& n-+oo n 3
llm--=llm--= =-
n-+oo Sn - 6 n-+005_..!!.. lim (s-.!-) S

n n-+oo n

AUTHOR. O.K. Example 2. Compute

. 6n'-1
!~~ 5n:l+2n-f

IlEADER. We write
1

6n2-1 1. 6n- n
lim = Im----
n-+oo 5n'+2n-1 n-+oo Sn+2--.!-

n

AUTHOR. Wait" a momentl Did you think about the
reason for dividing both the numerator and denominator
of the fraction in the previous example by n? We did this
because sequences (3n- 1) and (5n - 6) obviously have
no limits, and therefore rule (2) fails. However, each of

sequences (3 - ~) and (5 - ~ ) has a limit.
READER. I have got your point. It means that in example

2 I have to divide both the numerator and denominator



by n2 to obtain the sequences with limits in both. According..
ly we obtain

lim (6--;-)
n-.OQ 11 _ 6

( 2 1) -S-lim 5+---2n"'OQ n n"

AUTHOR. Well, we have examined the concept of the
limit of sequence. Moreover, we have learned a little how to
calculate limits. Now it is time to discuss some properties
of sequences with limits. Such sequences are called conner..
gent.

DIALOGUE THREE

CONVERGENT SEQUENCE
AUTHOR. Let us prove the following
Theorem:
If a sequence has a limit, it is bounded. "
We assume that a is the limit of a sequence (Yn). NowJ

take an arbitrary value of e greater than O. According to:
the definition of the limit, the selected e can always be relat~
ed to N such that for all n > N, I Yn ~ a I < E. Hence,
starting with n = N -1- 1, all the subsequent terms of th
sequence satisfy the following inequalities

a - e < Yn < a + B

As to the terms with serial numbers from 1 to N, it is alway
possible to select both the greatest (denoted by BI ) and th
least (denoted by AI) terms since the number of these term
is finite.

Now woe have to select the least value from a - e and A
(denoted by A) and the greatest value from a + e and B1

(denoted by B). It is obvious that A ~ Yn ~ B for all th
terms of our sequence, which proves that the sequence (Yn
is bounded.

READER. I see.
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AU1'HOR. Not too well, it seems. Let us have a look at
the logical structure of the proof. We must verify that if the
sequence has a limit, there exist two numbers A and B such
tha t A ~ Yn ~ B for each term of the sequence. Should
the sequence contain a finite number of terms, the existence
of such two numbers would be evident. However, the sequence
contains an infinite number of terms, the fact that compli­
cates the situation.

READER. Now it is clear! The point is that if a sequence
has a limit a, one concludes that in the interval from a - 8

(.0 a + e woe have an infinite set of Yn starting from n =
:== N + 1 so that outside of this interval we shall-find only
a finite number of terms (not larger than N).

AUTHOR. Quite correct. As you see, the limit "takes
care of" all the complications associated with the behaviour
of the infinite "tail" of a sequence. Indeed, I Yn - a I < e
for all n > N, and this is the main "delicate" point of this
theorem. As to the first N terms of a sequence, it is essential
l.ha t their set is finite.

READER. Now it is all quite lucid. But what about e1
Its value is not preset, we have to select it.

AUTHOR. A selection of a value for e affects only N.
I r you take a smaller E, you will get, generally speaking,
u larger N. However, the number of the terms of a sequence
which do not satisfy 1 Yn - a 1< e will remain finite.

And now try to answer the question about the validity of
t.he converse theorem: If a sequence is bounded, does it
imply it is convergent as well?

READER. The converse theorem is not true. For example,
sequence (10) which was discussed in the first dialogue is
bounded. However, it has no limit.

AUTHOR. Right you are. We thus come to a
Corollary:
The boundedness of a sequence is a necessary condition for

its convergence; however, it is not a sufficient condition. If
a sequence is convergent, it is bounded. If a sequence is unbound­
ed, it is definitely nonconuergeni,

READER. I wonder whether there is a sufficient condition
for the convergence of a sequence?

AUTHOR. We have already mentioned this condition
in the previous dialogue, namely, simultaneous validity
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of both the boundedness and rnonotonicity of a sequence.
The Weierstrass theorem states:

If a sequence is both bounded and monotonic, it has a limit,
Unfortunately, the proof of the theorem is beyond the

scope of this book; we shall not give it. I shall simply ask
you to look again at sequences
(5), (7), and (13) (see Dialogue
One), which satisfy the condi­
tions of the Weierstrass theorem.

READER. As far as I under­
stand, again the converse theo­
rem is not true. Indeed, sequence
(9) (from Dialogue One) has a
limit but is not monotonic.

AUTHOR. That is correct. We
thus come to the following
Conclusion:

If a sequence is both monotonic
and bounded, it is a sufficient
(but not necessary) condition for
its convergence.

READER. Well, one can eas­
ily get confused ..

AUTHOR. In order to avoid
confusion, let us have a look

at another illustration (Fig. 8). Let us assume that all bound­
ed sequences are "collected" (as if we were picking marbles
scattered on the floor) in an area shaded by horizontal
lines, all monotonic sequences are collected in an area shaded
by tilted lines, and, finally, all convergent sequences are
collected in an area shaded by vertical lines. Figure 8 shows
how all these areas overlap, in accordance with the theorems
discussed above (the actual shape of all the areas is, OJ course,
absolutely arbitrary). As follows from the figure, the area
shaded vertically is completely included into the area shad­
ed horizontally. It means that any convergent sequence must
be also bounded. The overlapping of the areas shaded horizon­
tally and by tilted lines occurs inside the area shaded verti­
cally .. It means that any sequence that is both bounded and
monotonic must be convergent as well. I t is easy to deduce
that only five types of sequences are possible. In the figure
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tho points designated by A, B, C, D, and E identify five
soquences of different types. Try to name these sequences
uud find the corresponding examples among the sequences
discussed in Dialogue One.

ItEADER. Point A falls within the intersection of all the
three areas. It represents a sequence which is at the same
time bounded, monotonic, and convergent. Sequences (5),
(7), and (13) are examples of such sequences.

AUTHOR. Continue, please.
l-lEADER. Point B represents a bounded, convergent

hut nonmonotonic sequence. One example is sequence (9).
Point C represents a bounded but neither convergent nor

monotonic sequence. One example of such a sequence is
soquence (10).

Point D represents a monotonic but neither convergent
'nor bounded sequence. Examples of such sequences are (1),
(~), (3), (4), (6), (11), and (12).

Point E is outside of the shaded areas and thus represents
it sequence neither monotonic nor convergent nor bounded.
One example is sequence (8).

AUTHOR. What type of sequence is impossible then?
I-lEADER. There can be no bounded, monotonic, and

nonconvergent sequence. Moreover, it is impossible to have
hoth unboundedness and convergence in one sequence.

AU1'H0:6. As you see, Fig. 8 helps much to understand
t.he relationship between such properties of sequences as
boundedness, monoioniciuj, and convergence.

In what follows, we shall discuss only convergent se-
quences. We shall prove the following

Theorem:
A convergent sequence has only one limit.
This is the theorem of the uniqueness of the limit. It means

that a convergent sequence cannot have two or more limits.
Suppose the situation is contrary to the above statement.

Consider a convergent sequence with two limits a1 and a 2

and select a value for £ < lal;a21• Now assume, for

example, that e = lal;a2
[ . Since at is a limit, then for

the selected value of e there is N 1 such that for all n > N 1
the terms of the sequence (its infinite "tail") must fall inside

3-01473



the interval 1 (Fig. 9). It means that we ruust hav
I Yn - at , < E. On the other hand, since at is a limit
there is N 2 such that for all n ;» N 2 the terms of the sequenc
(again its infinite "tail") must fall inside the interval 2
It means that we must have I Yn - a2 I < 8. Hence, WI

obtain that for all N greater than the largest among N

~~
\"" T ' , ~ .J, ~

Filit. 9

and N 2 the Impossible must hold, namely, the terms of th:
sequence must simultaneously belong to the intervals ..
and 2. This contradiction proves the theorem.

This proof contains at least two rather "delicate" points
Can you identify themr

RBADER. I certainly notice one of them. If at and a
are limits, no matter how the sequence behaves at the begin
ning, its terms in the long run have to concentrate simulta
neously around at and a2' which is, of course, impossible

AUrrHOR. Correct. But there is one more "delicate'
point, namely, no matter how close at and a2 are, the;
should inevitably be spaced by a segment (a gap) of a smal
but definitely nonzero length.

READER. But it is self-evident.
AUr"fHOJ{. I agree. However, this "self-evidence" is con

nected to one more very fine aspect without which the ver:
calculus could not be developed. As you probably noted, 0111

cannot identify on the' real line two neighbouring points
If one point is chosen, it is impossible, in principle, to poin
out its "neighbouring" point. In other words, no matter hov
carefully you select a pair of points on the real line, it i
always possible to Iind any number of points between th.
two.

Take, for example, the interval [0, 1]. Now, exclude th:
point 1. You will have a half-open interval [0, 11. Can yoi
identify the largest number over this interval?



Convetgent Sequence

l-\EADER. No, it is impossible.
i\UTHOR. That's right. However, if there were a point

ueighbouriug 1, after the removal of the latter this "neigh­
hour" would have become the largest number. I would like
1.0 note here that many "delicate" points and many "secrets"
i II the calcuius theorems are ultimately associated with the
i mpossihil ity of identifying two neighbouring points on the
real line, or of specifying the greatest or least number on an
I) pen in terval of the rea I line.

But let us get back to the properties of convergent se­
quences and prove the following

Theorem:
1f sequences (Yn) and (zn) are convergent (we denote their

limits by a and b, respectively), a sequence (Yn + zn) is con­
vergent too, its limit being a + b.

I\EADER. This theorem is none other than rule (3)
cI iscussed in the prey ious dialogue.

AVr"fHOR. Thats right. Nevertheless, I suggest you try
1.0 prove it.
I~EADER. If we select an arbitrary 8 > 0, then there is

U number Nt such that for all the terms of the first sequence
with n > Nt we shall have 1 Yn - a 1<8. In addition,
1'01' the same e there is N 2 such that for all the terms of the
second sequence with n > N 2 we shall have I Zn - b I < E.

Ir now we select the greatest among N 1 and N 2 (we denote
i (, by N), then for all n > N both J Yn - a I < E and
I Zn - b 1< E. Well, this is as far as I can go.

AVrrI-IOR. Thus, you have established that for an arbi­
trary .e there is N such that for all n>N both IYn - al< E

and I Zn -- b I < E simultaneously. And what can you say
nhout the modulus I (Yn + zn) - (a + b) I (for all n)?
I remind you that I A + B , ~ , A I + I B I.
I~EADER. Let us look at

I (Yn + zn) - (a + b) I == I (Yn - a) + (zn - b) I
~ l] Yn - a I + I Zn - b I] < (e + 8) == 28

AVTI-IOR. You have proved the theorem, haven't you?
I{EADER. But we have only established that there is N

such that for all n > N we have I (Yn + zn) - (a + b) I <
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< 2e. But we need to prove that

1(Yn + zn) - (a + b) I < e

AUTHOR. Ah, that's peanuts, if you forgive the expres­
sion. In the case of the sequence (Yn + zn) you select a value
of c, but for the sequences (Yn) and (zn) you must select a

e
value of 2" and namely for this value find N1 and N 2.

'rhus, we have proved that if the sequences (Yn) and (zn)
are convergent, the sequence (Yn + zn) is convergent too.
We have even found a limit of the sum. And do you think
that the converse is equally valid?

READER. I believe it should be.
AUr-rHOR. You are wrong. Here is a simple illustration:

121 4 161
(Yn) =="2' :r t 4" t 5"' 6" ' 7 a "8t • • •

113 1 517
(Zn)=2' 3""'"4'""5' 6' 7' 8' ...

(Yn + zn) = 1, 1, 1, 1, 1, 1t 1 . . .

As you see, the sequences (Yn) and (zn) are not convergent,
while the sequence ts« + zn) is convergent, its limit being
equal to unity.

'thus, if a sequence is« + zn) is convergent, two alterna-
tives are possible:

sequences (Yn) and (zn) are convergent as well, or
sequences (Yn) and (zn) are divergent.
READER. But can it be that the sequence (Yn) is conver­

gent, while the sequence (zn) is divergent?
AU1'HOR. It may be easily shown that this is Impossible.

To begin with, let us note that if the sequence (Yn) has a
limit a, the sequence (-Yn) is also convergent and its limit
is -a. 'This follows from an easily proved equality

lim (cYn) = C Iim Yn
n-+oo n-+oo

where c is a constant.
Assume now that a sequence (Yn + zn) is convergent to A,

and that (Yn) is also convergent and its limit is a. Let us
apply the theorem on the sum of convergent sequences to
the sequences (Yn + zn) and (-Yn). As a result, we obtain
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that the sequence (Yn + zn - Yn), i.e. (zn), is also conver­
gent, with the limit A-a.

READER. Indeed (zn) cannot be divergent in this case.
AUTHOR. Very well. Let us discuss now one important

particular case of convergent sequences, namely, the so­
called infinitesimal sequence, or simply, infinitesimal. This is
the name which is given to a convergent sequence with
a limit equal to zero. Sequences (7) and (9) from Dialogue
One are examples of infinitesimals.

Note that to any convergent sequence (Yn) with a limit a
there corresponds an infinitesimal sequence (an), where
an = Yn - a. That is why mathematical analysis. is also
called calculus of infinitesimals.

Now I invite you to prove the following
Theorem:
If (Yn) is a bounded sequence and (an) is infinitesimal, then

C'lnCXn) is infinitesimal as well.
READER. Let us select an arbitrary e > O. We must

prove that there is N such that for all n > N the terms of
the sequence (Yncxn) satisfy the inequality I Yn(Xn , < E.

AUTHOR. Do you mind a hint? As the sequence (Yn) is
bounded, one can find M such that I Yn , ~ M for any n,

READER. Now all becomes very simple. We know that
the sequence (cxn ) is infinitesimal. I t means that for any
l-:' > 0 we can find N such that for all n > N 'an' < e',

For e", I select ;,. Then, for n > N we have

This completes the proof.
AUTHOR. Excellent. Now, making use of this theorem,

it is very easy to prove an other
Theorem:
A sequence (Ynzn) is convergent to ab if sequences (Yn) and

(zn) are convergent to a and b, respectively.
Suppose Yn = a + CX n and Zn. = b + ~n. Suppose also

that the sequences (an) and (~n) are infinitesimal. Then we
can write:

Ynzn := ab + 1'n' where 1'n = ban + a~n + an~n
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Making use of the theorem we have just proved, we conclude
that the sequences (ban), (a~n), and (an~n) are infinitesimal.

READER. But what justifies your conclusion about the
sequence (an~n)?

AUTHOR. Because any convergent sequence (regardless
of whether it is infinitesimal or not) is bounded.

From the theorem on the sum of convergent sequences W~

infer that the sequence (Yn) is infinitesimal, which immediate­
ly yields

lim (Ynzn) = ab
n~oo

This completes the proof.
READER. Perhaps we should also analyze ill verse var­

iants ill which the sequence (Ynzn) is convergent. What can
be said in this case about the sequences (Yn) and (zn)?

AUTHOR. Nothing definite. in the general case. Obvious­
ly, one possibility is that (Yn) and (zn) are convergent.
However, it is also possible, for example, for the sequence
(Yn) to be convergent, while the sequence (zn) is divergent.
Here is a simple illustration:

1 1 1 1 i
(Yn) = 1, 4"' 9 ' 16 ' 25' · · · , Ti2'

(zn) = 1, 2, 3, 4, 5, ... , n, ...

1 1 t t t
(Ynzn) = 1, "2' "3' 4" ' 5' · · · , n '

By the way, note that here we obt.a in an infinitesimal se­
quence by multiplying an infinitesimal sequence by au uu­
bounded sequence. In the general case, howeve-r, such mult i­
plication needn't produce an infinitesimal.

Finally, there is a possibility when the sequence (y"zn)
is convergent, and the sequences (Yn) and (zn) are divergent.
Here is one example:

1 t t
(Yn)=1, 4' 3, 16,5, 36,7, ...

t 1 1
(zn}=1, 2, 9,4, 25,6,4'9' ...

t t tit t
(YnZrt) = 1, 2'3'4'5'6'7' ...



Convergent Sequence 39

Now, let us formulate one more
Theorem:
II (Yn) and (zn) are sequences convergent to a and b

trhen b:F 0, then a sequence (J..!L) is also convergent, its
Zn ~

limit being i.
We shall omit the proof of this theorem,
READER. And what if the sequence (zn) contains zero

terms?
AUTHOR. Such terms are possible. Nevertheless, the

number of such terms can be only finite. Do you know why?
READER. 1 think, I can guess .. The sequence (zn) has

a nonzero limit b.
AUTHOR. Let us specify b > O.

READER. Well, I select e = ~ . There must be an inte-

ger N such that I Zn -- b 1< f for all n > N. Obviously.

all Zn (the whole infinite "tail" of the sequence) will be pos­
itive. Consequently, the zero terms of the sequence ·(zn)
may only be encountered among a finite number of the
first N terms.

AUTHOR. Excellent. Thus, the number of zeros among
the terms of (zn) can only be finite. If such is the case, one
can surely drop these terms. Indeed, an elimination of any
finite number of terms of a sequence does not affect its properties.
For example, a convergent sequence still remains' convergent,
with its limit unaltered. An elimination of a finite number
of terms may only change N (for a given 8), which is cer­
tainly unimportant.

READER. It is quite evident to me that by eliminating
a finite number of terms one does not affeet the convergence
of a sequence. But could an addition of a finite number of
terms affect the convergence of a sequence?

AUTHOR. A finite number of new terms does not affect
the convergence of a sequence either. No matter how many
new terms are added and what their new serial numbers are,
one~ can always find the greatest number N after which the
whole infinite "tail" of the sequence is unchanged. No matter
how large the number of new terms may be and where you
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insert them, the finite set of new terms cannot change the
infinite "tail" of the sequence. And it is the "tail" that deter­
mines the convergence (divergence) of a sequence.

Thus, we have arrived at the following
Conclusion:
Elimination, addition, and any other change of a finite

number 0/ terms of a sequence do not affect either its conver­
gence or its limit (if the sequence is convergent).

READER. I guess that an elimination of an infinite num­
ber of terms (for example, every other term) must not affect
the convergence of a sequence either.

AUTHOR. Here you must be very careful. If an initial
sequence is convergent, an elimination of an infinite number
of its terms (provided that the number of the remaining
terms is also infinite) does not affect either convergence or
the limit of the sequence. If, however, an initial sequence
is divergent, an elimination of an infinite number of its
terms may, in certain cases, convert the sequence into
a convergent one. For example, if you eliminate from diver­
gent sequence (10) (see Dialogue One) all the terms with
even serial numbers, you will get the convergent sequence

Suppose we form from a given convergent sequence two
new convergent sequences. The first new sequence will
consist of the terms of the initial sequence with odd serial
numbers, while the second will consists of the terms with
even serial numbers. What do you think' are the limits of
these new sequences?

READER. It is easy to prove that the new sequences will
have the same limit as the initial sequence.

AUTHOR. You are right.
Note that from a given convergent sequence we can form

not only two but a finite number m of new sequences converg­
ing to the same limit. One way to do it is as follows. The
first new sequence will consist of the 1st, (m + 1)st,
(2m + 1)st, (3m + 1)st, etc., terms of the initial sequence.
The second sequence will consist of the 2nd, (m + 2)nd,
(2m + 2)nd, (3m + 2)nd, etc., terms of the initial sequence.
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Similarly we can form the third, the fourth, and other se­
quences.

In conclusion, let us see how one can "spoil" a convergent
sequence by turning it into divergent. Clearly, different
"spoiling" approaches are possible. Try to suggest something
simple.

READER. For example, we can replace all the terms with
even serial numbers by a constant that is not equal to the
limit of the initial sequence. For example, convergent
sequence (5) (see Dialogue One) can be "spoilt" in the fol­
lowing manner:

1 3 5 7
"2' 2, "4' 2, 6"' 2, 8"' 2, ...

AUTHOR. I see that you have mastered very well the es­
sence of the concept of a convergent sequence. Now we are
ready for another substantial step, namely, consider one of
the most important concepts in calculus: the definition of
a function.

DIALOGUE FOUR

FUNCTION

READER. Functions are widely used in elementary
mathematics.

AUTHOR. Yes, of course. You are familiar with numerical
functions. Moreover, you have worked already with different
numerical functions. Nevertheless, it will be worthwhile to
dwell on the concept of the function. To begin with, what
is your idea of a function?

READER. As I understand it, a function is a certain cor­
respondence between two variables, for example, between z
and y. Or rather, it is a dependence of a variable y on a
variable x.

AUTHOR. What do you mean by a "variable"?
READER. It is a quantity which may assume different

values.
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AUTHOR. Can you explain what your understanding of
the expression "a quantity assumes a value" is? What does it
mean? And what are the reasons, in particular, that make
a quantity to assume this or that value? Don't you feel that
the very concept of a variable quantity (if you are going
to use this concept) needs a definition?

READER. O.K., what if I say: a function y = f (x)
symbolizes a dependence of y on x, where x and yare num­
bers.

AUTHOR. I see that you decided to avoid referring to the
concept of a variable quantity. Assume that x is a number
and y is also a number. But then explain, please, the mean­
ing of the phrase "a dependence between two numbers".

READER. But look, the words "an independent variable"
and "a dependent variable" can be found in any textbook on
mathematics.

AUTHOR. The concept of a variable is given in textbooks
on mathematics after the definition of a function has been
introduced.

READER. It seems I have lost my way.
AUTHOR. Actually it is not all that difficult "to con­

struct" an image of a numerical function. I mean image,
not mathematical definition which we shall discuss later.

In fact, a numerical function may be pictured as a "black
box" that generates a number at the output in response to a
number at the input. You put into this "black box" a number
(shown by x in Fig. 10) and the "black box" outputs a new
number (y in Fig. to).

Consider, for example, the following function:

y = 4x2
- 1

If the input is x = 2, the output is y = 15; if the input is
x = 3, the output is y = 35; if the input is x = 10, the
output is y = 399, etc.

READER. What does this ublack box" look like? You
have stressed that Fig. 10 is only symbolic.

AUTHOR. In this particular case it makes no difference.
ltdoes not influence the essence of the concept of a function.
But a function can also be "pictured" like this:
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The square in this picture is a "window" where you input
the numbers. Note that there may be more than one "win­
dow". For example,

40 2 - 1
101+1

READER. Obviously, the function you have in mind is

4x3 - f
Y== Ix'+1"

AUTHOR. Sure. In this case each specific value should
be input into both "windows" simultaneously.

"B tack box"
working as a

functton

Fig. 10

By the wa y, it is always important to see such a "window'
(or "windows") in a formula describing the function. Assume,
for example, that one needs to pass from a function y = f (x)
to a function y = t (x - 1) (on a graph of a function this
transition corresponds to a displacement of the curve in the
positive direction of the x-axis 1,y 1). If you clearly under­
stand the role of such a "window" ("windows"), you will
simply replace in this "window" (these "windows") x by
x - 1. Such an operation is Illustrated by Fig. 11 which
represents the following function

4x2-1

Y=== Ixl+1
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Obviously, as a result of substitution of x - 1 for x we
arrive at a new function (new "black box")

4 (0-1)2-1
10-1'+1 '

4 (x-1)2_1

Y=== \x-1'+1

READER. I see. If, for example, we wanted to pass from

y = / (x) to Y = / ( ~ ), the function pictured in Fig. 11

4-(x-t)2-f

/x-f/+f

Fig. 11

would be transformed as follows:

-i..- 1
:z;2

Y= 1
y;;+1

AUTHOR. Correct. Now. try to find Y = f (x) if

2/ ( ~ ) - / (x) = 3x

READER. I am at a loss.

AUTHOR. As a hint, I suggest replacing x by!..
x

READER. This yields

2/ (x)- / ( ~ ) = :

Now it is clear. Together with the initial equation, the
new equation forms a system of two equations for f (x)
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2/ ( ~ ) - / (x) = 3x }

2/ (x) - / ( ~ ) -:- :

By multiplying all the terms of the second equation by 2
and then adding them to the first equation, we obtain

/ (x) = x+ ~

AUTHOR. Perfectly true.
READER. In connection with your comment about the

numerical function as a "black box" generating a numerical

Fig. 12

output in response to a numerical input, I would like to'~
whether other types of "black boxes" are possible in calculus.

AUTHOR. Yes, they are. In addition to the numerical
function, we shall discuss the concepts of an operator and
a functional.

READER. I must confess I have never heard of such con­
cepts.

AUTHOR. I can imagine. I think, however, that Fig. 12
will be helpful. Besides, it will elucidate the place and role
of the numerical function as a mathematical tool. Figure 12
shows that:

a numerical function is a "black box" tha t generates a num­
ber at the output in response to a number at the input;

an operator is a "black .. box" that generates a numerical
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function at the output in response to a numerical function
at the input; it is said that all operator applied to a function
generates a new function;

a functional is a "black box" that generates a number at
the output in response to a numerical junction at the input,
i.e. a concrete number is obtained "in response" to a concrete
function.

READER. Could you give examples of operators and func­
tionals?

AUTI-fOR. Wait a minute. In the next dialogues we shall
analyze both the concepts of an operator and a Iuuctional.
So far, we shall confine ourselves to a general analysis of
both concepts. Now we get back to our main object, the
numerical function.

The question is: How to construct a "black box" that
generates a numerical function.

READER. Well, obviously, we should find a relationship,
or a law, according to which the number at the "output" of
the "black box" could be forecast for each specific Humber
introduced at the "input".

AU'fHOR. You have put it quite clearly. Note that such
a law could be naturally referred to as the law oj numerical
correspondence. However, the law of numerical correspondence
would not be a sufficient definition of a numerical func­
tion.

READER. What else do we need?
AU1'HOR. Do you think that any number could be fed

into a specific "black box" (function)?
READER. I see. I have to define a set of numbers accept­

able as inputs of the given function.
AUTHOR. That's right. This set is said to be the domain

of a function.
Thus, the definition of a numerical function is based on

two "cornerstones";
the domain of a function (a certain set of numbers), and
the law of numerical correspondence.
According to this law, every number from the domain of

a function is placed in correspondence with a certain number,
which is called the value of the function; the values form the
range of the function.

READER. Thus, we actually have to deal with two numer-
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E

ical sets. On the one hand, we have a set called the domain
of a function and, on the other, we have a set called the
range of a function.

AUTHOR. At this juncture we have come closest to
a mathematical definition of a function which will enable
us to avoid the somewhat mysterious word "black box".

Look at Fig. 13. It shows the function y =::= V1 - x 2
•

Figure 13 pictures two numerical sets, namely, D (represent­
ed by the interval [-1, 1])
and E (the interval
[0, 1]). For your conve­
nience these sets are
shown on two different
real lines.

The set D is the domain
of the function, and E' is
its range. Each' number
in D corresponds to one
number in E (every in­
put value is placed in
correspondence with one
output value). This COl'­

respondence is ~shown in
Fig. 13 by arrows point­
ing from D to E.

READER. But Figure 13 shows that two different num­
bers in D correspond to one number in E.

AUTHOR. It does not contradict the statement "each
number in D corresponds to one number in E". I never said
that different numbers in D must correspond to different
numbers in E. Your remark (which actually stems from spe­
cific characteristics of the chosen function) is of no principal
significance. Several numbers in D may correspond to one
number in E. An inverse situation, however, is forbidden.
I t is not allowed for one number in D to correspond to more
than one number in E. I emphasize that each number in D
must correspond to only one (not morel) number in E.

Now we can formulate a mathematical definition of the
numerical function.

Definition:
Take two numerical sets D and E in which each element x
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of D (this is denoted by x ED) is placed in one-to-one correspond­
ence with one element y of E. Then we say that a function
y == f (x) is set in the domain D, the range of the function
being E. It is said that the argument x oj the junction y passes
through D and the values of y belong to E.

Sometimes it is mentioned (but more often omitted alto­
gether) that both D and E are subsets of the set of real
numbers R (by definition, R is the real line).

On the other hand, the definition of the function can be
reformulated using the term "mapping". Let us return again
to Fig. 13. Assume that the number of arrows from the points
of D to the points of E is infinite (just imagine that such
arrows have been drawn from each point of D). Would you
agree that such a picture brings about an idea that D is
mapped onto E?

READER. Really, it looks like mapping.
AUTH·OR. Indeed, this mapping can be used to define

the function.'
Defmt tlom
A numerical junction is a mapping oj a numerical set D

(whick is the domain of the junction) onto another numerical
set E (the range 01 this junction).

TI1US, the numerical function is a mapping of one numerical
set onto another numerical set. The term "mapping" should be
understood as a kind of numerical correspondence discussed
above. In the notation y = / (x), symbol f means the function
itself (i.e, the mapping), with xED and y EE.

READER. If the numerical/unction is a mapping of one
numerical set onto another numerical set, then the operator
can be considered as a mapping of a set of numerical function
onto aaother set of functions, and the junctional as a map­
ping of a set of functions onto a numerical set.

AUTH,OR. You are quite right.
READER. I have noticed that you persistently use the

term "numerical function" (and I follow suit), but usually
one simply says "function". Just how necessary is the word
"numerical"?

AUTHOR. You have touched upon a very important
aspect. The point is that in modern mathematics the concept
of a function is substantially broader than the 'concept of a
numerical function. As a matter of fact, the concept of a
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function includes, as particular cases, a numerical function
as well as an operator and a functional, because the essence
in all the three is a mapping of one set onto another inde­
pendently of the nature of the sets. You have noticed "that
both operators and functionals are mappings of certain sets
onto certain sets. In a particular case of mapping of a numeri­
cal set onto a numerical set we come to a numerical function.
In a more general case, however, sets to be mapped can be
arbitrary. Consider a few examples.

Example 1. Let D be a set of working days in an academic
year, and E a set of students in a class. Using these sets,
we can define a function realizing a schedule for the stu­
dents on duty in the classroom. In compiling the schedule,
each element of D (every working day in the year) is placed
in one-to-one correspondence with a certain element of E
(a certain student). This function is a mapping of the set
oj working days onto the set of students. We may add that the
domain of the function consists of the working days and the
range is defined by the set of the students.

READER. It sounds a bit strange. Moreover, these sets
have finite numbers of elements.

AUTHOR. This last feature is not principal.
READER. The phrase "the values assumed on the set of

students" sounds somewhat awkward.
AUTHOR. Because you are used to interpret "value" as

"numerical value".
Let us consider some other examples.
Example 2. Let D be a set of all triangles, and E a set of

positive real numbers. Using these sets, we can define two
functions, namely, the area of a triangle and the perimeter
of a triangle. Both functions are mappings (certainly, of
different nature) oj the set of the triangles onto the set of the
positive real numbers. I t is said that the set of all the trian­
gles is the domain of these functions and the set of the positive
real numbers is the range of these functions.

Example 3. Let D be a set of all triangles, and -E a set of
all circles. The mapping of D onto E can be either a circle
inscribed in a triangle, or a circle circumscribed around
a.triangle. Both have the set of all the triangles as the domain
of the function and the set of all the circles as the range of
the function.

l-01473
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By th-e way, do you think that it is possible to "construct"
an inverse function in a similar way, namely, to define
a function with all the circles as its domain and all the
triangles as its range?

READER. I see no objections.
AUTI-IOR. No, it is impossible. Because any number of

different triangles can be inscribed in or circumscribed
around a circle. In other words, each element of E (each
circle) corresponds to an Infinite number of different elements
of D (i.e, an infinite number of triangles). It means that there
is no function since no mapping can be realized.

However, the situation can be improved if we restrict
the set of triangles.

,READER. I guess I know how to do it. We must choose
the set of all the equilateral triangles as the set D. Then it
becomes possible to realize both a mapping of D onto E
(onto the set of all the circles) and an inverse mapping,
i.e, the mapping of E onto D, since only one equilateral
triangle could be inscribed in or circumscribed around a
given circle..

AUTHOR. Very good. I see that, you have grasped the es­
sence of the concept of functional relationship. I should
emphasize that from the broadest point of view this concept
is based on the idea of mapping one set of objects onto
another set of objects. It means that a function can be realized
as a numerical junction, an operator, or a junctional. As we
have established above, a function rnay be represented by an
area or perimeter of a geometrical figure, such, as a circle
inscribed in a triangle or circumscribed around it, or it may
take the form oj a schedule of students on duty in a classroom,
etc. I t is obvious that a list of different functions may be
unlimited. .

READER. I must admit that such a broad interpretation
of the concept of a function is very new to me.

AUTHOR. As a matter of fact, in a very diverse set of
possible functions (mappings), we shall use only numerical
functions, operators, and [unctionals. Consequently, we shall
refer to numerical functions as simply junctions, while
operators and [unctionals will be pointed out specifically.

And now we shall examine the already familiar concept of
a numerical sequence as an example of mapping.
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READER. A numerical sequence is, apparently, a map­
ping of a set of natural numbers onto a different numerical
set. The elements of the second set are the terms of the
sequence. Hence, a numerical sequence is a particular case
of a numerical function. The domain of a function is repre­
sented by a set of natural numbers.

AUTHOR. This is correct. But you should bear in mind
that later on we shall deal with numerical functions whose
domain is represented by the real line, or by its interval (or
intervals), and whenever we mention a function, we shall
imply a numerical function.

In this connection it is worthwhile to remind you of the
classification of intervals. In the previous dialogue we have
already used this classification, if only partially.

First of all we should distinguish between the intervals
of finite length:

a closed interval that begins at a and ends at b is denoted
by [a, b]; the numbers x composing this interval meet the
inequalities a ~ x ~ b;

an open interval that begins at a and ends at b is denoted
by la, b[; the numbers x composing this interval meet the
inequalities a < x < b;

a half-open interval is denoted either by la, b] or [a, b[,
the former implies that a < x ~ b, and the latter that
a ~ x < b.

The intervals may also be infinite:

] - 00, 00 [ ( - 00 < x < 00) - the real line

la, oo ] (a<x<oo); [a, oo[ (a~x<oo)

]-00, b[ (-oo<x<b); ]-00, b] (-oo<x~b)

Let us consider several specific examples of numerical
functions. Judging. by the appearance of the formulas given
below, point out the intervals constituting the domains of
the following functions:

u>V1-x2

Y= Vx-t

y= V2., .x

(1)

(2)
(3)
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W= 1
(4)V.z-1

y= 1
(5)Y2-:z=

y=Vx-i+V2 x (6)

1 + t
(7)y=

Y:c-f Y2-z

y=V2-x+ f
(8)

V,z-f

V- 1 (9)y= x-1+
Y2-z

READER. It is not difficult. The domain of function (1)
is the interval (-1, 1]; that of (2) is [1, 00[; that of (3)
is ]- 00, 2]; that of (4) is 11, 00[; that of (5) is j.; 00, 2[;
that of (6) is [1, 2], etc.

AUTHOR. Yes, quite right, but may I interrupt you to
emphasize that if a function is a sum (a ditlerence, or a
product) of two functions, its domain is represented by the
intersection of the sets which are the domains of the constit­
uent functions. It is well illustrated by function (6). As
a matter of fact, the same rule must be applied to functions
(7)-(9). Please, continue.

READER. The domains of the remaining functions are (7)
J17 21; (8) ]1,2]; (9) u, 2[.

AUTHOR. And what can you say about the domain of
the function y = Vx 2+V1 x?

READER. The domain of y= Vx-2 is [2, 00 [, while
that of y = V1- x is ] - 00, 1]. These intervals do not
intersect.

AUTHOR. It means that the formula y = Vx-2 +
+V i x does not define any function.
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DIALOGUE FIVE

MORE ON F'UNCTION

AUTHOR. Let us discuss the methods of defining func­
tions. One of them has already been employed quite exten­
sively. I mean the analytical description of a function by some
formula, that is, an analytical expression (for example,
expressions (1) through (9) examined at the end of the preced­
ing dialogue).

READER. As a matter of fact, my concept of a function
was practically reduced to its representation by a' formula.
It was a formula that I had in mind whenever I spoke about
a dependence of a variable y on a variable z,
£~UTHOR. Unfortunately, the concept of a function as a

formula relating x and y has long been rooted in the minds
of students. This is, of course, quite wrong, A function and
its formula are very different entities. It is one thing to
define a function as a mapping of one set (in our case it is
a numerical set) onto another, in other words, as a "black
box" that generates a number at the output in response
to a number at the input. It is quite another thing to have
just a formula, which represents only one of the ways of
defining a function. It is wrong to identify a function with
a formula giving its analytical description (unfortunately,
it happens sometimes).

READER. It seems that after the discussion in the pre­
vious dialogue about the function, such identification in
a general case is automatically invalidated. However, if we
confine ourselves only to numerical functions and if we bear
in mind that working with a function we always use a for­
mula to describe it, a question arises: Why is it erroneous to
identify these two notions? Why should we always emphasize
the difference between the function and its formula?

AUTHOR. I'll tell you why. First, not every formula de­
fines a function. Actually, at the end of the previous dia­
logue we already had such an example. I shall give you some

i 1
more: y =t~ + f-;r' y = log x + log (-x), !j:::=;
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= V sin x - 2, y = log (sin x - 2), etc. These formulas
do not represent any functions.

Second (and this is more important), not all functions
can be written as formulas. One example is the so-called
Dirichlet function which is defined on the real line:

{
1 if x is a rational number

y = 0 if x is an irrational number

REA.DER. You call this a function?
AUTHOR .. It is certainly an unusual function, but still

a function. I t is a mapping of a set of rational numbers to
unity and a set of irrational numbers to zero. The fact that
you cannot suggest any analytical expression for this func­
tion is of no consequence (unless you invent a special symbol
for the purpose and look at it as a formula).

However, there is one more, third and probably the most
important, reason why functions should not be identified
with their formulas. Let us look at the following expression:

{

COS X ' x<O
Y== 1 +x2 , O~x~2

log(x-1), x>2

How many functions have I defined here?
READER. Three functions: a cosine, a quadratic function,

and a logarithmic function.
AUTHOR. You are wrong. The three formulas (y === cos x,

y == 1 + x2 , and y = log (x - 1)) define in this case a
single function. I t is defined on the real line, with the law of
numerical correspondence given as y ==: cos x over the inter­
val }-oo, Or, as y = 1 + x 2 over the interval [0,2], and
as y = log (x - 1) over the interval 12, col.

READER. I've made a mistake because I did not think
enough about the question.

AUTHOR 4 No, you have made the mistake because
subconsciously you identified a function with its analytical
expression, i.e. its formula. Later on, operating with func­
tions, we shall use formulas rather extensively. However,
you should never forget that a formula is not all a function
is, It is only one way of defining it.
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The example above illustrates, by the way, that one should
not identify such notions as the domain of a function and
the range of x on which an analytical expression is defined
(i.e. the domain of an analytical expression). For example,
the expression 1 + x2 is defined on the real line. However,
in the example above this expression was used to define
the function only over the interval [0, 2J.

It should be emphasized that the question about the do­
main of a function is of principal significance. It goes without
saying that the domain of a function cannot be wider than
the domain of an analytical expression used to define this
function. But it can be narrower. . '

READER. Does it mean that a cosine defined, for exam­
ple, over the interval [0, nJ and a cosine defined over the
interval en, 3rtJ are two different functions?

AUTHOR. Strictly speaking, it does. A cosine defined,
for example, on the real line is yet another function. In
other words, using cosine we may, if we wish, define any
number of different functions by varying the domain of
these functions.

In the most frequent case, when the domain of a function
coincides with the domain of an analytical expression for
the function, we speak about a natural domain of the func­
tion. Note that in the examples in the previous dialogue we
dealt with the natural domains of the functions. A natural
domain is always meant if the domain of a function in
question is not specified (strictly speaking, the domain of
a function should be specified in every case).

READER. It turns out that one and the same function
can be described by different formulas and, vice versa, one
and the same formula can be used to "construct" different
functions.

AUTHOR. In the history of mathematics the realization
of this fact marked the final break between the concept of
a function and that of its analytical expression. This actual­
ly happened early in the 19th century when Fourier, t.he
French mathematician, very convincingly showed t.hat it
is quite irrelevant whether one or many analytical expres­
sions are used to describe a function. Thereby an end was
put to the very long discussion among mathematicians about.
Identifying a function with its analytical expression.
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It should be noted that similarly to other basic mathe­
matical concepts, the concept of a function went through a
long history of evolution. The term "function" was intro­
duced by the German mathematician Leibnitz late in the
17th century. At that time this term had a rather narrow
meaning and expressed a relationship between geometrical
objects. The definition of a functional relationship, freed
from geometrical objects, was first formulated early in the
18th century by Bernoulli. The evolution of the concept of
a function can be conventionally broken up into three main
stages. During the first stage (the 18th century) a function
was practically identified with its analytical expression.
During the second stage (the 19th century) the modern con­
cept of a function started to develop as a mapping of one
numerical set onto another. With the development of the
general theory of sets, the third stage began (the 20th cen­
tury) when the concept of a function formerly defined only
for numerical sets was generalized over the sets of an arbitra­
ry nature.

READER. It appears that by overestimating the role
of a formula we inevitably slip back to the concepts of the
18th century.

AUTHOR. Let us discuss now one more way of defining
a function, namely, the graphical method. The graph of
a function y = f (x) is a set of points on the plane (x, y)
whose abscissas are equal to the values of the independent
variable (x), and whose ordinates are the corresponding
values of the dependent variable (y). The idea of the graphi­
cal method of defining a function is easily visualized. Figure
14a plots the graph of the function

{

COS X' x<O
Y= 1+x2

, O~x~2

log(x-1), x>2

discussed earlier. For a comparison, the graphs of the Iunc­
tions y = cos ~, y = 1 .+ x2 , and y = log (.1~ - 1) are shown
within their natural domains of definition in tho same figure
(cases (b), (c), and (d)).

READER. In Fig. ~4a I notice an open circle. What does
it mean? .
I' . r 1
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xo f.2

-1

{

COS x,
y= t+.x2

togrl- f},

AUTHOR. This circle graphically represents a point ex­
cluded from the graph. In this particular case the point
(2, 0) does not belong to the graph of the function.

!I

(a)

(b)

y=cos x

x

II !J

y=Log(x-f)

o

I-I 0
---+---+-......J-----~

X
(d)

Fig. 14

Figure 15 plots the graphs of the functions that were
d iscnssed at the end of the previous dialogue. Let us have
,a close 19Dk ~t them.



y.
!/= II-x 2

y.
!/=\fX-f

-f 0 f x 0 I .x.------....
(a) (b)

Yf II I
I
I
I
I I
I Y= v,x-II

I --~---I,
0 2 x 0 ff X

(e) (d)

!/
I

Y

y__ f
I
I

-VFX I -!I=vx-I +v2-X
I
I

f ---AI
I I

I
I I I

0 2 1 X 0 II 12 x

(e) (f)

!I IVI !/ Y
r I-

I I I I
I I r I
I J

~I~
I

'I~
I

~I~
I j I I
I I I f
I I I I
t I i- '+- I
I I

'I~
I

~
I

~
l1-,. I
I I

I I
I I

I I II I II I II
I I I ~ I --1---- ~ I I ~

I I I
t I I I I I

0 fl 2' X 0
,I 2

1 x 0 f I 2' x

(g) (h) (i)

fiSe tG



More on Function 59

READER. Obviously, in all the cases shown in Fig. 15
the domain of the function. is supposed coinciding with
the domain of the corresponding analytical expression.

AUTHOR. Yes, you are right. In cases (b), (c), (d), and
(e) these domains are infinite intervals. Consequently, only
a part of each graph could be shown.

READER. In other cases, however, such as (g), (h), and
(i), the domains of the functions are intervals of finite
length. But here as well the figure has space for only a part
of each graph.

AUTHOR. That is right. The graph is presented in its
complete form only in cases (a) and (f). Nevertheless, the
behaviour of the graphs is quite clear for all the functions
in Fig. 15.

The cases which you noted, i.e. (g), (h), and (i), are very
interesting. Here we deal with the unbounded function
defined over the finite interval. The notion of boundedness
(unboundedness) has already been discussed with respect

·to numerical sequences (see Dialogue One). Now we have
to extrapolate this notion to functions defined over in tsr­
valse

Definition:
A function y = / (x) is called bounded over an interval D

if one can indicate two numbers A and B such that

A ~ f (x) ~ B

for all xED. If not, the function is called unbounded.
Note that within infinite intervals you may define both

bounded and unbounded functions. You are familiar with
examples of bounded functions: y = sin x and y = cos x,
Examples of unbounded functions are in Fig. 15 (cases (b),
(c) , (d), an d (e))•

READER. Over the intervals of finite length both bound­
ed and unbounded functions may also be defined. Several
illustrations of such functions are also shown in Fig. 15:
the functions in cases (a) and (/) are bounded; the functions
in cases (g), (h), and (i) are unbounded.

AUTHOR. You are right.
READER. I note that in the cases that J have indicated

the bounded functions are defined over the closed intervals
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([-1, 1] for (a) and [1, 2] for (f)), while the unbounded
functions are defined both over the open and half-open
intervals (]1, 2[ for (g), ]1, 2] for (h), and [1, 2[ for (i)).

AUTHOR. This is very much to the point. However, you
should bear in mind that it is possible to construct bounded
functions defined over open (half-open) intervals, and

0 2 x 0 f Z X

!I~X2 , O(x<2 {~" 0< x(. 2
!/= x=o(a) t,

(b)

!I
4-

Fig. 16

unbounded functions defined over closed intervals. Here
are two simple illustrations:

Example t:
y = x 2

, 0 ~ X < 2
Example 2:

y ={+' O<x~2
1, x= 0

The graphs- of these functions are shown in Fig. 16.
READER. It seems that the boundedness (unbounded­

ness) of a function and the finiteness of the interval over
which [t is defined are not interrelated, Am I ri~ht?
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AUTHOR. Not completely. There is, for example, the
following
~,Theorem:

~' If a function is defined over a closed interval and if it is
monotonic, the function is bounded.

READER. Obviously, the monotonicity of a function is
determined similarly to the monotonicity of a numerical
sequence.

AUTHOR. Yes, it is. Monotonic functions can be classi­
fied, as sequences, into nondecreasing and nonincreasing:

Deftni lion:
A function Y = / (x) is said to be nondecreasing over an

interval D it lor any Xl and X 2 from this interval I (Xl) ~

~ I (x2) if Xl < x2• If, however, I (Xl) ~ f (x2) , the function
is said to be noninereasing,

Can you prove the theorem formulated above?
READER. Let the function Y = f (x) be defined over

the closed interval [a, b]. We denote f (a) = Ya and I (b) =
= Yb. To make the case more specific, let us assume that
the function is nondecreasing. It means that Ya~ Yb.
I don't know how to proceed.

AUTHOR. Select an arbitrary point x over the interval [a, b].
READER. Since a ~ x and X ~ b, then, according to

the condition of the above theorem, Ya ~ f (x) and f (x) ~
~ Yb. Thus, we get that Ya ~ f (x) ~ Yb for all x in the
domain of the function. This completes the proof.

AUTHOR. Correct. So, if a monotonic function is defined
over a closed interval, it is bounded. As to a nonmonotonic
function defined over a closed interval, it may be either
bounded (Fig. 15a and I) or unbounded (Fig. 16b).

And now answer the following question: Is the function
Y = sin x monotonic?

READER. No, it isn't.
AUTHOR. Well, your answer is as vague as my question.

First we should determine the domain of the function. If
we consider the function Y = sin x as defined on the natural
domain (on the real line), then you are quite right. If,
however, the domain of the function is limited to the inter-

val [ - ~ , ~ ] ' the function becomes monotonic (non­

decreasing).
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Fig. 17

!/=f-X~ -f~X~2

-3

-I

REAI)ER. I see that the question of the boundedness or
mouotonicity of any function should be settled by taking
into account both the type of the analytical expression for

the function and the in­
terval over which the
function is defined.

AUTHOR. This obser­
vation is valid not only
for the houndedness or

--.......---+--....._---+--4X__. monotonicity but also
for other properties of
functions. For example,
is the functi on y = 1- x2

an even function?
READER. Evidently

the answer depends on
the domain of the func­
tion.

AUTHOR. Yes, of
course. If the function
is defined over an in ter­
val symmetric about the
origin of coordinates (for

example, on the real line or over the interval [-1, 1]),
the graph of the function will be symmetric about the
straight line x = O. In this case y :::= 1 - x 2 is an even
function. If, however, we assume that the domain of the
function is [-1, 2), the symmetry we have discussed above
is lost (Fig. 17) and, as a result, y = 1 - x 2 is not even.

READER. It is obvious that your remark covers the
case of odd functions as well.

AUTHOR. Yes, it does. Here is a rigorous definition of
an even function.

Defini tion:
A [unction nt = / (x) is said to be even il it is defined on

a set D symmetric about the origin and if I (-x) = I (x)
lor all xED.

By. substituting f (-x) = -I (x) for I (-x) = f (z), we
obtain the definition of an odd function.

But let us return to monotonic functions.
If we drop the equality sign in the definition of a mono-
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tonic function (see p. 61) (in f (Xl) ~ f (X2 ) or f (Xl) > f (X2 ) ) ,

we obtain a so-called strictly monotonic function. In this
case a non decreasing function becomes an increasing function
(i.e. f (Xl) < f (x2 ) ) .· Similarly, a nonincreasing function
becomes a decreasing function (i.e. f (Xl) > f (x2) ) . In all
the previous illustrations of monotonic functions we actually
dealt with strictly monotonic functions (either increasing
or decreasing).

(a)

-.f 0
l'

])

(lJ)

Fig. 18

o !It R
~

IJ
(c)

E

Strictly monotonic functions possess an interesting pro­
perty: each has an inverse function.

READER. The concept of an inverse function has already
been used in the previous dialogue in conjunction with the
possibility of mapping a set of equilateral triangles onto
a set of circles. We saw that the inverse mapping, i.e. the
mapping of the set of circles onto the set of equilateral
triangles, was possible.

AUTHOR. That's right. IIere we shall examine the
concept of an inverse function in greater detail (but for
numerical functions). Consider Fig. 18. Similarly to the
graphs presented in Fig. 13, it shows three functions:

(a) Y= V1-xz, -1~x~1
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(b)

(c)

y=sin x,

y= cosx,

n n
-2~X~2

O~x~n

Here we have three mappings of one numerical set onto
another. In other words, we have three mappings of an
interval onto another interval. In case (a) the interval
[-1, 1J is mapped onto the' interval [0, 1]; in (b) the

interval [ - ~, ~] is mapped onto the interval [-1, 11;
and in (c) the interval [0, nJ is mapped onto the interval
[-1, 11.

What is the difference between mappings (b) and (c), on
the one hand, and mapping (a), on the other?

READER. In cases (b) and (c) we have a one-to-one
correspondence, i.e, each point of the set D corresponds to
a single point of the set E and vice versa, i.e. each point
of E corresponds to only one point of D. In case (a), how­
ever, there is no one-to-one correspondence.

AUTHOR. Yes, you are right. Assume now that the
directions of all the arrows in the figure are reversed. Now,
will the mappings define a function in all the three cases?

READER. Obviously, in case (a) we will not have a func­
tion since then the reversal of the directions of the arrows
produces a forbidden situation, namely, one number corre­
sponds to two numbers. In cases (b) and (c) no forbidden
situation occurs so that in these cases we shall have some
new functions.

AUTHOR. That is correct. In case (b) we shall arrive at
the function y = arcsin x, which is the inverse function

with respect to y=sin x defined over the interval [ - ~ , ~].

In case (c) we arrive at the function y == arccos x, which
is the inverse function with respect to y = cos x defined
over 10, rt].

I would like to place more emphasis on the fact that in
order to obtain an inverse function from an initial function,
it is necessary to have a one ...to-one correspondence between
the elements of the sets D and E. That is why the functions
y = sin x and y = cos x were defined not on their natural
domains but over such intervals where these functions are
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Fig. 19

o

1

either increasing or decreasing. In other words, the initial
functions in cases (b) and (c) in Fig. 18 were defined as
strictly monotonic. A strict monotonicity is a sufficient
condition for the above-men- l/
tioned one-to-one correspon-
dence between the elements of Z
D and E. No doubt you can
prove without my help the
following

Theorem:
If a function y = f (x) is

strictly monotonic, different x
are mapped onto different y.

READER. Thus, asufficient
condition for the existence
of the inverse function- is the
strict monotonicity of the
initial function. Is this right?

AUTHOR. Yes, it is.
REA·DER. But isn't the strict monotonicity of the initial

function also a necessary. condition for the existence of the
inverse function? ' '

AUTH,OR. No, it .is not. A one-to-one correspondence
may also take place in the case of a nonmonotonic function.
For example,

{
i - x, O<x<1

y-
- z, 1~x~2

Hav.e a look at the graph of this function shown in Fig. 19..
If a function is strictly monotonic, it has the inverse

function. However, the converse is .not true.
READ,ER. As I understand it, in order to obtain an

inverse function (when it exists), one should simply reverse
.the roles of x and y in the equation y' = f (z) 'defining the
init.ial function. The inverse function will then be 'given
by the equation x = F (y).As a result" the range of the
initial function becomes the domain of the inverse function.

AUTHOR. That is correct. In practice a conversion of
the initial function to the' inverse function can be easily
performed on a graph. The graph 'of the inverse Iunctlon Is

5-01473
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(d) ini tial y=sinx,

inverse y = arcsin x,

(e) initial y=cosx,
inverse y = arccos x,

(f) initial y=tanx,

always symmetric to the graph of the initial function about
a straight line y = x. It is illustrated in Fig. 20, which
shows several pairs of graphs of the initial and inverse
functions. A list of some pairs of functions with their do­
mains is given below:

(a) initial y = x3 ,

V-inverse y = x,
(b) in i tia I y = x2 ,

inverse y = Yx,
(c) initial y = fOx,

inverse y = log x,

-oo<x<oo
-oo<x<oo

O~x<oo

O~x<oo

-oo<x<oo
O<x<oo
n n

-T~y~2

-1~x~1

O~x~ 1t

-1~ x~ 1

-~<x<~2 2
inverse y = arctan x, - 00 < x < 00

(g) initial y=cotx, O<x<n
inverse y = arccot x, - 00 < x < 00

All the domains of the inverse functions shown in the list
are the natural domains of the functions (however, in the
case of y = V; the natural domain is sometimes assumed
to be restricted to the interval [0, eo] instead of the whole
real line). As to the initial functions, only two of them
(y = x3 and y = 10~) are considered in this case as defined
on their natural domains. The remaining functions are
defined over shorter intervals to ensure the strict mono­
tonicity of the functions.

Now we shall discuss the concept of a composite function.
Let us take as an example the function h (x) = y 1 + costz;

Consider also the functions f (x) == cos x and g (y) =
= V 1·+ y2.-
. READER. This f (x) notation is something new.. So far

·we used to write Y == f (z),
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h (x) = g [/ (x)l
READER. I understand. Here, the values of f (x) are

used as the values of the independent variable (argument)
for g (11).

AUTHOR. You are right. However-, it is expedient to
simplify thelnotation.

Consider the three functions: h (x), f (x), and g (y).
The function h (x) is a composite function composed of

.1: (x) ~nd.g (y}:

Fig. 21 Fig. 22

AUTHOR. Let us have a look at Fig. 21, which pictures
the mappings of sets in the case of our composite function,
h (x) c::: 111 + cos" x, with f (x) = cos x defined over the
interval [0, n1.

We see that the function f is a mapping of D (the inter­
val [0, nJ) onto G (the interval [-1, 1]), that is, the map-
ping f. The function g (the function V1 + y2) is a mapping
of G onto E (the interval [1, V2]), that is, the mapping g.
Finally, the function h (the function V 1 + cos" x defined
over the interval [0, nl) is a mapping of D onto E, that
is, the mapping h.

The mapping h is a result of the consecutive mappings /
and g, and is said to be the composition of mappings; the
following notation is used

h = go!
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(the right-hand side of the equation should be read from
right to left: the mapping f is used first and then the map­
ping g).

READER. Obviously, for a composite function one can
also draw a diagram shown in Fig. 22.

AUTHOR. I 'have no objections. Although I feel that. we
better proceed from the concept of a mapping of one set
onto another, as in Fig. 21.

READER. Probably, certain "difficulties" may arise
because the range of / is at the. same time the domain of g?

AUTHOR. In any case, this observation must always be
kept in mind. One should not forget that the natural domain
of a composite function g [/ (x)1 is a portion (subset) of the
natural domain of f (:.t) for which the values of f belong to
the natural domain of g. This aspect was unimportant
in the example concerning g [/ (x)J = V 1 + cos" x because
all the values of / (even if cos z is defined on the whole real
line) fall into the natural domain of g (y) = V 1 + y2.
I can give you, however, a different example:

h(x)=VVx 1-2, !(x)=Vx-1, g(y)=VY 2

The na tural domain of f (x) is [1, ooL Not any point in
this interval, however, belongs to the domain of the compo-
site function h (z), Since the expression V y - 2 is mean­
ingful only if y ~ 2, and for y = 2 we have x = 5, the
natural domain of this composite function is represented
by [5, oo] , i.e. a subset smaller than the natural domain of
f (z),

Let us examine one more example of a composite function.
Consider the function y = sin (arcsin z), You know that
arcsin x can be regarded as an angle the sine of which is
equal to z, In other words, sinI(arcsin x) = z, Can you
point out the difference between the composito function
y = sin (arcsin x) and the function y = x?

READER. Yes, I can. The natural domain of the function
y = x is represented by the whole real line. As to the com­
posite function y = sin (arcsin z), its natural domain coin­
cides with the natural. domain of the function arcsin x,
Le. with [-1, 1]. The graph ofthe function y = sin (arcsin x)
is shown in Fig. 23. - .



70 DIalogue FIve

AUTHOR. Very good. In conclusion, let us get back to
the problem of the graphical definition of a function. Note
that there are functions whose graphs cannot be plotted in

principle, the whole curve or a
part of it. For example, it is
impossible to plot the graph of

h functi · 1. ht e unction y = sin - In t e
:t

vicinity of x = 0 (Fig. 24). It
x is also impossible to have the

graph of the Dirichlet function
mentioned above.

READER. It seemed to me
y=stn(arcstn x) that the Dirichlet function had
Fig. 23 no graph at all.

AUTHOR. No, this is not
the case. Apparently, your idea of a graph of a function
is always a curve.

READER. But all the graphs that we have analyzed so
far were curves, and rather smooth curves, at that.

s

x

Fig. 24

AUTHOR. In the general case, such an image is not
obligatory. But it should be stressed that every function
has its graph, this graph being unique.

READER. Does this statement hold for functions that are
not numericalj
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AUTH.OR. Yes, it does. In the most general case we can
give the following

Definition:
The graph of a function f defined on a set D with a range

on a set E is a set of all pairs (x, y) such that the first element
of the pair x belongs to D, while the second element of the pair
y belongs to E, y being a function of x (y = f (x)).

READER. So it turns out that the graph of a function
such as the area of a circle is actually a set of pairs each
consisting of a circle (an element x) and a positive number
(an element y) representing the area of a given circle.

AUTHOR. Precisely so. Similarly, the graph of. a func­
tion representing a schedule of students on duty in a class­
room is a set of pairs each containing a date (an element x)
and the name of a student (an element y) who is on duty
on this date. Note also that in practice this function indeed
takes a graphic form.

If in a particular case both elements of the pair (both x
.and y) are numbers, we arrive at the graph of the function
represented by a set of points on the coordinate plane. This
is the familiar graph of a numerical function.

DIALOGUE SIX

LIMIT OF FUNCTION
AUTHOR. Consider now the concept of the limit of

function.
READER. But we have already covered rather exten­

sively the concept of the limit of a numerical sequence. But
a sequence is nothing else but a function defined on a set
of natural numbers. Thus, having discussed the limit of
sequence, we become acquainted with the limit of function
as well. 1 wonder whether there is any point in a special
discussion of the concept of the limit of function.

AUTHOR. Undoubtedly, a further discussion will be very
much to the point. The functions we are concerned with
substantially differ from sequences (I have already empha­
sized this fact) because they are defined over intervals and
not on sets of natural numbers. This fact makes the concept
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of the limit of function specific. Note, for example, that
every specific convergent sequence has only one limit. It
means that the words "the limit of a given sequence" are
self-explanatory. As for a function defined over an interval,
one can speak of an infinite number of "limits" because the
limit of function is found for each specific point x = a (or,
as we say, for ~ tending to a). Thus the phrase "the limit
of a given function" is meaningless because "the limit of
a given function must be considered only at each given
point a". Besides, this point a should either belong to the
domain of the function or coincide with one of the ends
of the domain.

READER. In this case the definition of the limit of
function should be very different from that of the limit of
sequence.

AUTHOR. Certainly, there is a difference.
Note, first of all, that we analyze a function y = f (x),

which is defined over a segment, and a point a in this seg­
ment (which may coincide with one of its ends when the
function is defined over an open or half-open interval).

READER. Do you mean to say that at the point x === a
the function f (x) may not be defined at all?

AUTHOR. That is quite correct. Now let us formulate
the definition of the limit of function.

Defini tion:
A number b is said- to be the limit of a function f (x) at x

tending to a (the limit at point a) if for any positive value of E

there is a positive value of fJ such that for all x satisfying the
conditions x belongs to the domain of the function; x =F a and

we have
I x - a 1< 8J

I f (x) - b 1< E

(1)

(2)

The standard notation is

lim f (x) === b
x-,.a

READER. The definition of the limit of function is noti­
ceably longer and more complicated than that of the limit
of sequence,
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AUTHOR. Note, first of all, that according to (1), point
x should belong to the interval la - fJ, a + fJ[. Point
x = a should be eliminated from this interval. The interval
la - 6, a + fJ[ without point x = a is called a punctured
B-neighbourhood of point a.

We select an arbitrary positive number 8. FQr 8 we want
to find another positive number fJ such that the 'value of the
function at any·point x from the punctured S-neighbourhood
of point a must be inside the interval Ib - 8, b + 8[ (speak­
ing about any point x we imply only the points x in the
domain of the function). If there is such b for any 8 > 0, b
is said to be the limit of the function at point a. Otherwise,
b is not the limit of the function at point a. .

READER. And what does your "otherwise" mean in
practice?

AUTHOR. Assume that the search for B has been success­
ful for n diminishing numbers 81, 82' •.• , 8 n • But then
you notice that for a certain number e' it is impossible to
find the required number B, Le. for any value of fJ no matter

. how small) there is always at least one point x from the
punctured fJ-neighbourhood of point a at which the value
of the function lies outside the interval Ib - 8', b + e'L

READER. But can it happen that we reduce the B-neigh­
bourhood of point a so much that not a single point x, belong­
ing to the domain of the function, remains in the 6-neigh­
bourhood?

AUTHOR. Obviously this is impossible. Because the"
function is defined over an interval, and point a is taken
either from this interval or coincides with its end point.

READER. Everything seems clear. Apparently, in order
to root all this firmly in my mind we should discuss the
graph of a function. .

AUTHOR. It is a good idea. Let us analyze, for the sake
of convenience, the graph of the function y = vX' (Fig. 25).
This figure illustrates only two situations. One of them
represents the selection of Bl (see the figure). It is easy to
infer that cS l is the value that we look for: the values of the
function at all points x from the cS1-neighbourhood of point a
are inside the interval Ib - 8 1 , b + 8 l L These values are
represented by the portion of the graph between points A
and }3. The second situation represents the selection of 81-
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In this case the number that we seek for is ~2: the values
of the function at points x from the 62-neighbourhood of
point a are represented by the 'portion of the graph between
points A' and B'.

9

b

o a
2~

Fig. 25

READER. Everything you have just described looks so
obvious that I see no "cream", to use your own words.

AUTHOR. "The cream" consists in the following. No
matter how small ]b - E, b + e [is, one may always select
a 6-neighbourhood for point a such that for all points x in
this 6-neighbourhood (all points, with the exception of
point a itself and those at which the function is not defined)
the values of the function should by all means lie within
the indicated interval.

READER. Could you give an example of a function
violating this rule?

AUTHOR. For instance, the function y = sin .!.- in the
x

vicinity of point x = O. The graph of the function if; plotted
in Fig. 24. Obviously, the smaller is I x I the greater is
the frequency with which the graph of the function oscillates
about the z-axis. For an infinitely small I x I the frequency
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of the oscillations tends to infinity. It is easy to prove that

the function y = sin.!.. has no limit at x == O.
::c

READER. But this function is not defined at zero.
AUTH·OR. You are right. However, this fact is irrelevant

from the viewpoint of the existence (or absence) of the
limit of the function at x = O. This function is defined
over ]- 00, O[ and )0, 00[. Point x = 0 is a common boun-

dary between the intervals over which the function sin .!-
::c

is defined.
But let us return to the concept of the limit. Can we,

for example, state that b = 0 is the limit of the' function

sin.! at point x = 01z
READER. It seems that I get the point. As long as we

select e > 1, everything is O.K. But for any s < 1 it
becomes impossible to find a ~-neighbourhood of point
x = 0 such that at all points x =1= 0 in this ~-neighbourhood

the values of the function sin.!. are inside the interval
z

]-8, e]. No matter how small the ~-neighbourhood of
point x = 0 is, it is the segment of finite length, so that
the graph of our function will oscillate infinitely many
times and thus will infinitely many times go beyond )-8, e].

AUTHOR. That's right. Note also that in order to be
convinced that a function has no limit, it is sufficient to
find a violation even more "modest". Namely, it is' sufficient
that the graph of the function leave the interval ]-e, e]
at least once for any B-neighbourhood.

READER. Apparently, not only b = 0 but no other

b =1= 0 can be the limit of the function y == sin..!. at x === O.
z

Because for any b =1= 0 we can use the same arguments as
for b = O.

AUTHOR. Hence, we have proved that the function

y == sin ~ has no limit at point x = O.
z

READER. The reason for the absence of the limit at z == 0
lies in oscillations of the graph of the function. These oscil­
lations become more and more frequent while approaching
w== 0,
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AUTHOR. But the reason is not confined only to the
infinitely increasing frequency of oscillations of the graph.
Another reason is the constancy of the amplitude of oscil­
lations. Let us "slightly correct" our function by multiplying
sin ~ by a, The graph of the function y === x sin -.!. is shown
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Fig. 26

in Fig. 26. Do you think that b == 0 is the limit of this
function at x = O?

READER. I am at a loss.
AUTHOR'. I'll answer this question myself. Yes, it is.

The proof is within your reach if you use the definition of
the limit of function. You are welcome.

READER. We select an arbitrary B > O. We should find

l\ > 0 such that Ix sin ~ - 0 I < e for all x (excluding
x = 0) satisfying the condition I x - 0 I < 6. It seems
to me that 6 we look for is 6 == E.

,AUTHQR. You are quite right. Because if Ix I< ~ = B,
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it becomes evident that I;c sin ; I= l;cI Isin+I< e

( since Isin ; I~ f ) •
READER. Really, the existence of the limit is proved

without considerable difficulties.
AUTHOR. But, certainly, not always. Consider, for

example, a well-known functtion y ~ Vx and prove (using
the "definition of the limit of function) that b = i is the
limit of the function at point x = 1.

To begin with, consider the following inequality:

IYX--1«e
Try to find a function g (e) such that 1x - 1 1< g (e)
for any x satisfying the condition I" Vi - 1 I < E.

READER. I understand that g (8) is actually the desired
6 corresponding to an arbitrary 8.

AUTHOR. Yes, of course. We begin with some trans­
formations. We shall proceed from the inequality":

lYX-1I<e
which can be rewritten in the form:

(3)

(1-e)<Vx«8+1)
Since Vx~ 0, the selection of 8 < 1 a fortiori (which,
of course, does not impair the generality" of our proof)
allows us to square the last inequalities

(1 - 8)2 < X < (1 + 8)2

On removing the parentheses, we obtain

(-28 + 82
) < (x - 1) < (28 + e2

) (4)

Note that inequalities (4) are equivalent to (3) (provided
that 0 < 8 < 1). Now let us proceed from (4) to a more
exacting inequality:

1 x - 1 I < (28 - 82
) (5)

(since 0 < 8 < I, we· have (2e - 82) > 0). It is easy to
conclude that if (5) holds, inequalities (4) and, consequently;
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(3) will hold all the more. Thus, for an arbitrary e within
o< B < 1, it is sufficient to take 0 := 2B - e2

•

READER. What happens if B ~ 1?
AUTHOR. Then {) determined for any e < 1 will be

adequate a fortiori.
READER. Apparently, we may state that

and, in general, lim ¥'X = Va?
:':"'0

AUTHOR. Yes, that's right.
READER. But could we generalize it to

lim f (z) = f (a)
x~a

AUTHOR. Yes, it is often the case. But not always.
Because the function f (x) may be undefined at point a.

Remember that the limit of the function x sin.!. at point
z

x = 0 is zero, but the function itself is not defined at point
x = O,

READER. But perhaps the equality lim f (x) = f (a)
x~a

can be considered as valid in all the cases when f (x) is
defined at point a?

AUTHOR. This may not be correct either. Consider, for
example, a function which is called the "fractional part of
x". The standard notation for this function is {z}. The func­
tion is defined on the whole real line. We shall divide the
real line into half-intervals [n, n + 1[. For x in [n, n + 1[
we have {x} = x - n, The graph of the function y == {x}
is shown in Fig. 27.

Take, for example, x == t. It is obvious that {x} is defined
at point x == 1 ({i} == 0). But does the function have the
limit at x := 1?

READER. It clearly has no limit. In any <S-neighbour­
hood of point x == t there may exist concurrently both the
points at which {x} assumes values greater than, for example,
2 . ':. f
"3' and the points at which {x} assumes values less than 3".
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It means that neither b = 1 nor b == 0 can be the limit of
the function at point x == 1, if only because it is impossible

f
to find an adequate () for e = 3.

AUTHOR. I see that you have come to be rather fluent
in operating with limits of functions. My compliments.

II

-~ -3 -I o f z 3

s: {x}

Fig. 27

By the way, you have just proved the theorem on the uni­
queness of the limit of function at a given point.

Theorem:
A function cannot have two (or more) limits at a given'

point.
Now let us return to the equality

limf(x)=f(a)
x~a

(6)

You already know that there are situations when lim f (x)

exists but f. (a) does not exist and, vice versa, wh-;n f (a)
exists but lim f (x) does not exist. Finally, a situation is

x~a

possible when both lim f (x) and f (a) exist, but their
x-+a

values are not equal. I'll give you an example:

{

X2 . if x#= 0
!(x)= 1 if x=O

The graph of this function is shown in Fig. 28. It is easy
to see that f (0). = 1, while lim f (x) = o.

xo+O
You must be convinced by now that equality (6) is. not·'

always va,lid. . .
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READER. But presumably, it is often true, isn't it?
AUTHOR. Yes, and if it is, the function / (x) is said to

be continuous at x = a.

y

-1 o f

Fig. 28

x

Thus, we have arrived at a new important concept, name­
ly, that of the continuity 0/ a function at a point. Let us
give the following

Definition:
A function f (x) is said to be continuous at a point x = a if
(1) it is defined at x = a,
(2) there is the limit of the function at x = a,
(3) this limit equals the value of the function at x = a;

or, in other words, the function f (x) is called continuous at
a point a if

lim f (x) = f (4)
x~a

I believe that the preceding discussion has brought us so
closely to this definition that it needs no additional expla­
nation. I would only like to emphasize that the concept
of the continuity of. a' function is essentially local. Similarly
to the concept of the limit of function, it is related to a par­
ticular point x. A function may be either continuous at all
'points of an interval over which it is defined, orid iscon ti-
nuous at some of its points. ,

Taking the examples 'given above, can you single out
those functions that are discontinuous at particular points?
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RE.ADER. To begin with, I may refer to the function
whose graph is plotted in Fig. 28. This function is discon­
tinuous at x = O.

AUTHOR. '\Thy?
READER. Because at this point the function assumes

the value y == 1, though the limit of the function at this
point is apparently zero.

AUTHOR. Very good. Can you give other examples?
READER. The function y == {x} (see Fig. 27) is discon­

tinuous at points x = 0, ·±1, ±2, +3, .... The function

Y"== sin 1.. (see Fig. 24) is discontinuous at x - 0 where
z. '

it is undefined and, moreover, has no limit. The' function
"{hose graph is shown in Fig. 14a (see the previous, dialogue)
is discontinuous at ,x = 2. The function y == tan x is dis­
continuous at points

n 3 5 7
x=±T' +21£, +Tn, ±T 1£, •••

AUTHOR. That will do. Note that the points at which
the continuity of"a function is violated are called disconti­
nuity points. We say that at these points a function has
a discontinuity. In passing through a discontinuity point
a graph of a function manifests a singularity.· This iact is
well illustrated by the examples you have just indicated,

READER. The discontinuity points in all these examples
result in an interruption of the curve plotting the function.
One exception is the function y == sin.!- since it is simply

x
.impossible to trace a graph of the function at .x = o.

AUTHOR. I may add that neither could you plot the
function y == tan x at its discontinuity points (since you
cannot draw a line which "goes into infinity").

READER. In any case, if a function is continuous every­
where in the domain (has no discontinuity points), its
graph is a continuous line: it can be drawn without lifting
the pencil from the paper.

AUTHOR. I agree. I would like to emphasize that the
continuity of a function at.a point x guarantees that a .very
small displacement from this point ioillresult in a very small
change in the value of the function.

6-01'73



82 Dialogue Stz

Let us turn to Fig. 27 which is the graph of the function
y == {x}. Consider, for instance, x == 0.5. The function is
continuous at this point. It is quite evident that at a very
small displacement from the point (either to the left or to
the right) the value of the function will also change only
a little. Quite a different situation is observed if x == 1
(at one of the discontinuity points). At x = 1 the function
assumes the value y = O. But an infinitesimal shift to the
left from the point x = 1 (take, for example, x = 0.999,
or x = 0.9999, or any other point no matter how close
to x = 1) will bring a sharp change in the value of the
function, from y = 0 to y ~ I.

READER. Quite clear. I must admit, however, that the
local nature of the concept of a continuous function (i ,e.
the fact that the continuity of a function is always related
to a specific point x) does not quite conform to the conven­
tional idea of continuity. Because continuity typically
implies a process and, consequently, a sort of an interval.
It seems that continuity should be related not to a specific
moment of time, but to an interval of time.

AUTHOR. It is an interesting observation. This local
character is a manifestation of one of the specific features
of calculus.. When analyzing a function at a given point x,
you used to speak about its value only at this specific point;
but calculus operates not only with the value of a function
at a point but also with the limit of the function (or its
absence) at this point, with the continuity of the function
at the point. I t means that on the basis of the information
about a function at a given point we may construct an image
of the behaviour of the function in the vicinity of this point.
Thus -we can predict the behaviour of the function if the
point is slightly shifted from x.

So far we have made only the first step in this direction.
The next step will be the introduction of the concept of
a derivative. This will be the subject of discussion in Dia­
logues Eight and Nine.

READER. Nevertheless, I would like to note that in the
above examples a function was found to be either conti­
nuous everywhere over any interval of finite length or
discontinuous at a finite number of points. In this sense
the local nature of the concept of a discontinuity point is
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evident. The continuity of the function, however, is always
observed over a certain interval.

AUTHOR. First, the continuity of a function within an
interval does not interfere with the local nature of conti­
nuity. A junction is continuous over an interval if it is con­
tinuous at all points of this interval.

y

Fig. 29

I Second, it is not difficult to construct an example in
which the number of discontinuity points over an interval
of finite length is infilZitely large. Let us look, for example,
at the following function:

{

1 1 1 1
2 for x = ± 1, ± "2' ± T' ± 8 ' ± 16' · · •

Y= x2 for all the remaining points of the real line,
including x = 0

The graph of this function is illustrated in Fig. 29. It is
easy to conclude that in any 6-neighbourhood of point
x = 0 the function has an infinite number of discontinuity
points.

Finally, I can give an example of a function which is
discontinuous at all points of an infinite interval. This is
a function you already know, the Dirichlet function (see
6.
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the previous dialogue). Being defined on the whole real
line, the function has no limit at any point of the real
line; consequently, it is discontinuous at each point.

READER. This is the reason why we in principle cannot
plot the Dirichlet function by a graph.

AUTHOR. As to the most frequent functions, such as
power, exponential, logarithmic, trigonometric, and inverse
trigonometric, they are continuous at all points of the natural
domains of the corresponding analytical expressions. The
same can be said about composite functions obtained from
the above elementary functions. The continuity of all these
functions is proved in the more advanced courses of cal­
culus. We limit ourselves to a mere stating of the fact.

DIALOGUE SEVEN

MORE ON THE LIMIT
OF FUNCTION

READER. Comparing the definition of 'the limit of
a function at a point with the definition of the limit of
a numerical sequence, I come to the conclusion that these
two limits are of different nature.

AUTHOR. And I understand why. In fact, I did empha­
size the difference myself in the previous dialogue, pointing
out, as you probably remember, that a sequence is a func­
tion defined on a set of integers, while the functions we are
discussing at the moment are defined over intervals. I doubt,
however, that you are justified in speaking about the dif­
ference in the nature of the limit of function and that of
sequence. In the final analysis (and this is essential) the
limit 0/ a function at a point may be defined on the basis
of the limit of a numerical sequence.

READER. This is very interesting.
AUTHOR. Let us forget, for the time being, about the

definition of the limit of function given in the previous
dialogue. Consider a new definition.

We shall consider, as before, a function, f (x) defined
over an interval, and a point x == a either taken within
the interval or coinciding with its end.
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AUTHOR. The two are equivalent.
READER. But in form they are quite differentl
AUTHOR. We can prove their equivalence. To begin

with, let the definition using a 8-neighbourhood of point a be
called "definition 1", and the definition using numerical
sequences, "definition 2".

Now, what two theorems must be proved to demonstrate
the equivalence of definitions 1 and 2? Can you formulate
these theorems?

READER. We have to prove two theorems, one direct
and the other converse. We want to prove that definition 2
follows from definition 1 and vice versa (i.e. definition 1
foIl ows from definition 2).

AUTHOR. Correct. First, I shall prove the following
Theorem:
If a number b is the limit of a function f (x) at a point

a ,in terms of definition 1, it is the limit of the function f (x)
at a in terms of definition 2 as well.

Since b is the limit of the function f (x) at point a in
terms of definition 1 (this is given), consequently, for any
B > 0 there is s> 0 such that I f (x) - b I < B for all
x =1= a from a 8-neighbourhood of point a. Then we "con­
struct" an arbitrary sequence (xn ) , requiring that it be
convergent to point a (any X n belong to the domain of the
function and X n =1= a for any n). As a result we obtain a se­
quence of the corresponding values of the function (the
sequence [f (xn ) ]) . We want to prove that the sequence
[f (xn ) ] is convergent to b.

First, I select an arbitrary E > O. I should find a num­
ber N such that 1 f (xn ) - b , < E. for all n > N.

I cannot immediately find such N for an arbitrary E.

However, I can indicate for an arbitrary E such 8 that
I f (x) - b I < E if I x - a I < 8. Then I take this 8
and find a sequence (xn ) convergent to a. Evidently, since
(xn ) is convergent to a, 8 (as any other positive real number)
can be placed in correspondence with a number N such
that I X n - a , < 8 for all n > N. And, consequently, we
also have that If (xn ) - b 1< B for all n > N. Hence,
we find that the thus found number N is actually the desired
number. It proves the convergence of the sequence [f (xn ) ]

to b. Since the' sequence (xn ) , which is convergent to a,
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was chosen (Uconstructed") arbitrarily, we conclude that
the theorem's proof is completed.

If the line of reasoning is clear to you, try brief! y to
recapitulate the logical structure of the proof.'

READER. I shall try to present the structure of the
proof as a diagram (Fig. 30).

I e >0 H 6>0 I {r--------.,

1 8>0 H N {

Fig. 30

AUTHOR. Your diagram is correct. Will you expand
on it.

READER. The first step of the proof: we find for an ar-
bitrary 8 > 0 a number 6 > 0 such that I f (x) - b I < E

if I x - a 1<6.
The second step of the proof: we take 6 selected at the

first step; choose a sequence (xn ) convergent to a, and find
a number N such that I Xn - a 1< 6 for all n > N. Having
in mind the arguments used at the first step, we conclude
that I f (xn ) - b I < E if I Xn - a I < 6.

We have thus found for an arbitrary E > 0 a number N
such that I f (xn ) - b I < E for all n > N. This completes
the proof.

AUTHOR. Correct. In conclusion I want to emphasize
several essential points on which the proof hinges. We
know that I f (x) - b I < E for any x from the t3-neighbour­
hood of a. Since a sequence (xn ) is convergent to a, all X n
(the whole infinite "tail" of the sequence (xn ) starting from
a certain number N + 1) are contained inside the t3-neigh-
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bourhood of point a. It then follows that all f (xn ) (the whole
infinite "tail" of the sequence Tf (xn )] starting from the
same number N + 1.) are contained inside the interval
] b - 0, b + e], This proves that the sequence [/ (xn )]

converges to b.
READER. I understand.
AUTHOR. Now I am going to prove the following converse

-"Th-eorenr: _.-.' .. - ., - . . . . -
If a number b is the limit 'of a function f (x) at a point

a in terms of definition 2, it is also the limit of the [unction
f (x) at a in terms of definition 1.

In this case I shall use the proof by contradiction. Assume
the contrary to what is to be proved, namely, assume that b,
the limit of f (x) in terms of definition 2, is not, however,
the limit of f (x) in terms of definition 1. Can you formulate
the last proposition (more exactly, the assumption)?

READER. As far as I remember, a similar formulation
has already been discussed in the previous dialogue. If b is
not the limit of the function f (x) at point a (in terms of
definition 1), it means that there is e' > 0 such that it is
impossible to find a necessary B> O. Namely, no matter
what fJ we select, each time the function f (x) assumes a value
outside of ]b - e', b + s"] for at least one point x from
the 6-neighbourhood of point a, i.e. the inequality I f (z) ­
- b 1< s' is violated.

AUTHOR. Correct. Assume that we have selected pre­
cisely this 8' > O. Next take an arbitrary ~ > 0, for in­
stance, 61 = 1. As you have said, in any 6-neighbourhood
of point a and, hence, in the 61-neighbourhood of this
point there is at least one point x (denoted by Xl) such that
I f (Xl) - b I~ e':

·READER. What happens if the 6l-neighbourhood con­
tains many such points x?

AUTHOR. It makes no difference. The important fact is
that there is at least one such point, If there are several
such points, take anyone of them and denote it by Xl.

Now we take a new 6, for instance, 82 =~. According

to our assumption, the 62-neighbourhood of point a will
contain at least one point x (denoted by x 2) such that
If (x2) - b r ~ e',
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Further we take 63 = ~. The 63-neighbourhood of point a

will also contain at least one point x (point X3) such that
If (X8) - b I~ B'.

We can continue this process for a sequence of the 6-neigh­
bourhoods of point a

111
«51 = 1, «52 = ""2.' «5 3 = 3' · .. , «5n = -n-' · · •

Note that the 6-neighbourhoods are selected in such a way
that the sequence (6n ) converges to zero (is infinitesimal).'

If each time we select from each 6-neighbour400d one
point x in which t (x) assumes a value outside of the inter­
val ]b '- e'; b + B'[, we .obtain a sequence composed of
points .

Xl' X 2 , X3' • •• , Xn' • • •

Since the sequence (<<5 n ) converges to zero, the sequence (xn ) .

inevitably converges to a. A sequence composed of the cor-
. responding values of the function (the sequence If (xn ) }) is
not convergent to b because for all n we have 'f (xn ) ­

- b I~ e', It means that we obtained a sequence (xn )

convergent to a for which the sequence [f (xn ) ] is divergent.
This contradicts the condition of the theorem which

states that b is the limit of the function at a in terms of
definition 2. It .means that for any sequence' (xn ) convergent
to a the corresponding sequence [/ (xn ) } must be convergent
to b. And the sequence (xn ) that we have found contradicts
this condition.

Hence, the assumption that b, being the limit of the
function in terms of definition 2, is not at the same time
the limit of the function in terms of definition 1, is invali­
dated. This completes the proof of the theorem.

READER. I must admit of being wrong when I spoke
about different natures, of the limit of numerical sequence
and the limit of function at .. a point.

AUTHOR. These limits differ' but their nature is the
same. The concept of the limit of function at a point is based,
as we. have seen, on the concept of the limit of numerical
sequence. . .

That is why basic theorems about the limits of functions
are analogous to those about the limits of sequences. .
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READER. We have already noted one of such theorems:
the theorem on the uniqueness of the limit of function at a
point.

AUTHOR. This theorem is analogous to that about the
uniqueness of the limit of numerical sequence.

I shall also give (without proof) the theorems on the limit
of the sum; the product, and the ratio of functions.

Theorems:
If functions f (x) and g (x) have limits at a point a, then

functions .

I If (x) +g (x)], [f (x) g (x)], (JJ=l)
g (x)

also have limits at this point. These limits equal the sum, pro­
duct, and ratio, respectively, of the limits of the constituent
functions (in the last case it is necessary that the limit of the
function g (x) at a be different from zero).

Thus .

lim If (x) +g (x)] == lim f (x) + lim g (x)

·lim [f (x) g (x)] = lim f (x) lim g (x)
x~a x~a x~a

lim f (x)
I. (f (x) ) x~a '
x~~ g (x) = lim g (x)

x~a

under an additional
condition: lim g (x) =F 0

x~a

READER. We have already discussed the similar theo­
rems for numerical sequences.

AUTHOR. Next I wish to make two remarks, using for
the purpose specially selected examples.

Note 1. It is illustrated by the following example.

Obviously lim V1-x2 = 0 and lim Vx-1 = O. Does it
x~1 x~1

mean that lim (V1-x2 +Vx--1) == O?
x~1

READER. The limit of the function V1 - x~ at x = 1
exists and is equal to zero. The limit of the function V x - 1
at x = 1 also exists and is also equal to zero. According
to the theorem on the limit of the sum, the limit of f (x) ==
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= V1 - x2 + V X - 1 must exist and be equal to the
sum of the two preceding limits, i.e. to zero.

AUTHOR. Nevertheless, f (x) = V1 - x2 + V X - 1 has
no limit at x = 1 for a simple reason that the expression
V1 - x2 + V X - 1 has meaning only at a single point
(point x = 1). Applying the theorem on the limit of the
sum, you have not taken into account the domains of the
functions V 1 - x2 and Vx - 1. The former has the natu­
ral domain over [-1, 11, while the latter over [1, 00[.

READE·R. Apparently your note also covers the cases
when the theorems on the limit of the product and the
limit of the ratio of functions are used. .

AUTHOR. It goes without saying. Working with func­
tions, you must always consider their domains. The natural
domains of functions may intersect (or even coincide), but
sometimes they may not. This aspect must never be over­
looked. Why do you think we never have such complica­
tions when working with sequences?

READER. Obviously because all numerical sequences
have one and the same domain, i.e. a set of natural numbers.

AUTHOR. Correct. Now we come to Note 2. Do you
think the limit

I . sin x
lm--

%-0 x

exists?
READER. In any case the theorem on the limit of the

ratio is not valid here because lim x === O.
~-o

AUTHOR. In fact, if lim f (x) = 0 and lim g (x) = 0, the
x-a x-a

limit of their ratio La., the limit of the function (~ ~:D '
may exist.

READER. What is this limit?
AUTHOR. It depends on the functions f(x) and g (x).

Let us show, for example, that

1· sin x - 1lm----
a:-O x
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Note that the function sin:& is not defined at x == O. This
, z

fact, however, does 'not interfere with searching for the
limit of the function at x = O.

We shall start with well-known inequalities:

sin x < x < tan x ( 0 < x < ~ )

An assumption that 0 < ~ < ~ w'ill noi' affect the gener­

ality of our results. Dividing sin x by each term of these
inequalities, we obtain

sin x
1>-->cosx

x

hence

o< (1 - Si: x ) < (1 - cos z)

Next we take into account that

1 ' 2· Zx 2· X 2%-cosX== sm 2< slnT < T==x

Thus we have

or

(
sin X) 0-x<- 1--x - <

whence

11 - Si: x I< I x 1

We thus arrive at the following inequality valid for
n

Ixl<2:

ISi: x - 11 < I z ] (1)

By using this inequality, we can easily prove that the

function sin % has the limit at x = 0, and this limit is
z
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unity. It will be convenient to use definition 1 for the
limit of function at a point.

Select an arbitrary e > 0, demanding for the sake of

simplicity that 8 <!-. For 0, it is sufficient to take 0 = 8

since, according to (1)', the condition I x - 0 I < () imme­
diately leads to

ISi: x - 1 I< () = e

. sin x
Thus, unity is indeed the limit of the function -- at

x
x = o.

READER. Do we really have to resort to a similar line
of reasoning, based on the definition of the limit of function

at a point, each time we have to find the limit of (~~:n
when both lim f (x) = 0 and lim g (x) = 0 ?

X~O X~O

AUTHOR. No, of course not. The situation we are speak-

ing about is known as an indeterminate form of the type ~.
There are rules which enable one to analyze such a situation
in a relatively straightforward manner and, so to say,
"resolve the indeterminacy". In practice it is usually not
difficult to solve the problem of existence of the limit of

a function (1~~) at a specific point and find its value (if it

exists). A few rules of evaluation of indeterminate forms

of the type g(and other types as well) will be dis~ussed
later. A systematic analysis of such rules, however, goes
beyond the scope of our dialogues.

It is important to stress here the following principle
(which is significant for further considerations): although
the theorem on the limit of the ratio is not valid in the

cases when lim g (x) .= 0, theItmit of a function (/{(x)))
X-+O \ g x

at a point a may exist if lim f (x) = O. The example of
X~O

the limit of the function sin x at x = 0 is a convincing
x

illustration of this principle.
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READER. Presumably, a similar situation may take
place for numerical sequences as well?

AUTHOR. It certainly may- Here is a simple example:

1 1 1 1
(xn ) = 1, 8' 27' 64' ···'IiS' ...

(lim xn=O)
n .... oo

f 1 1 f
(Yn) = 1, "'2' '3' 4' ... , 11' ...

(lim Yn =-~ 0)
n-+oo

It is readily apparent that the limit of the sequence

( ;: ) is the limit. of the sequence (:2)' This limit
does exist and is equal to zero.

READER. You mentioned that the existence of the

limit of a function ( f «(x) ) at a, when both lim f (x) =
g X ~ ....a

= 0 and lim g (x) = o{ the existence of the limit of the
x ....a

type ~), is very important for further considera­

tions. Why?
AUTHOR. The point is that one of the most important

concepts in calculus, namely, that of derivative, is based

on the limit of the type g. This will be clear in the sub­
sequent dialogues.

DIALOGUE EIGHT

VELOCITY
AUTHOR. We are practically ready to tackle the concept

of a derivative. This concept, alongside with the concepts
of the limit of numerical sequence and the limit oj junction,
is one of the most important special concepts in calculus.



VeZocitll 95

We may approach the concept of a derivative by consider­
ing, for instance, a quantity widely used in physics: the
instantaneous velocity of nonuniform motion of a body.

READER. We have been familiarized with this notion
when studying kinematics in the course of physics, or, to be
precise, the kinematics of nonuniform motion in a straight
line.

AUTHOR. Exactly. What is your idea of the instanta­
neous velocity?

READER. The instantaneous velocity of a body is defined
as the velocity of a body at a given moment of time (at
a given point of its trajectory).

AUTHOR. And what is your idea of the velocity at a given
moment of time?

READER. Well, I see it as ... . If a body moves uni­
formly, at different moments of time its velocity remains
the same. If a body moves nonuniformly (accelerating or
decelerating), its velocity will, in the general 'case, vary
from moment to moment.

AUTHOR. Don't you feel that the phrase "velocity at
a given moment of time" is merely a paraphraze of the
"instantaneous velocity"? Six of one and half a dozen of the
other, eh? The term "velocity at a given moment of time"
calls for an explanation as much as the term "instantaneous
velocity".

To measure the velocity of a body, one should obviously
measure a certain distance (path) covered by the body, and
the time interval during which the distance is covered. But,
what path and period of time are meant when we refer
to the velocity at a given moment of time?

READER. Yes, in order to measure velocity, one must
actually know a certain path and time interval during which
the path is covered. But our subject is not the measurement,
it is a definition of the •tnstantaneous velocity.

AUTHOR. For the time being we shall not bother about
a formal definition. It is more important to realize its
essential meaning. In order to do this, we cannot avoid the
aspect of measurements. Now, how would you find a way
to measure the velocity of a body at a given moment of time?

READER. I can take a short time interval !!t, that is,
the period from the given moment of time t to the moment
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t + ~t. During this time interval the body covers a dis­

tance Ss. If t1t is sufficiently small, the ratio :: will give
the velocity of the body at the moment t.

AUTHOR. What do you mean by a sufficiently short time
interval? What do you compare it with? Is this interval
sufficiently small in comparison with a year, a month, an
hour, a minute, a second, or a millisecond? .

READER. Perhaps, neither a year, a month, an hour
nor a minute will do in this case. I see now that the instan­
taneous velocity can only be measured with a certain degree
of accuracy. The smaller is ~t the smaller is the error with
which, the instantaneous velocity is measured.

AUTHOR. In principle, the concept of the instantaneous
velocity (or, in other words, "velocity at a given moment
of time") must be independent of the measurement accuracy.

The velocity you are talking about, that is, the ratio ::.

t
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I I I
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Fig. 31

is nothing more than the average velocity during Llt. Itl.is
not the instantaneous velocity at all.. Of course, you are
right when you say that the smaller is ~t the closer is the
value of the average. velocity to the value of the instanta-
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neous velocity. However, no matter how small is St; the

ratio ~; is always only the average velocity during lit.
READER. Then a better definition of the instantaneous

velocity is beyond me.
AUTHOR. Consider a graph of distance covered by a body

plotted as a function of time, that is, the graph of the
function s == s (t). This graph is shown in Fig. 31 by a solid
line. Note that in physics one typically uses the same sym­
bol to denote both a function and its values (in this case
we use the symbol s).

READER. The figure also shows several thin lines.
AUTHOR. The thin lines (parabolas: and straight lines)

are shown only to indicate how the graph of s = s (t) was
plotted. This graph is thus composed of "pieces" of para­
bolas and straight lines. For instance, for the time interval
from 0 to t1 the graph is represented by a "piece" of the
extreme left-hand parabola (portion 0-1 of the graph).
Please recall the formula for the distance covered in a uni-

.formly accelerated motion with zero initial velocity.
READER. This formula is

at 2

S (t) == -2- (1)

where a is acceleration.
AUTHOR. And the extreme left-hand parabola is the

graph of the function represented by your formula.
READER. So for the time interval from 0 to t1 the body

moves at a constant acceleration.
AUTHOR. Exactly.
READER. I see. For the time interval from .t1 to tt the

body moves uniformly (portion 1-2 of the graph is a straight
line); from t 2 to ts the body moves at a constant decelera­
tion (the graph is an inverse parabola); from ts to t4 the
body isnot moving at all; fromr, to tli it moves at a constant
acceleration, and from t5 to t6 it moves at a constant ~~cele­

ration.
AUTHOR. Precisely so. Now let us consider the graph of

the function s (t) shown in Fig. 31 from a purely mathema­
tical standpoint. Let us pose the following question: How
strongly do the values of the function- change in response
7-01473
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to the value of its argument t in different portions of the
graph?

READER. In portion 3-4 the values of the function
s (t) do not change at all, while in other portions they do.
A slower rate of change of the function is observed in the
vicinity of points 0, 3, 4, and 6; a faster rate of change

A .B c

Fig. 32

is observed in the vicinity of points 1, 2, and 5. As a mat­
ter of fact, the rate of change is equally fast throughout
portion 1-2.

AUTHOR. You are a keen observer. And where do you
think the rate of change is faster, at point 2 or at point 5?

READER. Of course, at point 2. Here the graph of the
function has a much steeper slope than at point 5. '

AUTHOR. Let us turn to Fig. 32. Here in column A
two portions of the graph of the function s (t) are shown
separately, namely, those in the vicinity of points 2 and 5
(in Fig. 31 these portions are identified by dash circles).
In column B the portions of the graph close to points 2
and 5 are .shown again, but this- time with a two-fold increase
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in scale. Column C shows the result of another two-fold
scale increase. Obviously, as the scale increases, the curva­
ture of the graph s (t) becomes less noticeable. We may say
that the graph has a property of "linearity on a small scale",
which enables us to consider the slope of the graph at a spe­
cific point. In Fig. 32 (in column C) it is shown that the
slope of the graph at point 2 is (Xl (the slope is measured
relative to the t-axis), while the slope at point 5 is a 2 , and
clearly (X2 < al"

Denote the slope of the curve s (t) at the moment t by
ex, (t). Then tan et (t) is said to be the rate of change of the
function s (t) at the moment t, or simply the instantaneous
velocity.

READER. But why tangent?
AUTHOR. You immediately come to it by considering

portion 1-2 of the graph in Fig. 31. This portion represents
a uniform motion of the body, the rate of change of s (t)
being identical at all points. Obviously, it equals the
.average velocity during the time interval t2 - tl , which

is 82-
81 = tan ct.

t 2 - t 1

READER. In Fig. 32 you have demonstrated a "straight­
ening" of the graph by increasing its scale. But this straight­
ening is only approximate. Why have you stopped at a mere
four-fold scale increase?

AUTHOR. We can get rid of this approximation and
formulate a more rigorous definition of a slope at a point.
To be more specific, we consider a segment of the graph
s (t) close to point 5. In this segment we select an arbitrary
point B and draw a secant through points 5 and B (Fig. 33).
Next, on the same graph between points 5 and B we select
an arbitrary point C and draw a new secant 5C. Further,
we select an arbitrary point D in the segment between 5
and C and draw a MW secant 5D. We may continue this
process infinitely long and, as a result, we obtain a sequence
of secants which converges to a certain straight line (line 5A
in Fig. 33). This straight line is said to be tangent to the
curve at point 5. The slope of the tangent is said to be the
slope of the graph at a given point.

READER. If I understand you correctly we are now in
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a position to formulate strictly the answer to the question
about the instantaneous velocity.

AUTHOR. Try to do it, then. .
READER. The instantaneous velocity of a body at a mo­

ment of time t is the rate of change of s (t) at the moment t.

Fig. 33

Numerically it is equal to the tangent of the slopeof fthe tangent
line to the graph of the function s (t) at the moment t.

AUTHOR. Very good. But you should have mentioned
that s (t) expresses the distance covered by the body as
a function of time.

READER. This is true, my definition of the instantaneous
velocity is tied to the graph of s (t). What if the function
s (t) is not defined graphically?

AUTHOR. Anyway, a graph for s (t) always exists. The
only "inconvenience" in your definition is that it is neces­
sary to take into account the scale of units on the coordinate
axes. If the unit of time (on the t-axis) and the unit of length
(on the s-axis) are represented by segments of identical
length, the instantaneous velocity at time t is

t (t) unit of length
an ct unit of time

If, however, the segment representing one unit of length
is n times greater than the segment representing one unit
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of time, the instantaneous velocity is

-.!- t (t) unit of length
11 an a unit of time

This "inconvenience", however, has no principal significance.
But it is also possible to formulate a definition of the

instantaneous velocity in a form free of graphic images.

Fig. 34

Look at Fig. 34 which carries Fig. 33 one step further.
Figure 34 shows that the slope of the secant 5B is a ratio
~::. In other words, this is the average velocity for the
time interval from t6 to t6 + i1t1• The slope of the secant

5C is ~;:' that is, the average velocity for the time interval
from t6 to t6 + dta (dt 2 < ~tl). The slope of the secant 5D
is ~;:' that is, the average velocity for the time interval
from t6 to t6 + J1t s (J1t s'< J1t2 ) , etc. Thus, a sequence of
the secants converging to the tangent line (drawn at point 5
of the graph s (t» corresponds to a sequence of the average
velocities converging to the slope tXa of the tangent line,
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that is, to the value of the instantaneous velocity at the
time moment t6 •

READER. It comes out that the instantaneous velocity
is the limit of a sequence of average velocities.

AUTHOR. Precisely. The instantaneous velocity is in
fact the limit of a sequence of average velocities, provided
that the time interval over which the averaging is made
tends to zero converging to the moment of time t (viz., to
in Fig. 34).

Now let us formulate the definition in a more rigorous
manner. What we want to define is the instantaneous velo­
city of a body at a moment of time t. Consider an arbitrary
time interval from t to t + /)",t l • The distance covered by
the body during this interval is ~Sl. The average velocity
of the body during this time interval is

vav (t, At.) = ~;:

Next we select a shorter time interval dt2 , from t to t +
+ dt,. (dt~ < dtl), during which a distance ~S2 is covered.
Consequently, the average velocity'[over ~t2 is

(
A ~S2

Vav t, ut2 ) == ~t2

We continue this process of selecting shorter and shorter
time intervals starting at the moment of time t. As a result,
we obtain a sequence of the average velocities

Vav (t, Atl ) , Vav (t, ~t,.), Va v (t, dta), •••

The limit of this sequence for ~t -+ 0 is the instantaneous
velocity at the moment of time t:

v (t) == lim Va v (t, ~t)
6.t-+O

Taking into account that

(t dt) ~ s (t+ ~t)-s (t)
Va v , ~t

we rewrite expression (2) in the following form

(t) == 1° $ (t+ ~t) - s (t)
V im ~t

6.t-+o

(2)

(3)
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As a result, we can formulate the following definition
of the instantaneous velocity.

Defini tion:
The instantaneous velocity at a moment of time t is the

limit of a sequence of average velocities over time intervals
from t to t + t1.t for t1.t ~ o.

READER. Now I realize that instead of talking about
a sufficiently small time interval t1t (I am referring to our

talk about the ratio ~~ at the beginning of the dialogue),

the argument should have been based on the limit transition
for At ~ O. In other words, the instantaneous .velocity

is not :; at a sufficiently small I1t but lim ::.
~t-+O

AUTHOR. Exactly. The definition formulated above for
the instantaneous velocity not only exposes the gist of the
concept but gives a rule for its calculation, provided that
an analytical expression for s (t) is known. Let us make
such a calculation assuming that s (t) is given by expres-

.sion (1).
READER. We should substitute (1) for (3). This gives

at2

2
~t

a (I + ~t)2

2
v (t) == lim--~--­

~t-O

AUTHOR. Go ahead. Remove the parentheses.
READER. This will give

(t) I · a(t"+2t~t+~t'2_t2) I' (t+ ~t) tv == lID == 1m a - = a
~t-O 2~t ~t ..... O ' 2

We have arrived at a familiar formula for the velocity of
uniformly accelerated motion with zero initial velocity:

v (t) = at (4)

AUTHOR. You are absolutely right. I must congratulate
you: for the first time in your life you have carried OQt
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the so-called operation of differentiation. In other words,
you have determined for a given function s (t) its derivative,
that is, the function v (t).

READER. Does it mean that the instantaneous velocity
is a derivative?

AUTHOR. Note that a derivative exists only with respect
to a known initial function. If the initial function is s (t)
(path as a function of time), the derivative is the instan­
taneous velocity.

s

o

Fig. 35

Let us return now to the graph s (t) shown in Fig. 31.
Our previous arguments and, in particular, relation (4),
allow us to transform the graph s (t) into a graph of the
derivative, that is, the function v (t). A comparison of
the two graphs is given in Fig. 35. I recommend that you
carefully analyze Fig. 35, interpreting it as a comparison
of the graph of a function s (t) and the graph of its rate
of change.
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DIALOGUE NINE

DERIVATIVE

105

AUTHOR. The previous dialogue gave us an opportunity
to introduce the concept of a derivative for a specific example
from physics (the instantaneous velocity of a body moving
nonuniformly along a straight line). Now let us examine
this concept from a purely mathematical viewpoint without

y.
!/=f(x)

.1(xo+Ax)
f(xo)---~-"""'------+-

o :<0 xo+L1x X

Fig. 36

assigning any physical meaning to the mathematical sym­
bols used.

Figure 36 shows a graph of an arbitrary function y = f (z].
Let us select an arbitrary point x == Xo from the domain of
the function. In the subsequent argument this point is con­
sidered as fixed. Now consider another point x from the
domain of the function and introduce a notation .1x = x ­
- Xo- The value ~x is called the increment of the independent
variable. The increment is considered with respect ,to the
fixed point Xo. Depending on the point x, the value of .1x
may. be larger or smaller, positive or negative.

Now let us examine a difference between the values of
the function at points x = Xo + .1x and x = Xo: .1f (xo) ==
= f (xo + ~x) - f (xo). The difference .1/ (xo) is said to be
the increment of a function f at a point xo• Since Xo is fixed,
~f (xo) should be considered as a function of a variable
increment ~~ of the independent variable.
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READER. Then it is probably more logical to denote this
function by ~t (~x), .and not by ~t (xo), isn't it?

AUTHOR. Probably, you are right. However, the accept­
ed notation is ~t (xo)' Such a notation emphasized the fact
that the increment of t (in other words, the given function
of ~x) is referred to point X o'

With the concepts of the increment introduced, it is not
difficult to evaluate the rate of change of f close to X o'

9

o Xf x,+tJx Xo

Fig. 37

x

READER. This rate should be described by the ratio

MXc:). For instance, if we compare lif (xo) with an incre­

ment of t at another point from the domain of the function
(say, point x == Xl), we may obtain an inequality

and therefore conclude that the rate of change of t close to
point Xl is greater than that close to XO'

AUTHOR. Please, be careful. You have not said anything
about the value of the increment ~x. If~x is too large,
the inequality you have just mentioned may lead to a wrong
conclusion. I shall make myself clearer by referring to
Fig. 37. As you see,
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You must agree, however, that close to point Xo the function
changes much faster (the graph of the function has a steeper
slope) than in the vicinity of Xl.

READER. It is necessary that the value of the increment
L\x be sufficiently small. The smaller is L\x the more accurate
is the information about the rate of change of the function
close to the point under consideration.

AUTHOR. Well, we can do even better than this. We

may, for example, consider the limit of the ratio f1~~o)

for L\x ---+ 0 (remember the previous dialogue).
READER. This limit will characterize the rate of change

of the function t directly at x == xo- .
AUTHOR. Exactly. Let us calculate the limit in detail:

A f (x ) .,. (". ...L A ..,.\ - .,. t ; \lim il 0 lim I \~..o I &-A-, I '-01 (1)
~X~O ~x ~X~O /).x

and examine first of all the mathematical nature of this
limit.

READER. Since point Xo is fixed, it is evidently the
limit of the ratio of two functions of ~x for L\x~ O.

AUTHOR. Let us denote these functions by F and G:

F (L\x) = f (xo + L\x) - f (xo), G (L\x) = L\x

READER. Limit (1) is then lim ~ ~~x~ , where
~~~O x

lim F (L\x) == 0 and lim G (L\x) == O. Hence, we have here
~X~O AX~O

a limit similar to that discussed at the end of Dialogue

Seven, namely, a limit of the type g.
AUTHOR. Right. This limit, that is, the limit of the

type gis the main subject of this dialogue.

The primary requirement in this case is the existence
of the limit. It means that the function t should be such
that

lim F (~x) === 0
~X~O

The necessary condition for satisfying this equality is
the continuity of f at x == Xo' But we shall discuss this
problem later, -
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If the limit of the type 6 (in other words, limit (1))
does exist, it is called "the derivative of the function f at
point x = x~ and usually denoted by I' (xo).

Defini lion:
The derivative of a function f at a point Xo (denoted by

I' (xo» is the limit of the ratio of an increment of the function
I at the point Xo (denoted by L\t (xo» to an increment L\x 01
the independent variable for 6.x ~0:

I ' ( )- 1· ~f(xo)Xo - 1ID-----.,;;,-
L1x-+O tix

or, in a more detailed notation,

I ' ( ) - 1- f (xo+ ~x)- f (xo)
Xo - 1m A

L1x~O ux
(2)

Note that you are already familiar "with the right-hand
side of equation (2) (cf. expression (3) from the previous
dialogue).

READER. Actually the derivative of the function I at
point %0 is the limit of the function

F f (xo+~x)- f (xo)
7]= ~x

at lix = O. The independent variable of the function (G)
is the increment L\x.

AUTHOR. You are quite right. However, in what follows
you must use the definition of the derivative as formulated
above. This definition does not involve the function (f)
of ~x since this function plays, as you understand, only
an auxiliary role. We should simply bear in mind that the
phrase "the limit of the ratio of an increment ~f (::to) to an
increment ~x for ~x ~ on describes the limit of a function

of lix, Le. the function (;), which is considered at lix = O.
The derivative can be also interpreted in terms 01 geo­

metry.
READER. Shall we do it by using again the tangent

to the graph of a function?
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AUTHOR. Yes, of course. Let us take the graph y = t (x)
(Fig. 38), fixing a point x = Xo• Consider an increment
L\xI of the argument; the corresponding increment of the

s /
/

/
/

/
/.:

~/.B2
/

/
/

~

/
I.:

~

Fig. 38

function at point Xo is 11ft (xo). Denote the slope of the chord
ARI by al; it is readily apparent that

J1f1 (:1:0) = tan ex
tlXl t

Next take an increment Llxt (so that L\x2 < L\Xl). This
increment corresponds to the increment ilft (xo) of the
function t at point Zo. Denote the slope of the chord ABt
by a 2; it is similarly quite apparent that

~f2 (xo) = tan ex
'&X2 2

Further, take an increment t1xs (Llxs < Llx2 ) , and so on.
As a result, we obtain an infinitesimal sequence of incre-
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.ments of the independent variable:

dXl' L\x2 , ~xa, - · ., dX n ,

and the corresponding infinitesimal sequence of increments
of the function at point Xo:

~/l (xo), ~/2 (xo), L\/s (xo), · • ., ~/n (xo), · 0 •

This leads to a new sequence of the values of the tangent
of the slopes of the chords AB1 t AB2 , ABa' 0 • 0' ABn , ••.
obtained as a sequence of the ratios of the two sequences
given above

tan at, tan a 2 , tan aa, . · ., tan an, . . . (3)

Both sequences (Axn) and (~/n (xo)) converge to zero. And
what can be said about the convergence of the sequence

(tan an) or, in other words, the sequence ( L\~~:o) ) ?

READER. Obviously, the sequence (L\f;x~o») con-

verges to f' (xo). In other words, the limit of ( M~:c~o») is

the derivative of I at Xo.
AUTHOR. What are the grounds for this conclusion?
READER. Why, isn't it self-evident?
AUTHOR. Let me help you. Your conclusion is based

on definition 2 of the limit of function at a point. Don't
you think so?

READER. Yes, I agree. Indeed, a certain number (in
this case I' (xo» is the limit of a function <D (dx) (in this

case <l> = f) at Llx = 0 if for any sequence (Llxn ) conver­

gent to zero the corresponding sequence (cD (L\xn )) converges
to this "number. Sequence (3) is precisely the sequence
(cD (~xn)) in our case.

AUTHOR. Correct. We have thus found that lim tan a n =
n-+oo

= I' (xo). Now look at Fig. 38 and tell me which direction
is the limit for the sequence composed of the chords ABl t

AB2 , ABa' ... t ABn , • • .?
READER. It is the direction of the tangent to the graph

.f (z) at point x = :to-
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AUTHOR. Correct. Denote the slope of the tangent line
by ao. Thus

lim tan an = tan ao
n-+I)()

Consequently,
I' (xo) = tan ao

We thus obtain the following geometrical interpretation
of the derivative:

The derivative of a function I at a point Xo is defined by the
slope of the tangent to the graph 01 the function f at the point
x = Xo-

o X'o

Fig. 39

x

Note that the slope of the tangent is measured relative
to the positive direction of the abscissa axis, so that the
derivative of f at point Xo in Fig. 39 is positive (at this
point tan ao > 0), while at point Xo the derivative of f
is negative (tan ao < 0).

But the geometrical interpretation of the derivative must
not upstage the basic idea that

The derivative of a function f at a point X o is the rate of
change of f at this point.

In the previous dialogue we analyzed the function s (t)
describing the dependence of the distance covered by a body
during the time t. In this case the derivative of s (t) at
a point t = to is the velocity of the body at the moment
of time t == to- If, however, we take v (t) as the initial func­
tion (the instantaneous velocity of a body as a function of
time), the derivative at t = to will have the meaning of
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the acceleration of the body at t = to- Indeed, acceleration
is the rate of change of the velocity of a body.

READER. Relation (2) seems to allow a very descriptive
(if~.somewhat simplified) interpretation of the derivative.
We may say that

The derivative of a function y. = f (x) at a point x = xo
shows how much steeper the change in y is in comparison with
the change in x in the neighbourhood of x = xo-

AUTHOR. This interpretation of the derivative is quite
justified, and it may be useful at times.

Getting back to the geometrical interpretation of the
derivative, we should note that it immediately leads to the
following rather important

Conclusions:
The derivative of a function f = const (the derivative of

a constant) is zero at all the points. ,
The derivative of a junction f = ax + b (where a and b

are constants) is constant at all the points and equals a.
The deriuatioe of a function f = sin x is zero at the points

x = +nn (at these points the tangent to the graph of the
function is horizontal).

This "list" .could, of course, be expanded.
Next I would like to attract your attention to the fol­

lowing: from the viewpoint of mathematics a derivative of
a function must also be considered as a certain function.

READER. But the derivative is a limit and, consequent­
ly, a numbers

AUTHOR. Let us clarify this. We have fixed a point
x = Xo and obtained for a function f (x) at this point the
number

For each point x (from the domain of f) we have, in the
geenral case, its 0'Yn number

lim dj (xl
~x-+O !J,.x

This gives a mapping of a certain set of numbers x onto

a different set of numbers lim /!l~). The function. which
~x-+O
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represents this mapping of one numerical set onto another
is said to be the derivative and is denoted by I' (z),

READER. I see. So far we have considered only one
value of the function I' (z), namely, its value at the point
x = xo.

AUTHOR. I would like to remind you that in the pre­
vious dialogue we analyzed v (t) which was the derivative
of s (t). The graphs of the two functions (i.e. the initial
function s (t) and its derivative v (t» were even compared
in Fig. 35. .

READER. Now it is clear.
AUTHOR. I would like to make two remarks with regard

to I' (x).
Note 1. A function I' (x) is obtained only by using a func­

tion I (x). Indeed,

[' () I' f (z + ~x) - f (x)x =- Im--~--~
&x-+O ~x

(4)

It is as if there is a certain operator (recall Dialogue Four)
which generates I' (x) at the output in response to I (x) at
the input. In other words, this operator, applied to the
function I (x), "generates" I' (x). This operator is usually

denoted by :x' This notation should be interpreted as
a single entity and not as a ratio (it reads: "d over dx).

Consider an "image" d: 111 = 121. The squares in this
expression symbolize the familiar "windows". "Window" .1
is to input I (x), while "window" 2 outputs I' (x). Thus,

d
---;IX I (x) = I' (x) (5)

Defin i t ion:
The operation 01 obtaining If (x) jrom I (x) is said to be

the differentiation 01 I (x).

The operator d~ performs this operation over f (x) and
is said to be the operator 01 differentiation.

READER. But what exactly is d~ doing with f (x)?

8-01473
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AUTHOR. It is exactly the operation prescribed by (4).
We may say that .!!:....-!'constructs" the ratio j(x + ~x)- j(x)

dx ~x

from f (x) and determines the limit of this ratio (regarded
as a function of dX) at dx == O.

dREADER. In other words, the operator dx performs
a certain limit transition operation, doesn't it?

AUTHOR. Certainly. The whole differential calculus
(and with it, integral calculus) can be formulated in terms
of certain limit transitions.

READER. Why should we introduce an operator d: if
it represents nothing else but the limit transition operation
described by (4)?

AUTHOR .. You have posed a very important question.
The problem is that if we had formulated differential cal­
culus in terms of limits, using the relations of type (4),
all books on calculus should have been increased in their
volume several-fold and become hardly readable. The use
of the relations of type (5), instead of (4), makes it possible
to avoid this.

READER. But how can we use the relations of type (5)
without implicitly applying the relations of type (4)?

AUTHOR. What is done is this.
First, using (4), we find the result of applying the operator

d
d to a sum, product, and ratio of functions, and to composite
:r.

or inverse functions provided that the result of applying the
operator to the initial function (or functions) is known. In
other words, the first step is to establish the rules tor the
differentiation oj junctions.

Second, using (4), we find out the result of applying d:
to some basic elementary functions (for instance, y == x",
y == sin x, and y == log, x).

After these two steps are completed you can practically
forget about the relations of ~ype (4). In order to differentiate
a function, it is sufficient to express the function via basic
elementary functions (the derivatives of which were obtained
earlier) and apply the rules for differentiation.

READER. Does it mean that the relations of type (4)
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could be put aside after they have been used, first, for
compiling a set 01 differentiation rules and, second, for
making a table o] derivatives jar basic elementary junctions?

AUTHOR. Yes, this is the procedure. Using the differen­
tiation rules and the table of derivatives for some basic
elementary functions you are in a position to forget about
the relations of type (4) and are free to proceed further by
using the "language" of the relations of type (5). A formal
course of differential calculus could skip the analysis of
limit transition operations, that is, the relations -of type
(4). It is quite sufficient for a student to learn a set of differen­
tiation rules and a table of derivatives of some functions.

READER. I certainly prefer to be given the foundation.
AUTHOR. Our next dialogue will be devoted to a dis­

cussion of the programme of actions as outlined above. At
the first step of the programme, the main rules for differen­
tiation will be established on the basis of the relations of
(4) and, in addition, the derivatives of three functions
y = x 2

, Y == sin x, and y = loga x will be obtained. At the
'second step, we shall obtain (without reference to the
relations of type (4)) the derivatives of the following func-
tions: y = z", y = x-n , y = Vx, y = cos x, y = tan x,
y = cot x, Y = arcsin x, y = arccos x, y = arctan x, y =
= arccot x, and y = a".

READER. I'll be looking forward to the next dialogue.
By the way, you wanted to make one more remark about
the derivative t (x).

AUTHOR. Note 2 concerns the natural domain of a
derivative. Let a set D be the domain of I (z}, The question
is whether D is also the domain of t' (x).

READER. In any case, the domain of t' (x) cannot be
wider than the domain of j (x) because in order to find
I' (x) we use I (x).

AUTHOR. A carefully balanced answer, to be sure.
The domain of t' (x) is in t4e general case a subset of D.
It is obtained from D as a result of elimination of those
points x for which lim 11! (x) does not exist. By the way,

6.x~O ts»

this subset is called the domain oj differentiability of j (x).
READER. What are the conditions oj differentiability

of t (x) at any specific point x?
8.
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AUTHOR. Obviously, these conditions are identical to

those of the existence of lim 81 (x) at point x. We have
L\x~O a:

already observed that it is the limit of the type g, which

necessitates that both the numerator and denominator tend

!I

\
A'

Fig. 40

to zero. It means that f (x) must be continuous at x, The
following theorem could be proved rigorously.

Theorem:
The continuity of a function f (x) at a point x is a necessary

condition for the existence of I' (x) at x.
However, we shall not give the proof of this theorem

here. The simple qualitative arguments given above will
suffice.

READER. I wonder whether the continuity of a function
is also a sufficient condition for its differentiability.

AUTHOR. No, it is not. Consider, for example, the
function Y == I log x ,. It is sufficient only to look at its
graph (Fig. 40) to conclude that at x == 1 the tangent to the
graph of the function is, strictly speaking, nonexistent (on
approaching x = 1 from the left we have one tangent, viz.,
the straight line AA, while on approaching x = 1 from the
right we have another tangent, viz., the straight line BB).
It means that y === , log x I does not have a derivative at
x === 1, although the function is continuous at this point.
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In conclusion, let us turn to one interesting property of
differentiable functions. Let f (x) be a differentiable func­
tion, and its increment I1f at x be related to the increment
dX of the argument as follows:

t1f = j' (x) dx + 11 (dx) ~x (6)
where 11 (dx) is a function of L\x. By dividing both parts
of (6) by dX, we obtain

~~ = f' (x) + T) (Lh)

Passing to a limit in both sides of the last equation for ~x

gives lim 11 (~x) = o.
~X-+O

Consequently, 11 (dx) is an infinitesimal (we use the same
terminology as for numerical sequences, see Dialogue Three).

Conclusion:
An increment df at a point x of a function f (x) differentiable

at this point can be represented by two summands, namely, a
summand proportional to the increment dx of the argument
(this summand is f' (x) dX) and a summand negligible in
comparison with the first for suificientlu small dx (this sum­
mand is 1) (tlx) dX, where 11 (dx) is infinitesimal).

READER.!It seems that this is a formulation of the prop­
erty of "linearity on a small scale" that you mentioned in
the previous dialogue (see Fig. 32).

AUTHOR. Quite true. The main part of the increment of
a differentiable function (a summand linear with respect to
dX) is called the differential of the function.

DIALOGUE TEN

DIFFERENTIATION

AUTHOR. Now our aim is a practical realization of the
programme outlined in the previous dialogue. This dialogue
could be considered as a drill on the calculation of deriva­
tives. We shall divide the talk into three parts.

1. Differentiation rules.
2. Differentiation of elementary functions y = x2

, y ==:

== sin x, and y = log , x.
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3. Application of differentiation rules to different func­
tions.

Before the start I would like to remind you that the differ­
entiation of a function f (z] is defined as the operation of
obtaining j' (x) from f (z). This operation is performed by

using the operator of differentiation ':X :
d

dX f (x) = j' (x)

1. The Differentiation Rules

AUTHOR. Rule One. We shall prove the following
Theorem:
The derivative of the sum of two junctions equals the sum

of their derivatives provided that they exist, i.e.

d d d
d; rt(x)+g(x)J==~f(x)+a;-g(x) (1)

Denote f (x) + g (x) == u (x). Then the theorem can be
written as follows: u/ (x) = t' (x) + g' (x). Try to prove
this theorem.

READER. First I write
t' ( ) - 1· f (x + ~ x) -- f (:1-')

X - 1m ~x
hx-O

g' (x) = lim g (x+L\x) - g (x)
Ax-O ~x

U' (x) ~ lim u (x+ ~x) - u (x)
~x-o ~x

1. f (x+L\x)+g (x-l-~x)-f (x)-~ (x)== Im-~-----:""-------
Ax-+O J).x

But I don't know what to do next.
AUTHOR. We shall repeat your writing but drop the

limit signs:

~u [z ) f (x+~.z')+g (x+ Ax)- f (x)~R (x) _ f (x+Lix)- f (x)
~::::= 6x - ~x

+ g (x -t- L\x) - g (x) ~f (x) I ~g (z)
~x ==~T~
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~u (x) == ~f (x) + ~g (x)
~x ~x ~x

READER. I see. Next we use the well-known theorem on
the limit of the sum of functions, and the proof is complete.

AUTHOR. Quite correct. Rule Two. Let us prove the
next

Theorem:
A constant multiplier is factored out of the derivative, that is

d d
d; [a f (x)J == a dX f (x) (2)

The theorem is imrnediately proved if we use the following
obvious equality'

11 fa f (x)l
llx

t1.t (z]a-­
llx

Rule Three. Now we shall consider the theorem on the
derivative of the product of two functions.

Theorem:
The derivative of a function u (x) = f (x) g (.x) is calculated

by using the following formula:

u/ (x) = I' (x) g (x) + f (x) g' (x) (3)

provided that the derivatives I' (x) and g' (x) exist.
Formula (3) is called the Leibnitz formula. Another expres­

sion for the same formula is:
d d d

dX (fg) = g(h f+ f dX g

READER. Apparently, as in the proof of the first

theorem, we must express d~;X) through .1~~) and

i\~;X) • But how to do it?

AUTHOR. The simplest way is

u + hu === (/ + f1f) (g + f1g)

= fg + g ~t + f ~g + ~t fig
Hence,
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consequently,

~ u (x) ( ) ~f (x) + I ( ) tJ.g (x) + st (x) 11 ( )---xx==g x ~ x~ ~ g x

Now we find the limit for I1x .-+0. Notice that neither
g (z) nor f (z) depends on S», and ~g (x) tends to zero. As
a result,

I" ~u(x) ( ) 1· ~f(x) +1 ( ) 1· ~g(x)Im--===g x Im-- x Im--
t\:r ..... O ~x t\x-+O ~x t\x ..... O 6x

The theorem is thus proved.
Rule Four. The next theorem is related to the derivative

of the .ratio of two functions.
Theorem:

The derivative of a function u (x) = ~ ~~) is:

I ( .) _ f' (x) g (x) - f (x) g' (x) (4)
u x - g2 (x)

provided that the derivatives I' (z) and g' (z) exist, and that
g (x) =/= o.

It can be written in a different form:

·d d
.s: (1-) = g-;r;- /-/di g
dx g g2

Try to prove this theorem.
READER. I shall proceed by analogy with the preceding

proof. I can write

Hence,

This yields
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Passing then to the limit for ~x -+ 0, I take into account
that neither g nor f depend on ~x, and that I1g also tends to
zero. Using the known theorems on the limit of the product
and the sum of functions, we obtain

1· ~u 1· ( 1 ) 1· ( ~/ f ~g )Im-= 1m 2 1m g-- -
~x-+o ~x t\x-+o g + g ~g ~x-+o ~x ~x ,

t ( 1· ~/ f 1- ~g )= -2 g lID - - Hfl -
g ~x-+o ~x ~X~O ~x

This completes the proof.
AUTHOR. Very good. Now we shall discuss the, problem

of the differentiation of a composite function (for composite
functions, see Dialogue Five). Let w = h (z) be a composite
function, and h (x) == g [f (x)l. This composite function is
the composition of two functions w = g (y) and y := f (x).

I remind you that the derivative f' (x) indicates how
faster y charges compared to z; and the derivative g' (y)
indicates how faster w changes compared to y. Consequently,
the product g' (y) I' (x) must indicate how faster w changes
compared to x, i.e. it equals the derivative h/ (x).

Rule Five. Thus we arrive at the differentiation rule for
composite functions.

Theorem:
The derivative of a composite function h (x) = g [/ (x)l is:

h' (x) = g' (y) f' (x)

READER. We have arrived at this rule using very simple
arguments. I wonder whether they can be regarded as a
proof of the rule.

AUTHOR. No, of course not. Therefore I am going to
give the proof of the differentiation rule for composite
functions.

Let the' independent variable x have an increment I1x
such that z + I1x belongs to the domain of h (z]. Then the
variable y will have an increment l1y = f (x + I1x) - f (z),
while the variable w will have an increment I1w =
== g (y + dy) - g (y). Since the derivative g' (y) exists..
the increment I1w can be expressed as follows
)

.1w = g' (y) !J.y + 11 l1y
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where t'J -+ 0 for' ~y -+ 0 (see expression (6) from the pre­
vious dialogue). Dividing both sides of the equation by
~x, we obtain

!1w , !1y !1y
!1x == g (y) !1x -+~ TJ !1x

Next we pass to the limit for ~x -+ 0

lim ~w = g' (y) lim ~y + lim (t'J ~Y )
~X~O oX Ax-.O o» ~x~O /J.X

Since lim ~w == h' (x) and lim ~Y == I' (x), we have
~x-+O oX Ax-O 0:(;

h' (x) = g' (y) j' (x) + i' (x) lim t'J
x-.o

And since ~y -+ 0 for ~x -+ 0,

lim t'J = lim t'J = 0
~x-+O Ay-+o

Hence we arrive at (5), namely, at the rule for the differen­
tiation of composite functions.

Rule Six. Finally, I shall give (without proof) the rule
for the differentiation of inverse junctions.

Theorem:
If a derivative y' (x) of an initial monotonic junction y (x)

exists and is not equal to zero, the derivative oj the inverse
junction x (y) is calculated by the jormula:

x' (g) = y' ~X) (6)

READER. It seems that this formula can be easily ob­
tained if we make use of the geometrical interpretation of
the derivative. Really, consider the graph of a monotonic
function y (x) (Fig. 41); its derivative at point Xo is tan cx,.
The same curve can, obviously, be regarded as the graph of
the inverse function x (y), with y considered as the indepen­
dent variable instead of x, and x considered as the dependent
variable instead of y. But the derivative of the inverse
function at point Yo is tan p (see the figure). Since rx + ~ ==
==.:: we have

2 '
1

tan~===-­tan a



Differentiation 123

This gives the above-cited differentiation rule for inverse
functions.

AUTHOR. I must admit that although your line of rea­
soning is not a rigorous mathematical proof, it is an example
of an effective application of geometrical concepts.

y

Yo

Xo
Fig. 41

x

2. The Differentiation of Functions y == x2 , Y = sin x,
and u> log, x

AU'fHOR. Using (4) from the previous dialogue, calculate
the derivatives of the three indicated functions. Start with
y = x2• Go ahead.

READER. I write

y + l1y = (x + L\X)2 = x2 + 2x L\x + L\x2
Hence,

l1y = 2x L\x + L\x2
Consequently,

~y 2-== x+L\xl\x

Further we pass to the limit for L\x~ 0

lim L\y <& == 2x
6x~O L\x

~Therefore,
v' (x) = 2x
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AUTHOR. You have thus obtained the result of applying

the operator ::r: to the function y = x2:

d- x2
==: 2x

dx (7)

We observe that for a quadratic function y === x 2 at the input

of the operator d~ we obtain a linear function y = 2x at
the output.

Now try to differentiate the function y = sin x.
READER. I shall write

y + ~y == sin (x + ~x) = sin x cos ~x + cos x sin ~x

Hence,
~y -:...: sin x cos ~x + cos x sin ~x - sin x

AUTHOR. You had better use here the formula for the
difference between two sines, not the formula for the sine
of the sum. Represent dy in the form

fiy = sin (x + fix) - sin x= 2 sin ~x cos (x + ~ )
Next we obtain

. ~x

L\ Sin -2- L\ )
L\~ L\x cos (x ++

-2-

In taking the limit for ~x -+ 0, recall a result obtained in
Dialogue Seven:

1· sin A» 11m ---=
L\x~O L\x

READER. Yes, I see. Therefore,

. L\x.
Sin -

lim ~Y = lim L\ 2 lim cos ( x + L\; )
L\x ...... O x L\x-O _x L\x~O

2

( L\x \== lim cos I x +-2- J == cos X
L\x-O \ .
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AUTHOR. The operator d~ applied to the function

y == sin x thus generates the function y :=::: cos x:

d •---r; SIn x == COS X (8)

(9)

Now we have to differentiate the function y == log, x.
This time, however, we should start with a discussion of the
transcendental number e (which is usually called the "base
of natural or Napierlari logarithms"). The .number e may be
defined as the limit of a numerical sequence .

. 1 )ne=lim(1+-
n-+oo n

The approximate value of e is: e :== 2.7182818284590....
Using (9), we can show that e is also the limit of y ==

1

.= (1 + x)x for x tending to zero

1

e= lim. (1 + x) x
x-+O

(10)

We shall omit the proof of (10).
READER. It seems that (10) follows logically from (9).
AUTHOR. Far from it. Don't forget that in (9) we deal

with the limit of a numerical sequence, while in (10) with the
limit of a function at a point. While n are integers, x belongs
to the real line (with the exception of x = 0). Therefore,
the transition from (9) to (10) requires a good deal of time
and space.

Now turn to the differentiation of y = loga x. Follow
the line adopted above. Start.

READER. Obviously,

y + ~y = Iog., (x + ~x)
Hence,

~ !J.y = log, (x + !J.x) -loga x = Iog., x+ 8x
x
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and, consequently,

8Y 1 x+t1x
~x == flx loga x

At this point I would have to find the limit for ~x ~O.

AUTHOR. I shall give you a hand here. We can rewrite

x

= ~ loga ( 1 +~x )"Xi"

READER. I see. This gives
x

~y =-! log (1 + t1x )KX
~x x a X

To find the limit for ~x -+ 0, we use (10). As a result
x

• ~y 1. ( t1x )"XX 1 1 111m - = - 11m log, 1 +- = - log, e = -.--
~X~O ~x x Ax~O x x X III a

(symbol In is the standard notation for the natural
logarithm) .

d
AUTHOR. We have thus found that the operator dx

1 tapplied to the function y = log, x gives y = x -lila :

d t 1-log X=-·--dx a X In a
(11)

Notice that the natural domain of the function y ==
=1-._

1
1 in (11) is ]0,00[.

x na
We can sum up our conclusions now.
Using relation (4) from Dialogue Nine, first, we have

established the six differentiation rules and, second, we
have differentiated three functions. The results are sum­
marized in Table 1, and Fig. 42 graphically represents the
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result of the action of the operator d~ on the three selected

functions. The left-hand column in the figure lists the
graphs of the three functions f (x), and the right-hand
column shows the graphs of the corresponding derivatives
t' (x). •

In what follows we shall not use formulas of type (4)
from Dialogue Nine, that is, we shall not operate in terms
of limit transitions. Using the results obtained above, we
shall find the derivatives for a number of elementary func­
tions without calculating the relevant limits.

3. The Application of the Differentiation Rules
to Different Functions

AUTHOR. As a first example, consider the function
y == z". Prove that differentiation gives y == nxn - 1 , that is,

(12)

Prove this proposition by using the method of mathematical
induction.

READER. For n == 2 formula (12) holds and yields (7).
Assume now that (12) holds for n = m. We have to prove
that it is also true for n == m + 1. We write xm +1 = xmx
and use the Leibnitz formula (Rule Three)

d d d
d;- (xmx)::=: X & xm +xm

-;[;" x

Since dd
x

X= 1 and according to the assumption :x xm =
= ma'">, we obtain

d
dX x m +J == nlxxm- 1+ xm == (m + 1) xm

The proof is completed.
AUTHOR. The next example is the function y == z:".

Differentiate this function using Rule Four and (12).
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The Differentiation Rules

129

Table 1

Rule i d d d I
(the differentiation of -;IX (/+g)== (h I+~ g
the sum of functions)

Rule 2 d d
- (al)==a - 1 (a= const)
dx dx

Rule 3 d d d
(the differentiation of - (tg)=g - 1+1- g
the product of functions) dx dx dx

Rule 4 d dg-I-I- f(the differentiation of :x (~ ) dx dx
the ratio of functions) gl

Rul~ 5
d ( d ) d(the differentiation of dx g If (x)] = dl g (I) dx 1 (x)

composite functions)

Rule 6 d 1
-x(y)=

(the differentiation of dy d
inverse functions) dX y (.x)

READER. This is simple. Applying Rule Four, we obtain

d
--xn

d ( 1 ) dz
dX zn = x~n

By virtue of (12),

9-01~78

(13)
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AUTHOR. One particular result that follows from (13) is

:X(~)=-;2 (14)

The next example is the function y == 1/x:
READER. Here I shall use Rule Six (the differentiation

rule for inverse functions). The inverse function involved
is x == y2. Its derivative is given by (7). As a result,

'rhus,

d V- 1
d:r x==-d--

_7J2
dy ·

1 1
2ii ------;p-2·v x

.s: Vx==_1-
dx 2 V:; (15)

AUTHOR. Now we can pass to the trigonometric func­
tions. Consider the function y = cos z.

READER. I propose to use (8) and the identity sin" x +
+ cos" X = 1. By differentiating both sides of the identity
and using Rule One, we obtain

.s:sin2x+~cos2x== 0
dx dx

Next, by applying Rule Five (the differentiation rule Ior
composite functions) in. conjunction with (7), we find

2sinx :x sinx+2cosx ::x cosx=O

From (8) , d: sin x = cos x so tha t

d •dX cOSX= -SInx

AUTHOR. That is correct, although the result can be
obtained in a simpler way. Better use the identity cos x =
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= sin(1t
2
-x,. Further, applying Rule Five, we obtain

\ )

d . (rt ) (d. ) d (1t )7; SIn 2- x == ---;[y siny ~ 2- x

(here: Y= ~ - x)

Making use of (8), we find

....!!:...- sin l''':: -x) = --dd siny= -cosy= ~sinx
dx 2 y

Using now the suggested identity, we arrive at the final
result:

d •- cosx= -Slnx
dx

(16)

READER. The operation of differentiation thus "turns"
the sine into the cosine and, vice versa, that is, the cosine
in to the sine.

x

Fig. 43

AUTHOR .. Yes, it does .. But in the last case the sign
changes too, that is, the cosine is transformed into the sine
with a negative sign. If you plot the graphs of sin x and
cos x in the same system of coordinates (Fig. 43), you will
find that at points x where one of the functions reaches
maximum or minimum (takes the value 1 or -1) the other
function vanishes. It is readily apparent that this fact has

" direct relation to your remark. If, for example, at a certain
'tloint x the function sin x assumes its maximum value, the
9-
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tangent to its graph at the same point will, obviously, be
horizontal. Consequently, the derivative of the function
(i.e, cos x) must vanish at this point. I recommend that you
carefully analyze Fig. 43. In particular, follow the corre­
spondence between the slope of the tangent to the graph of
the function drawn at different points and the sign of the
derivative at the same points..

Now turn to the next example, the function y = tan x.
Difierentiate this function using the results of the differ­
entiation of sin x and cos x and applying Rule Four.

READER. This will be easy:
d. . d

d (Sin x ) co~ x ax- S1n X-SInx~ COS x

di" cos-x- == COs2 X

Cos2 x+sin2 x
cost x == COI~ x

Finally,

d 1
-tanx=--
dx COs 2 x

(17)

AUTHOR. The result for y = cot x can be obtained
similarly:

d 1
-cotx= --.-
dx sln2 x

(18)

In order to differentiate y = arcsin x, we use Rule Six
d. 1 1 1

- arCSIn X:z:: = -- = -----
dx d. cos y COS (arcsin x)dii SIn y

SincQ
cos (arcsin x) = y 1-x2

we obtain

d. 1.
-dx arcsin x = V1-x2 (19)
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In order to differentiate y == arccos x, it is sufficient to
use (19) and the identity

. + 1tarcsin x arccos x == 2

Therefore,

d 1
-d arccos x ~ - ... 1

x y 1-x2 (20)

Using Rule Six, we differentiate the function y === "arctan x

1
dCiY tan .II

_d_ arctan x =: ---- = cos- Y == {cos (arctan X)]2
dx

Since
1cos (arctan x) ==~--

V1+x2

we obtain

d 1
dX arctan x == 1+ x2 (21)

And, finally, the differentiation of y :z= arccot x is carried
out by using the identity

1t
arctan x + arccot x = 2

and yields

d 1
dx arc cat x == - 1+x2 (22)

We have thus performed the differentiation of all element­
flrr trigonometric and inverse trigonometric functions,
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In conclusion, let us examine the exponential function
y = a". Using (11) and Rule Six, we obtain

This gives

d x-a
dx

1---== y In a == aX In a
d

-d loga Yy

d-ax==axln a
dx

(23)

Result (23) is very interesting. We see that the differ­
entiation of the exponential function y = aX again yields
the exponential function aX multiplied by the constant term
In a. In a particular case of a = e, we have In e === 1, and
therefore

(24)

The exponential function y == e" is simply called the expo­
nential curve. From (24) it follows that differentiation
transforms this function into itself.

DIALOGUE ELEVEN

ANTIDERIVATtVE

READER. Differentiation is an operation of finding a
function /' (x) for a given function f (x). Presumably, an
inverse operation is possible as well, isn 't it?

AUTHOR. An inverse operation indeed exists. It is called
integration. Integration of a function f (x) is an operation
by which the so-called antulerivative is found for the given
function f (x~. -
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Deftni tion.
An antiderivative is defined as a function F (x) whose deri­

vative equals an initial function f (x):
df (x) = dx F (x) (1)

READER. Quite clear. In the preceding dialogue we were
seeking a derivative I' (x) for a given function f (x), and
now we deal with a situation in which the given function
f (x) is the derivative of a yet unknown function F (z).

AUTHOR. Absolutely right. Take, for example, a function
t (x) = 2x2

- 3x. The differentiation of this function gives
its derivative

If (x) == 4x - 3

and its integration gives the antulertuatiue
2 13

F (x) == 3x3-~ x2

READER. But how did you find this antiderivative?
AUTHOR. This was simple. I resorted to the well-known

rules of differentiation but in a reverse order. In other words,
I mentally searched for a function that would yield our
function t (x) === 2x2

- 3x after differentiation. You can
easily verify that

2 3
F' (x) === 33x2-"2 2x== 2x2- 3x

READER. But then why not take as this antiderivative,

for example, a function F (x) = ~ x3 - : x2 + 2? It

will again yield F' (x) = 2x2 - 3x.
AUTHOR. You noticed a very important feature. Indeed,

an antiderivative found for a given function is not unique.
If F (x) is an antiderivative (for a function f), then any
function F (x) + C, where C is an arbitrary constant, is also
an antiderivative for the initial function because

d d d d
dx [F (x) + C] = a:x F (x) +dX C = dX F (x)

READER. This means, therefore, that each given func­
tion f (x) corresponds to a family of antiderivatives, F (x) ++C~ doesn't it?· , .
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AUTHOR. Precisely. Take a graph of one of the anti­
derivatives. By translating it along the y-axis, you will
obtain a family of the curves of antiderivatives for a given
function t. For example, let f (x) = sin x, The curves of

"F

Fig. 44

antiderivatives for this function are plotted in Fig. 44.
These curves plot functions

F (x) = -cos x + C

(the dash curve is the graph of the function f (x) = sin x) .
The constants C were taken with an increment of 0.5. By
reducing this increment, one can obviously obtain a pattern
of arbitrarily high density of F (x) curves.

The figure clearly shows that all the antiderivatives
belong to one family (in other words, correspond to the same
initial function f). This may not always be as clear if the
function is represented in an analytical form. Take, for

example, functions F1 == -cos x and F2 = 3 - 2 cost ; .

It would be difficult to say at the first glance that these two
functions are the antiderivatives of one and the same function

(namely, f == sin z). However, since 2 cos2 ~ == 1 + cos x,
we find

Fa (x) == 3 - t - cos w== -cos ~ + ~
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READER. I guess it would be possible to find directly
that F~ (x) = F,' (x), wouldn't it?

AUTHOR. 0 course, it would:

d F ( ) 2 d 2 X 4 x.xt •
dx 2 X = - dx cos 2 = cos 2 sin 2" · 2 = Sin x

:x r, (x) = d: (-cos x) = sin x

But the easiest way is to notice that F 2 - F1 = C.
We could find numerous such examples. For instance, it

is not difficult to check that the following pairs of functions
belong to the same family of antiderivatives (each' pair to
its own family):

(a) Ft = x2-2x+3, F2 = (x - 1)2

(b) F t = arcsin x, F2 = 1- arccos x

(c) Ft = tan x sin x +cos x, F2 = (2 cos x + 1) _t_cos x

Thus, in case (a) we find F 2 - F1 = -2; both functions are
the antiderivatives of the function I = 2x - 2.

Please, check cases (b) and (c) yourself.
READER. In case (b) F 2 - F1 = 1 - (arccos x +

+ arcsin x) == 1 - ~; both functions are the antideriva-

tives of the function f = -y 1 •
i-x2

Case (c) is more intricate. Some preliminary manipulations
are necessary:

. sin2 x+cos2 x t
F t = tan x sin x + cos x = == --cos x cos x

F =2cosx+t==2+_1_
2 cos x cos x

Therefore, F2-Ft=2. Both functions (F t and F2 ) are

h t ·d · ti f I sin xt e an 1 eriva ives 0 =-2-.cos x
AUTHOR. Correct. Now, taking into account the results

obtained'in; the previous dialogue, we can compile a table
(see Table 2) which gives various functions j (x) in the
Pfs~ column the ~orresponding derivatives I' (x) in the
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A List of Derivatives and Antiderivatives
for Selected Functions

Table 2

I I (x)
I

I' (x) I F (x)

1 I a
I

0 I ax+C

2 xn nx n- 1 1
--xn+1+C

n+1

3
I

eX
I

eX
I

eX+C

4 1 1 Inx+C- --;2x

1 2 y--5 y-:i;
2 y-~ TX x+C

6 sin x cos x -cos x+C

7 cos x - sin x sin x+C

8 1 2 sin x tan x+ C
cos2 x cos- X

9 1
-2~ --cot x+C

Si1l2 x sin" x

10 1 2x arctan x+ C
1+x2 (1+ x2)2

I I I
--;.~
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second column, and the antiderivatives F (x) + C, corre­
sponding to the functions I (x), in the third column. I want
to stress once more: the transformation f (x) ~ I' (x) is the
operation of differentiation of the function I (z], and the
transformation I (x) ~ [F (x) + C] is the operation of
integration of the function I (x).

READER. Examples (8), (9), and (10) in Table 2 give
an impression that the transformation I (x) ~ I' (x) is more
complicated than the transformation I (x) ~ (F (x) -to CJ.

AUTHOR. This impression stems from a special selection
of the functions I (z). Thus, it is easier to differentiate the

function tan x than the function _1_0 _ . Indeed, in the
cos- x

"latter case we have to use the rules for differentiation of a
ratio of two functions or of a composite function.

In general, it should be noted that the operation of inte­
gration is substantially more complicated than that of
differentiation. The differentiation of elementary functions

. invariably gives elementary functions. By employing the
rules for differentiation discussed in the previous dialogue,
you will be able (and with no difficulties, as a rule) to differ­
entiate practically any elementary function. But integration
is quite a different proposition. The rules for the integration
of elementary functions comprise numerous techniques, and
we would need several special dialogues to scan them. But
the main point is that not every elementary function has an
elementary function for its antiderivative. As one example,
I shall mention the antiderivatives of such elementary
functions as _1_ or V 1 . As a rule, in such cases

Iog z 1+xs
one is forced to resort to the methods of the so-called numeri­
cal integration.

READER. I was very attentive and want to pose two
questions. First: What is meant by the term elementary
[unctionl

AUTHOR. In Dialogue Nine I gave examples of the so­
called fundamental elementary functions (z", x-n , x1/

n , sin x,
cos x, tan x, cot x, arcsin x, arccos x, arctan x, arccot x,
a", log; z]. An elementary [unction is any function which can
be formed of fundamental elementary functions by a finite
number of the operations of addition? subtraction? multi-
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plication, division, involution, evolution, and taking a
modulus, as well as by using the rules for obtaining inverse
and composite functions. All the functions used in the
previous dialogues are elementary (with an exception of the
Dirichlet function mentioned in Dialogue Five), and many
of them are fundamental elementary functions.

READER. My second question concerns the rules for
integration you refer to. Could you give at least some exam­
ples?

AUTHOR. I shall quote three simplest rules.
1. If F is an antiderivative for t. and G is an aniiderivattoe

for g, an antiderivative for the sum of the functions f + g
is a function F + G.

2. If F is an" antiderivative for t. an antideriuaiise for a
function aj, where a is a constant, is a function aF.

3. If F (x) is an antiderivative for f (x), and a and bare
constants, an antiderivative for a function f (ax + b) is a

function.! F (ax + b).a "
All the three rules are proved readily by using the rules

for differentiation (in the third rule one has to apply the
rule for the differentiation of composite functions). Indeed,

(1) :x (F+G)=:X F+ ::1: G=!+g

(2) :x (aF)=a ::1: F=a!

(3) ::1: ( : F (ax +b) ) =: :z F (ax +b)
1 d d=a dy F (y) dX (ax+ b)

1= - f (y) a = f (y) = f (ax +b) (here: y;-:: ax +b)
a

Of course, the three rules cited above do not exhaust
a rich collection of integration rules available in calculus.
But here these three rules will be sufficient since our goal
is quite modest: to give the fundamental idea of an anti­
derivative.

READER. Our discussion of a derivative covered its
geometrical interpretation as well. Is there 3 geometrical ~
interpretation of an antiderivative?
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Fig. 45
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AUTHOR. Yes, there is. Let us find it (besides, we shall
need it later).

Consider a function f (x). For the sake of simplicity, as­
sume that this function is monotonic (and even increasing).
Later we shall drop the
monotonicity of a func­
tion. The most impor­
tant is that the function
be continuous over the
chosen interval (i.e. over
the interval on which it
is defined). Figure 45
shows a shaded area (the
so-called curvilinear tra­
pezoid) bounded by the
graph of the function
f (x), the interval [a, xl
of the x-axis, and two
perpendiculars erected
from points a and x on
the z-axis. Let point a
be fixed; as for point
x (the right-hand end of the interval la, zl), it is
not fixed and can assume values from a upward (within the
domain of definition of the function). Obviously, the area
of the curvilinear trapezoid shaded in the figure is a junction
of x. We shall denote it by 8 (z),

Now turn to Fig. 46. Let us give an increment I1x to the
independent variable x. The interval [a, x + I1xl corre­
sponds to the area 8 (x + I1x). Denote 118 (x) = 8 (x + I1x)­
- 8 (x). The increment 6.8 (x) is, obviously, the area of
the shaded curvilinear trapezoid. The figure shows that

area ADEF < A8 (x) < area ABCF

But the area ADEF is equal to f (x) Ax, and the area ABCF
is equal to f (x + Ax) I1x. Therefore,

f (x) 6.x < A8 (x) < f (x + 6.x) 6.x
or

f (~) < A~~x) < f (x + L1x)
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or

0< (a~;x)- f (x) ) < [f (x) +- ~x) - f (x)] = ~f (x)

N ow we find the limiting values of these inequalities Ioi
~x tending to zero. By virtue of the continuity of the

F

f(x)
C.B

!J

f(x+&)--------------*''''
f(x) ---------..~

o a x x+J1X x
Fig. 46

function t (x) we conclude that lim ~t (x) = O. Couse-
6x-+O

quently,

lim (i\S'(X) - t (x)) = 0
Ax-+O i\x

As the function t (x) is independent of L\x, the last relation
yields

I · ss (z) f ( )1ffi--= X
Ax-+O i\x

By the definition of derivative,

I- ss (x) S' ( )1m --= x
Ax-+O Ax

Consequently, relation (2) signifies that

t (x) = S' (x)

(2)

(3)
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Thus, in terms of geometry, the antiderivative of the func­
tion I, taken at point x, is the area of curvilinear trapezoid
bounded by the graph of the function / (x) over the interval
[a, x] 0/ the a-axis.

READER. Presumably, it is one of the possible anti­
derivatives, isn't it?

AUTHOR. Definitely.
READER. But it is evident that the area S (x) also de­

pends on the choice of point a.
AUTHOR. Absolutely correct. By choosing different

points a, we shall have different areas of curvilinear trape­
zoids and, correspondingly, different antiderivatives. But
all of them will be the antiderivatives of the function f
taken at point x. It is only important that in all cases
a<x.

READER. Then why is it that point a vanishes from
the final results?

AUTHOR. Your bewilderment is understandable. Let
us reformulate the results obtained above. Let F (x) be an
antiderivative of a function f (x) taken at point x. According
to (3), we can write

S (x) = F (x) + C

(here we have used the following theorem: if two functions
have equal derivatives, the functions will differ by a constant
term). The constant C is found readily since S (a) = O.
Therefore,

S (a) = F (a) + C == 0

Hence, C = -F (a). This gives

S (x) = F (x) - F (a) (4)
Conclusion:
If F (x) is an antiderivative of a junction t (x), then the

area S (x) of a curvilinear trapezoid bounded by the graph
of the junction / (x) over the interval [a, x] is given by the
difference F (x)- F (a).

You see now that point a is introduced explicitly.
READER. Now everything is clear,
AUTHOR. Relation (3) (and from it, (4)) can be obtained
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for every continuous function; the monotonicity of a function
is not a necessary condition. Consider a function f (x) whose
graph is plotted in Fig. 47. We choose a point x and wish
to prove that for any e > 0 there is 6 > 0 such that

IA~~x) - f (x) I< e (5)

for all ~x satisfying the condition I ~x I < o.
REA"DER. Shall we consider point x as fixed?
AUTHOR. Yes. Increments ~x and, correspondingly,

~S (x), are always considered for a definite point x,
So we take an arbitrary number B > 0 (shown in the

figure). As f (x) is a continuous function, there is a number
o> 0 such that

I f (x + ~x) - f (x) I < e (6)

for all ~x satisfying the condition I ~x I < o. This number B
is the one we were to find.

Indeed, let us choose, for definiteness, that ~x > 0 but
specify that ~x < 6. The area of the curvilinear trapezoid
shaded in Fig. 47 will be denoted by ~S (x) (this trapezoid
is bounded by the graph of the function f (x) over the interval
[x, x + ~x]). Inequality (6) yields (see the figure):

[/ (x) - e] ~x < ~S (z) < [f (x) + e] ~x
or

AS (z)
[/ (x) - 8] < --x;- < If (z) +e]

or

( ~S (z) )-8< A;--!(x) <e
or, finally.

IA~~x) - f (x) I< €

which is what we wanted to prove.
You see that a function / needn't be monotonic: relation

(3) (and with it, (4» is easily generalized to the case of an
arbitrary continuous function [,

Now let us turn again to Fig. 44 that gives a family 'if
graphs of the antiderivative F (x) = -cos x + C for t~
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function t (z) = .sin x. Indicate which of these graphs
(which antiderivative) stands for 8 (x) in each of the follow-

y

f(x) +e __-------r""'"""T""""'Tr----r-

f(x) .._---+-::::I.-J'AI...........

f(x) -e e--_~~H--------"l~....a-

o a x
26

Fig. 47

ing three cases: (a) a = 0, (b) a = ~ , and (c) a = rr.
READER. The question is clear. I denote the sought

functions by 8 1 (X), 8 2 (z), and 8 3 (z), respectively. These

Fig. 48

functions are plotted in Fig. 48. Obviously, we can write

Sdx)=F(x)-F(O), S2(x)=F(x)-F(~),

S3 (x) = F (x)- F (jt)

10-01~73
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A.u'rHOR. Correct. It is important to underline that in
each of the above three equalities the function F (x) is a
function chosen arbitrarily from the family of antideriva­
tives of t, shown in Fig. 44.~

READER. It looks as if whatever the selected antideriv­
ative of the function f is, the difference between its values
at two points depends only on the choice of these points but
not on the choice of a specific antiderivative.

AUTHOR. You have pointed out a property of principal
significance. It is so important that deserves a special dia­
logue.

DIALOGUE TWELVE

INTEGRAL

AUTHOR. We know already that the difference between
the values of an antiderivative at two arbitrary points
depends only on the choice of these points (and, evidently ~

on the type of the initial function f (x)). As these two points
we choose points a and b, that is, consider an increment of
an antiderivative, F (b) - F (a), This increment plays a
very important role among the tools of calculus; it is called
the integral.

Defin i tion:
The increment 0/ an antideriuatiue F of a function t, i,e.

F (b) - F (a), is said to be the integral of f from a to b.
The notation of the integral is:

b

~ f (x) dx
a

(it reads: "integral of / of x, dx, from a to b"). The numbers a
and b are the lower and upper limits of integration. The
function f is said to be integrand, and x the integration var~

able.
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Consequently, if F is one of the antiderivatives of the
function t, then the definition of an integral states that

b

Jf (x) dx = F (b) - F (a)
a

(1)

Formula (1) is known in the literature on mathematics as
the Newton-Leibnitz formula. Remember that F here is an
arbitrary antiderivative of the function f.

y

x

s

Fig. 49

READER. As far as I understand, the integral of the
function f from a to b is precisely the area of the curvilinear
trapezoid bounded by the graph of the function f (x) over
the interval [a, b]. Is that right?

AUTHOR. Absolutely. The expression

b

1f (x) dx
a

is nothing less than the area of this geometrical figure.
Figure 49 shows three cases plotting different integrands:

(a) f (x) == 2x, (b) f (x) = x2
, (c) f (x)===V"X

10*
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The limits of integration are chosen identical in all the
three cases: a = 1, b == 2. The corresponding areas of the
curvilinear trapezoids are shaded in the figure:

2

8 t = J2x dx
1

2

8 3 = ~-Vxdx
1

The numbers 8 1,82 , and S3 are different because the inte­
grands f (x) are different.

We thus find that the expression

b

Jf (x) dx
a

works as a functional (recall Dialogue Four). You "input" in
it a function t, and it "outputs" a number S.

By the way, you can easily find how this functional works.
To achieve this, use formula (1) and take into account that
the antiderivative of the function f (x) == 2x is F (x) =
= x~ + C, that of f (x) = x2 is F (x) = ~ x3 + C, and

that of f (x) = Vi is F (x) = ~ x Vi + C.

The standard notation is: F (b) - F (a) = F (x)lg. There­
fore,

2

~ 2xdx= X21:= 4-1 = 3
1

2

Jx2dx = ~ x31~= ~ (8-1)= ~
1

2

~-Vx dx= ; x Vxl:=: (2V2 -1)
1



Integral

With the function 2x at the "input" of the functional
2

j f (x) dx, we obtain at the "output" the number 3; with x2

1

!I

f

Fig. 50

x

y

1

at the "input", we obtain at the "output" the number ~ ;

"and with Vi at the "input", we obtain at the "output" the
2 lr-

number -:3 (2 V 2 - 1).

READER. I see that we can rather easily find the areas
of various curvilinear trapezoids!

AUTHOR. More than only curvilinear trapezoids. For
instance, try to find the area of the figure shaded in Fig. 50.

READER. This area is the difference between the areas
of two curvilinear trapezoids:

1 1

s= ~ ¥Xdx-l x2dx

Therefore,

S = ~x Vi1
1
~-!.- Xl It= ~~ -!.-=-!.-

3 0 3 0 3 3 3

AUTHOR. Correct. Consider another example. Find the
area of ' the shaded figure in Fig. 51.

READER. The graphs of the functions sin x and cos x

intersect at the point x = ~ . Consequently, one has to

use the antiderivative of the function sin x over thointerval
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( (I, : J' and that of the function cos x over the interval

[~, ~J Hence,

n: n
4:2 ~ n

S = ) sin x dx + ~ cos x dx = - cos x IT + sin xI:
o n 0_

4 4

= - (cos : - COS 0) + (sin ~ - sin ~ )

( yz ) ( Y2) V-==- -2-- 1 + 1--2- ~2- 2

AurrHOR. Perfectly right. Now we shall discuss one
"fine point", returning to formula (1) and rewriting it in
the form

x

) j(t) dt = F (x) - F (a)
a

(2)

What has been changed by this rewriting?
READER. First, we have replaced the constant upper

limit of integration (the number b) by the variable limit of
integration (the variable x). Second, we have substituted the
integration variable t for the integration variable x.

AUTHOR. Only the first of these changes is significant.
The second (the substitution of the integration variable) is
of no consequence. It is easy to see that the formulas

b b b b

) I (x) dx, ) f (t) dt, ~ fey) dy, J f(z)dz
a a a a

are equivalent since all the four give F (b) - F (a). So it
does not matter what symbol is used for the int.egration
variable in each particular case.

READER. Why, then, did you have to substitute the ~
variable t for the integration variable x in (2)?
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AUTHOR. Only not to confuse the integration variable
with the variable upper limit. These are different variables
and, of course, must be denoted by different symbols.

The expression

xrf (t) dt
a

is called the integral with a variable upper limit. It is im­
portant that in contrast to the expression

b

) f(t)dt
a

this expression yields not a number but a function. According
to (2), this function is F (x) - F (a).

b

READER. But if the ) 0 dt "black box" is a junctional,
a

x

then the J0 dt "black box" is an operator? (I have used
a

here our symbolic notation of "windows" into which the
function f must be input).

AUTHOR. Correct. This is immediately clear in the
following unusual table.

Table 3

2 x

f (x) Sn»dt ~ l(t) dt
1 1

2x 3 x2 - 1
3x 2 7 x 3 - 1
4x 3 15 x 4 - 1
5x4 31 07&-1

6x5 63 x 6 "'-1
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The second and third columns of this table SllOW what the
2 x

"output" of the two "black boxes", J f (t) dt and J f (t) dt,
1 1

i5 when the "input" is a function I of the first column.
x

The integral f (...)dt is thus indeed an operator. Note
a

that its effect on a function is opposite to that of the operator

:x (we discussed this operator in Dialogue Nine).

Indeed, take a function" I and first apply to it the ope-
x x

rator ) [(... ) dt and then the operator :x :r:x ()f (t) dt ) .
a . ~

This gives

:c

:x C\ f (x) dt) = ;x IF (x) -F (a)) = :x F (x) = f (x)
a

i.e. we obtain the initial function I.
READER. We could apply these operators to the function

in the reverse order, couldn't we?'
AUTHOR. Yes, we could. This means that the expression

x

J(:, f (t) ) dt
a

also gives the initial function I. At least, to within a con­
stant term.

READER. Can it be verified?
AUTHOR. Yes, and very easily. What function is the

antiderivative for I' (x)?
READER. Obviously, the function I (x) + c.
AUTHOR. Therefore,

x x

) (:, f(t)) dt=) f'(t)dt=f(x)-f(a) ~
a a
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READER. Will it be correct to say that while the operator

d: performs the operation of differentiation, the operator
xI (. ·.) dt performs the operation of integration?

a
AUTHOR. Precisely. It might seem that the topic is

exhausted, but the discussion would be incomplete without
a clarification of one essential "subtlety". Throug-hout this
dialogue we operated with something- we called "the area of
a curvilinear trapezoid" and found that this is the meaning
of the integral. But what is the "area of a curvilinear
trapezoid"? .

READER. But surely this is self-evident. One glance at
the figures is enough.

AUTH·OR. Look, for instance, at Fig. 45. It shows a shaded
geometrical figure called a curvilinear trapezoid. But it
says nothing about the area of the trapezoid.

READER. The area is a standard concept in geometry.
AUTHOR. No objections. But do not forget that in

geometry you normally a-pply this concept to a well-defined
set of figures: triangles, trapezoids, etc. And you remember
that difficulties arise when you try to determine the area
of a circle. By definition, the area of a circle is the limit of
the sequence of the areas of regular polygons inscribed in,
or circumscribed around, the circle, for an infinitely in­
creasing num.ber of the sides of the polygon.

READER. Presumably, the area of a curvilinear trapezoid
can also be defined as the limit of a specific sequence of areas?

AUTHOR. Yes, this is the normal approach. Consider a
curvilinear trapezoid bounded by the graph of a function
f (X) over the interval [a, bl (Fig. 52). Let us subdivide the
interval [a, bl into n subintervals of identical length t!x =
== b-a (in Fig. 52 n = 10). The end points of these

n
subintervals are denoted from left to right:

Xo == a, Xl' x 2 , xs, •• _, Xn, = b

On each Az-Iong interval, used as a base, we construct a
rectangle of altitude f (X1l.-1), where k is the subscr-ipt of
the right-hand end of this subinterval (this choice is arbitra-
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ry; the left-hand end would do equally well). The area of
this rectangle is

/ (Xk-l) ~x

Consider now a sum of the areas of all such rectangles (this
total area is shaded in Fig. 52):

Sn (a, b) ==/ (xo)~x+ / (Xi) ~X+ .•. +/ (Xn-t) ~X

= [/ (Xo) + f (Xt) + ... + f (Xn-t)] b-an

As the function f (x) is continuous, the ensemble of all
these rectangles for sufficiently large n (sufficiently small ~x)

g

x

Fig. 52

will be very close to the curvilinear trapezoid in question,
and, at any rate, the closer the larger n is (the smaller ~x).

I t is, therefore, logical to assume the following
Defint tion:
The sequence 0/ sums (Sn (a, b)) with n tending to infinity

has the limit said to be the area 0/ the given curvilinear
trapezoid S (a, b):

S (a, b) = lim Sn (a, b)
n-+oo

(3)

READER. The area S (a, b) of a curvilinear trapezoid was
b

shown earlier to be the integral ~ f (x) dx; consequently,'
a
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definition (3) is a new definition of the integral:

b

r f (x) dx= lim S; (a, b)J n-+oo
a

155

(4)

Do you agree?
AUTHOR. Yes, certainly. And note that definition (4)

is independent, that is, it is not based on the concept of the
antiderivative.

Historically, by the way, the integral appeared as (4),
the fact that explains the origin of the standard notation.
Indeed, if definition (4) is rewritten in a slightly different
form

b n

j f (x) dx = l~m (~ / (Xk-f) !1x )
a n 00 h=l

(5)

you may notice a certain similarity in the form of the left­

and right-hand sides of this equality. The very symbol \

(the integral sign) originated from the letter S which was
often used to denote sums. The product f (Xk-l) dx evolved
to f (x) dx. In the 17th century mathematicians did not use
the concept of the limit. They treated integrals as "sums of
an infinitely large number of infinitely small addends",
with f (x) dx being these infinitesimal addends. In this sense,
the area of a curvilinear trapezoid S was defined as the
"sum of an infinitely large number of infinitely small areas
f (x) dx". .

You realize, I hope, that such concepts were obviously
lacking mathematical rigorousness.

READER. This illustrates what you termed on many
occasions "subjective impressions".

AUTHOR. It must be clear to you by now that a strict
mathematical interpretation of the concept of the integral
is possible only if the limit transition is used. I have already
emphasized that the limit transition is the foundation of
calculus. If the concept of the limit is avoided ("limit of
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sequence" or "limit of function"), neither the derivative
nor integral can he treated rigorously.

READER. But the integral can be defined without resort­
ing to (4). It is quite sufficient to use the Newton-Leibnitz
formula (1). And this formula does not involve any limit
transitions.

AUTHOR. But this formula involves the antiderivative.
And the antiderivative involves, in the long run, the con­
cept of the derivative, that is, the unavoidable limit tran­
sition.

By the way, your last remark makes me touch the aspects
of introducing the integral in the literature. Two methodical­
ly distinct approaches are possible.

The first approach (the one used in those dialogues) assumes
tha t t.he operation of integration is directly introduced as
an operation inverse to differentiation. The Nowton-Leib­
nitz formula (1) then serves, in fact, as the definition of the
integral: it is defined as an increment of the antiderioatiue.

The second approach assumes that the operation of inte­
gration is introduced as an independent operation, the inte­
gral being defined as the limit of a sequence formed of the
appropriate sums (see formula (4)). This approach corres­
ponds to the historical progress in mathematics; indeed,
originally integral calculus was evolving independently of
differential calculus. The profound relationship between
the two branches of mathematics had been discovered only
by the end of the 17th century when the main problems of
the two were understood as mutually inverse. The Newton­
Leibnitz formula (1) was precisely a reflection of this relation­
ship: it was demonstrated that the integral is none other
than an increment of the antiderivative.

DIALOGUE THIRTEEN

DIFFERENTIAL EQUATIONS

AUTHOR. You are, certainly, familiar with various t.ypes
of equations: algebraic, logarithmic, exponential, trigonfj­
metric. They have a common feature: by solving these
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equations one arrives at numbers (these are the so-called
"roots" of equations). Now we are going to deal with a very
differen t type of equations, namely, equations whose solu­
tions are functions. Among the equations subsumed into
this class are the so-called differential equations.

Consider a function f (z). We denote its first derivative
(the first-order derivative) by I' (x), its second derivative
by I". (x), its third derivative by jm (x), and so on.

Definition:
A differential equation is an equality relating a; j (z), f' (z),

j" (z), etc. A solution of a differential equation is a junction
I (x).

READER. So far you have never mentioned the concepts
of second derivative or third derivative.

AUTHOR. True, and this is what we are going to do right
now.

READER. It is readily apparent that since a derivative
Ii (x) is a junction, it can be differentiated, thus yielding
a derivative of the derivative; I guess, this must be the second
derivative of the original function f (x).

AUTHOR. By differentiating the function j (x) n times
o(of course, if this can be done with the given function), we
obtain a derivative of the nth order (in other words, "the
nth derivative"). 'Thus, the third derivative of f (x) is,
obviously,

r (z) = :x [d: (:x f (z) ) ]

Note that we are, in fact, familiar with the second deriv­
ative. As the function f (x) is the first derivative of an anti­
derivative F (x) [f (x) === F' (x)I, the function i' (x) can be
considered as the second derivative of the antiderivative
F (x):

I' (x) = P" (x)

READER. We know that the derivative of f (x) (to be
exact, its first derivative) is the rate of change of this func­
tion. Its magnitude is reflected in the slope of the graph of
the function f (x) at each point and is measured as the
tangent of the angle between the tangent line to the graph
and the abscissa axis. Could anything of this type be said
about the second derivative of I (x)? 0
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AUTHOR. Evidently, the second derivative of / (x)
characterizes the rate at which the rate 0/ change 0/ the june­
tion changes with x, so that it is a finer characteristic of the
behaviour of the initial function. Look at Fig. 53. What
is the difference between functions /1 and I ~ at point x = xo?

!/

o

-------

Xo

Fig. 53

x

!I

o XQ

Fig. 54

x

READER. They have different first derivatives. I can
write:

/1 (xo) == /2 (xo), /1 (xo) =1= /2 (xo)

AUTHOR. To complete the picture, note that at the point
in question the derivatives differ both in magnitude (the
figure clearly shows that I 12 (xo) I < I it (xo) I) and in sign:
I~ (xo) > 0, I~ (xo) < O. We say, therefore, that the function
/1 increases (and rather rapidly) at point x = Xo, while the
function /2 decreases (and comparatively slowly).

Now turn to Fig. 54. We observe that not only the values
of the functions /1 and /2 but also the values of their first
derivatives coincide at point x == xo:

However, the graph shows a difference in the behaviour of
the functions 11 and 12 in the vicinity of Xo. Try to describe
this difference.

READER. In the vicinity of Xo the graph of the function
11 is convex downward, while that of the function 12 is con-
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vex upward. Besides, the curvature is greater for the func­
tion 12 than for 11.
AUTH~OR. These are precisely the finer features of the

behaviour of I (x) close to x = xo, and they can be identified
by finding the value of the second derivative at Xo (by cal­
culating the value of I" (xo))' In the case shown in Fig. 54
we have

I; (xo) =1= 1'2 (xo)

You will immediately see that 1'1 (xo) > 0 and j'2 (xo) < O.
Indeed, the slope of 11 at Xo steadily increases; hence, the
slope of 11 (x) is positive. On the contrary, the slope of 12
at Xo steadily decreases; hence, the slope of 12 (x) is negative.
I t is quite obvious (see the figure) that

I 11 (xo) I < I 1'2 (xo) I
READER. In all likelihood, the third derivative of

I (x), i.e, I'" (xo), is a still finer characteristic of the behavi­
our of I (x) at x = Xo' Am I right?

AUTHOR. Precisely. Unfortunately, it is virtually im­
possible to illustrate this sim.ply enough on a graph of the
function I (x).

I think that it is enough for a discussion of derivatives of
different orders; let us move on to differential equations.
Note, first of all, that an equation of the type

I' (x) = cp (x) (1)

where cp (x) is a given function, can be considered as the
simplest particular case in the theory of differential equa­
tions; its solu tion is obtained by a straightforward in­
tegration.

Two simple (and, incidentally, very frequently encoun­
tered) types of differential equations are

I' (x) = pi (x)

I" (x) = - ql (x) (q> 0)

where p and q are constants.

(2)

(3)



160 Dialogue Thirteen

Equation (2) is called the differential equation of exponential
growth (decay), and equation (3) is the differential equation
of harmonic oscillations.

Let us look at these equations more closely. We begin
with the differential equation of exponential growth (decay).
What conclusions can be drawn from the form of this equa­
tion?

READER. The form of equation (2) shows that the rate
of change of the function f (x) coincides with the value of the
function, to within a constant factor p ; at each point x,
In other words, the function I (x) and its first derivative
j' (x) coincide, to within the mentioned factor, at each
point x.

AUTHOR. Please, recall Dialogue Ten and tell rnewhat
functions could serve as solutions of this equation. What
are the functions for which the derivative coincides with the
function itself? In other words, what functions are trans­
formed by differentiation into themselves?

READER. This property is typical of the exponential
function aX for a == e. I t is called the exponential curve
and is often denoted by exp (x). We have found in Dialogue
Ten that

ddi" exp (x) = exp (x)

AUTHOR. Correct. This means that the function f (z) =
= exp (px) must be taken as a solution of the equation
j' (x) = pI (z). Indeed,

d: exp (px) = ( ~ exp (g») :x (px) = p exp (g) = p exp (px)

For this reason equation (2) is called the differential
equation of exponential growth (decay). Obviously, we have
growth if p > 0, and decay if p < O.

READER. Apparently, any function

f (x) = C,~exP£(px)

where C is an arbitrary constant factor, is a solution of this
equation, because the constant C is factored' out of the de­
rivative.

AUTHOR. You are absolutely right.
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A solution of a differential equation I' (x) = pi (x) i-s a
family of functions

f (x) = C exp (px)

with an arbitrary constant factor C (usually referred to as the
integration constant).

o :<0

Fig. 55

Some of functions C exp (px) are plotted in Fig. 55 (we
have specified p > 0).

The formula / (x) = C exp (px), describing the whole
family of functions, is called the general solution of a given
differential equation .. By fixing (i.e. specifying) a value of C,
one selects (singles out) a particular solution from the general
solution.

READER. How can it be done?
AUTHOR. Oh, this is elementary. It is sufficient to pre­

scribe a specific value to the function f (z) at a certain point.
For example, let us prescribe .

f (xo) = Yo

In this case we are interested in a single curve among the
curves of the whole family (see Fig. 55; the selected curve
is shown by a thicker solid line). This curve is a graph of the
function C exp (px) for which C exp (pxo) = Yo, and, there­
fore, C = Yo exp (-pxo). Consequently, the particular solu-

1/2 11-01473
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tion we are seeking for has the form

I (x) = Yo exp [p (x - xo)] (4)

READER. We thus obtain that in order to find a specific
(particular) solution of the differential equation I' (x) =
= pi (z), it is necessary to supplement the equation with an
additional condition: I (xo) = Yo.

AUTHOR. Precisely. This condition is called the initial
condition.

Let us turn now to differential equation (3):
I" (x) = -qj (x) (q > 0)

READER. In this case the value of the function f (x)
coincides at each point not with the rate of change of the
function but with the rate of change of its rate of change,
with the sign reversed.

AUTHOR. In other words, the function f (x) is equal, to
within a constant factor, to its second derivative I" (z),
Recall what functions have this property.

READER. Lguess that the solutions of equation (3) are
functions sin x or cos x.

AUTHOR. To be precise: sin (l!q x) or cos CV-qix).
Indeed,

:x (:x sin eVq x) ) = Vq :x cos (V'q x) = - q sin CVq x)
or

d: (:x cos (l!q x) )= - V'q d: sin (V'q:x) = - q cos (vq z)

This is why the equation in question is called the differential
equation of harmonic oscillations.

It is easily seen that the general solution of equation (3)
can be written in the form

t (x) = Ct sin (V'q~)+ C2 cos (V'q x) (5)

where C1 and C2 are arbitrary constants (integration con­
stants). Indeed,

I' (x)=lfqCtcoseVqX)- V'qC2 sin (1fqx)

I" (x) = -q [C i sin rVq x) + C2 cos (V'q x)] = -ql (x)
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READER. But this gives us two integration constants
instead of one, as in the preceding case.

AUTHOR. Yes, and the reason is that differential equation
(3) contains the second derivative. Hence, it is necessary to
integrate twice in order to obtain the function f (x). And.
we know that each integration leads to a family of anti­
derivatives, that is, generates an integration constant. In
the general case, the number of integration constants in the
general solution of a specific differential equation equals
the maximum order of derivative in this equation. The general
solution 9f equation (2) has a single integration constant
because it contains only the first derivative of the sought
function and does not involve derivatives of higher order.
The general' solution of equation (3) has two integration
constants because the equation contains the second-order
derivative of the sought function and no derivatives of higher
order.

READER. And how do we write the initial condition for
equation (3)?

AUTHOR. One has to prescribe at a point x = Xo a value
not only to the sought function but also to its first derivative.
In this case the initial conditions are written as follows:

t (xo) = 10' I' (xo) = 10 (6)
READER. And if a differential equation involved the

third derivative, and the general solution contained, as a
result, not two but three integration constants?

AUTHOR. In this case the initial conditions would pre­
scribe values to the required function, its first derivative,
and its second derivative at a point x = xo:

f (xo) = to, I' (xo) = fo, I" (xo) = fo
But let us return to the general solution of equation (3)-.

It is usually written not in form (5) but in a somewhat
different form. Namely, either

or
t (x) = A sin (Vq x +a) (7)

f (x) = A cos (1fq x + 13) (7a)

Formula (7a) is obtained from (7) if we set a == ~ +i "
11*
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(8)

In what follows we shall use notation (7). In this form
the role of the integration constants C1 and C2 in general
solution (5) is played by constants A and a. Formula (5)
is easily transformed by trigonometry to (7), by using the
formula for the sine of a SUID. Indeed,

A sin (Vq z -} a) = A sin <Vq x)cos a+ Acos (Vq x) sin a,

so that
C1 = A cos a, C2 = A sin a

Now try to obtain from general solution (7) a particular
solution satisfying initial conditions (6).

READER. We shall obtain it by expressing the constants
A and a via to and t~. Equality .(7) yields an expression for
the first deri vati ve of t. (z):

I' (x) = A Vq cos (Vq x+ ex)
In this case initial conditions (6) take the form

sin(Vqxo+a;)= ~ )
1/- ) jf t

COS (v q Xo + a; = A V-q J
System (8) must be solved for the unknown constants A
and cx. Squaring both equations of the system and summing
them up, we obtain (taking into account that sin l " +
+ cos2

" = 1)

This yields

(9)

Dividing the first equation of system (8) by the second,
we obtain

tan (Vq Xo +a;) = ~! l!q

From (10) we can find constant ct.

(10)
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The constants A and a, expressed in terms of 10 and 10'
must be substituted into (7); the result is the particular
solution satisfying initial conditions (6).

AUTHOR. Assume that initial conditions (6) are

tan c e- U

f (0) = 0, I' (0) = 10
READER. In this case formulas (9) and (10) yield

f~
A= yq'

(11)

(12)

If tan a == 0, then a = nn, where n = 0, ±1, ±2,
And since, first, sin CVqx + a) = sin CVq x) cos.c +
+ cos (V qx) sin a and, second, in this particular case
sin a ~ 0 and cos a = ±1, we conclude that either

f(x)= ;-q sin(Vqx)

or

f (z) = - ;q sin CV;Z x)

AUTHOR. The second variant is unacceptable because
it violates the condition I' (0) = I~.

READER. Hence, the required particular solution is

f (x) = ;lq sin (V(j x) (13)

AUTHOR. Very good. Now consider the initial conditions
in the form

t (0) = 10' I' (0) = 0 (14)

READER. Formula (9) yields A = 10. However, for­
mula (10) is no help in this case since 10 = o.

AUTHOR. I advise you to use the relation derived earlier,
namely, the second equation in system (8). In this case it
takes the form cos a = O.

READER. We obtain then

cos ex, ='0 (t5)
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This yields tX = ; + nn, and therefore

t (x) = to sin (li-q x + ; + 3tn) = to cos (Vq x+ 3tn)

AUTHOR. It can he readily found that the particular
solution satisfying initial conditions (14) is of the form

(16)

Pay attention to the periodicity of the fun ctions repre­
senting solutions (general or particular) of differential
equation (3). .

READER. Relation (13) or (16) clearly shows that the
period of these functions is

2n
Xt = yq (17)

AUTHOR. Right. Now I want to dwell on one feature of
principal significance. The point is that the differential
equations discussed above describe quite definite processes,
and. this is especially clear if we use time as the independent
variable. Denoting this variable by t, we can rewrite equa­
tions (2) and (3) in the form

I' (t) - pi (t) = 0

I" (t) + st (t) = 0 (q > 0)

(2a)

(3a)

Equation (2a) describes a process of exponential growth
(p > 0) or exponential decay (p < 0). Equation (3a) de­
scribes a process of harmonic oscillations with the period

2n
T = yq'

READER. Would it be correct to say that any differential
equation describes a process? I assume that I is a function
of time.

AUTHOR. Quite true. This is a point worthy of maximum
attention. In a sense, it reflects the principal essence of
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differential equations. Note: a differential equation relates
the values assumed by a function and some of its derivatives
at an arbitrary moment of time (at an arbitrary point in
space), so that a solution of the equation gives us a picture
of the process evolving in time (in space). In other words, a
differential equation embodies a local relation (a relation at
a point x, at a moment t) between f, f', f", ... , thus yielding
a certain picture as a whole, a certain process, an evolution.
This is the principal idea behind the differential equations.

READER. And what is the role played by initial con­
ditions?

AUTHOR. The role of initial (and boundary) conditions
is obvious. A differentia I equation per se can only' describe
the character of evolution, of a given process. But a specific
pattern of evolution in a process is determined by concrete
initial conditions (for example, the coordinates and velocity
of a body at the initial moment of time).

READER. Can the character of the process "hidden" in a
differential equation be deduced simply from the form of
this equation?

AUTHOR. An experienced mathematician is normally
able to do it. One glance at equation (2a) is sufficient to
conclude that the process is an exponential growth (decay).
Equation (3a) is a clear message that the process involves
oscillations (to be precise, harmonic oscillations). Assume,
for example, that differential equation has the following
form

f" (t) - pf' (t) + qf (t) = 0 (p <: 0, q :>0) (18)

(compare it to equations (2a) and (3a)). We shall not analyze
this equation in detail. We only note that what it "hides"
is not a harmonic oscillatory process but a process of damped
oscillations. It can be shown (although we shall not do it)
that in this process the amplitude of oscillations will steadily
diminish with time by the exponential law exp (pt).

READER. Does' it mean that equation (18) describes a
process which combines an oscillatory process and a process
of exponential decay?

AUTHOR. Precisely. It describes an oscillatory process,
but the amplitude of these oscillations decays with time.
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DIALOGUE FOURTEEN

MORE ON DIFFERENTIAL
EQUATIONS

(1)

AUTHOR" All the preceding dialogues (with an exception
of Dialogue Eight) left out, or very nearly so, any possible
physical content of the mathematical concepts and symbols
we were discussing. I wish to use this dialogue, which con­
cludes the book, to "build a bridge" between higher mathe­
matics and physics, with differential equations as a "build­
ing material". We shall analyze differential equations of
exponential decay and those of harmonic oscillations.
filling them with a specific physical content.

READER. In other words, you suggest discussing specific
physical processes?

AUTHOR. Yes, I do. I emphasize that differential equa­
tions play an outstanding role in physics. First, any more or
less real physical process cannot, as a rule, be described
without resorting to differential equations. Second, a typical
situation is that in which different physical processes are
described by one and the same differential equation. It is said
then that the physical processes are similar. Similar physical
processes lead to identical mathematical problems. Once
we know a solution of a specific differential equation, we
actually have the result for all similar physical processes
described by this particular differential equation.

Let us turn to the following specific problem in physics.
Imagine an ensemble of decaying radioactive atomic nuclei.
Denote by N (t) a function describing the number of atom ic
nuclei per unit volume which have not decayed by the
moment of time t. We know that at the moment t = to
the number of nondecayed nuclei (per unit volume) is No,
and that the rate of decrease in the number of nondecayed
nuclei at the moment t is proportional to the number of
nondecayed nuclei at the given moment:

I -N'(t)=fN(t)
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Here ~ is a proportionality factor; evidently, 't" has the
dimension of time; its physical meaning will be clarified
later.

We are to find the function N (t)•.
This is our specific physical problem. Let us look at it

from the mathematical viewpoint.

N

a
Fig. 56

t

READER. Equation (1) is a differential equation of type

(2a) from the preceding dialo~e, in which p = - .! .
't

The initial condition in this case is N (to) = No- By using
result (4) of the preceding dialogue, we immediately obtain

N (t) =Noexp ( -; (t-to) ) (2)

AUT.HOR. Correct. The formula that you have written,
i.e, (2), describes the law of radioactive decay; we find that
this decay is exponential. The number of nondecayed nuclei
decreases with time exponentially (Fig. 56).

By taking the logarithm of equality (2) (using natural
logarithms), we obtain

t-toInN(t)=lnNo---'t

This yields
t-to't=---=---

1 No
n N (t)

t2-0i413
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The constant 't is, therefore, such a time interval during
which the number of nondecayed nuclei diminishes by a
factor of e (i.e. approximately by a factor of 2.7); indeed, in

this case In ~:) = In e = 1.
Let us turn now to a different physical problem. Let a

light wave with intensity lobe incident perpendicularly at
a boundary (the so-called interface) of a m.edium; the wave

x

;h ~~~~ ## ~

~ ~f7 ff

Fig. 57

propagates through the medium with gradually attenuating
intensity. We choose the x-axis as the wave propagation
direction and place the origin (point x = 0) on the interface
(Fig. 57). We want to find I (z), that is, the light intensity
as a function of the depth of penetration into the medium
(in other words, on the path traversed within this medium).
We also know that the rate of attenuation at a given point x
(i.e, the quantity -I' (x» is proportional to the intensity
at this point:

~ - I' (x) = 1\1 (x) I (3)

Here 11 is the proportionality factor whose dimension is,
obviously, that of inverse length; its physical meaning will
be clear somewhat later.

This, therefore, is the formulation of the physical problem.
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READER. It is readily apparent that, as in the preceding
case, we deal here with a differential equation of exponential
decay. The initial condition is I (0) == 1o- By using result
(4) of the preceding dialogue, we obtain

1 (x) = 10 exp (-rtx) (4)

AUTHOR. Formula (4) describes Bouguer's law, well
known in optics: as light penetrates the matter, its intensity

j OOOOD~OODOD~
~ x=o ~ ~,

Fig. 58

decays exponentially (see Fig. 57). We readily see that the
constant rt is a quantity inverse to the length along which
the light intensity diminishes by a factor of e. The constant
11 is called the linear absorption coefficient.

Note that results (2) and (4) describe two different physical
problems from different fields of physics. We describe here
two different physical processes. Nevertheless, the mathemat­
ical nature of these physical processes is the same: both
are described by the same differential equation.

Let us consider a different physical problem. Assume that
a ball with mass m, attached to fixed walls by elastic springs,
vibrates along the x-axis (Fig. 58). The origin x = 0 is
chosen in the position in which the ball is at equilibrium,
that is, half-way between the walls. The motion of the ball
is governed by Newton's second law:

rna = F (5)

where a is acceleration, and F is the restoring force. We
assume that

F = -kx (6)

where k is the elasticity factor characterizing the elasticity
of the spring.

We shall consider the displacement of the ball from the
equilibrium position (i.e. the quantity x) as a function of
time, x (t). This is the function we want to find.

12.
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We remind the reader that accelerau .ill is the second
derivative of a function which describes path as a function
of time: a = ZU (t). Consequently, we can rewrite (5),
taking into account (6)" in the form

mx" (t) + kx (t) = 0
or

j :1:" (t) +';:1: (t) = 0 (7)

READER. 'I'his is a differential equation of type (3a) of

the preceding dialogue "provided that q = ~ .
m

AUTHOR. This means that the general solution must be
of the form

x(t)=Asin (V ~ t+a) (8)

We thus find that the ball in the problem vibrates harmonic­
ally around its equilibrium position x = O. The parameter A
is, obviously, the amplitude of vibrations. The parameter ex
is called the initial phase of vibrations. Recalling relation
(17) of the previous dialogue, we conclude that the period
of vibrations is

T= 2n V' : (9)

Instead of the period T, the so-called angular frequency to

is often used: w = ";. Formula (9) yields

w=V ~ (10)

By using (10), we rewrite general solution (8) in the form

x (t) = A sin (rot + ex) (11)

READER. And what about the initial conditions in this
case?

AU1'HOR. Assume that the ball is at rest at t < O. By
setting specific initial conditions at t = 0, we choose a
method by which vibrations are initiated at the moment
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t = O. For example, let the initial conditions be given by
relations (11) of the previous dialogue:

x (0) = 0, x' (0) = Vo (12)

This means that at the moment t = 0 the ball which is at
the equilibrium position (x'= 0) starts moving at a veloc­
ity Vo. According to relation (13) of the previous dialogue,
we obtain the following particular solution:"

x'(t) = ~ sin (rot)
. 6)

(13)

Now try to discern the physical meaning of the initial
conditions of type (14) of the previous dialogue. .:~

READER. These conditions have the form:

xl(O) = X o, r- x' (0) =10 (14)

This means that at the initial moment t = 0 the ball was
displaced from the equilibrium position by x = Xo and let
go. The corresponding particular solution, following from
relation (16) of the previous dialogue, takes the form

?'8l~ :~._.-' x·(t) = xo·cos~(j)t) (15)

AUTHOR. In the first case we thus initiate vibrations by
imparting the initial veloeity Vo to the ball at the equilib­
rium position (in this case the amplitude A of vibrations is
vo, and the initial phase ex, can be set equal to zero, in
0)

accordance with (13)). In the second case the vibrations are
initiated by displacing the ball from the equilibrium posi­
tion by Xo and then letting it go ( in this case A = Xo, and
the initial phase a can be set equal to j, in accordance

with (15).
READER. Could we consider a case in which at t = 0

the ball is displaced from the equilibrium position by Xl

and simultaneously given an initial velocity VI?

AUTHOR. Of course, this is one of the possible situations.
Figure 59 shows four vibration modes (four particular solu­
tions) corresponding to four different initial conditions
(four different methods of starting the vibrations of the
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ball):

(1) x(O) ==0, x' (O)==vo;

(2) x (0) == Xo, x' (0) == 0;

in this case A == 5L, a === o.
w

. hl A rrIn t IS case == xo, a ~ 2"" ·

(3) x (0) == Xl' x' (0) == VI (the initial velocity imparted
to the ball has the same direction as the ini tial displace­
ment); in this case A == At, (1, := (1,1 (see the figure).

t

(16)

K-at

Fig. 59

(4) x (0) ==: Xl' x' (0) === -VI (the initial velocity impart­
ed to the ball has the direction opposite to that of the
initial displacement); in this case A == At, a == n - al
(see the figure).

As follows from relation (9) of the preceding dialogue,

A === 1//x2
I (-.!2.) 2

1 Ji 1 1 W

and according to (10),

(17)

READER. I notice that by fixing specific initial con­
ditions (in other words, by initiating the vibrations of the
ball by a specific method), we predetermine the amplitude
and initial phase of the vibrations.
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c

Fig. 60

AUTHOR .. Precisely. This is clearly shown in Fig. 59.
By the way, the same figure shows that the period of vibra­
tions (their frequency) remains constant regardless of the
initial conditions.

To summarize, we note that a harmonic oscillation is
characterized by three parameters (see (11»: the amplitude
A, initial ,phase (x, and frequency
co, The first two parameters are
determined by the choice of ini­
tial conditions, and the last para­
meter is independent of them.

The above-described process
of vibrations is one of the me­
chanical processes. Let us turn­
now to a process of an essen­
tially different physical na­
ture. We shall analyze the
motion of electric charges in a circuit consisting of a capaci­
tor with capacitance C and a coil with inductance L (Fig. 60).

.Let the capacitor plates have a charge Q (t) at a moment t;
correspondingly, the potential difference between the capac-
itor plates will be Qg) . If the current in the circuit at the

moment t is i (r), then the potential difference generated in
the coil is -Li' (t). We know that it must be balanced out
by the potential difference across the capacitor plates:

-Li' (t) = Q~t) (18)

Let us differentiate relation (18). This gives

-Li"(t)= Q'(t) (19)
C '

Now we shall take into account that

Q' (t) = i (t)

(current intensity, or simply current, is the rate of change
of charge). As a result, equation (19) can be rewritten in
the form:

- Li" (t) = ~ i(t)
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r (t) + L~ i (t) = 0 (20)

The resultant differential equation is quite familiar, isn't it?
READER. This is a differential equation of type (3a)

of the _preceding dialogue provided that q = Lie. We con­
clude, therefore, that the process in the circuit is harmonic.

AUTHOR. Note, however, that the process is not that of
mechanical vibrations of a ball attached to springs but the
process of electromagnetic oscillations in an electric circuit.

! . READER. As q = ic ' and using relation (17) of the
'previous dialogue, we obtain a relation for the period of
electromagnetic oscillations in the circuit:

(21)

The general solution of equation (20) is then

(22)

AUTHOR. Absolutely correct. TheItwo physical processes,
namely, the mechanical vibrations of a ball attached to
springs and the electromagnetic oscillations in a circuit, are
mathematically similar. They are described by the same
differential equation. Otherwise you couldn't write, nearly
automatically as you did, the period of oscillations (for­
mula (21» and the general solution (formula (22».

In our dialogues we have discussed only two (and rather
simple) types of differential equations: those of exponential
growth (decay) and of harmonic oscillations. And we have
illustrated them with a number of physical processes of
very different kind.
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READER. I guess that the list of different differential
equations, and certainly the list of physical processes de­
scribed by these equations, could be substantially enlarged.

AUTHOR. No doubt. This concludes our discussion of
differential equations. I want to note in conclusion that
differential equations are widely applied not only in physics
but in chemistry, biology, cybernetics, sociology, and
other fields of science as well.



PROBLEMS

1. Find a formula for the nth term from the first several
terms of the sequence:
11111

(a) 11' 2f' sr : 4f' 51' ...

1 ·V - 1 V- 1 ·v-(b) 1, 4' 3, 16' 5, 36"' 7,

(c) 1, - (i)2, (2\)3, - (2.~.4r, ...
3 (6)2 (9' 3 ( 12 )4: (15) 5

(d) 4"' -- 7 ' 10) , - 13 ' 16 '

Answer.
1

(a)Yn=10n+1;

(b) u«> ~n [1-(-1)n)+ 2~2 [1+(-1)n);

( - 1)n+ 1 ( 3n ) n
(c) Yn = (nf)n ; (d) Yn = (_1)n+t 3n+ 1 ·

2. Find the least term of each sequence:
100

(a) Yn=n2-5n+1; (b) Yn=n+-;n

(c) Yn=n+5Sin~n.

Answer. (a) Y2=Y3== -5; (b) Yto=20; (c) Y3= -2.
3. Find the largest term of each sequence:

90n 10n
(a) Yn= n2+9; (b) Yn=1if.

109

Answer. (a) Y3 = 15; (b) Y9 = YiO = 91.
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4. Find which of the sequences given below are monotonic:

(a) Yn==3n2-n; (b) Yn==n2-3n; (c) Yn==7n-n2 ;

(d) Yn= log ( ~ [",

Answer. (a) Increasing; (b) nondecreasing; (c) non­
monotonic; (d) decreasing.

5. There are two sequences (Yn) and (zn) such that 0 ~
~ Yn ~ Zn for all n. The sequence (zn) is convergent
and its limit is zero. Prove that the sequence (Yn) is
convergent to zero.

6. Prove that

(a) lim 2: =0; (b) lim rVn+1- Vn-1)=O.
n~~ n~oo

Hint. In problem (a) transform 2n=(1+1)n=

= [ 1 + n+ n (nz- 1) + ...J> [n+ n (nz- 1) ] > ~2 and

use the theorem proved in problem 5.
In problem (b) transform Vn + 1 - Vn -1 ==

Y Z Y < y Z and use the theorem
n+1+ n--1 11-1

proved above.

7. Find the limits of the following sequences:

Zn+.!.+3 5n2 ( 1+ ~ r
(a) u«> (yn+ny 3)2 ; (b) Yn= .!.-3n2

n

( 1+ ~ )n+(1+ Z~ ) 2n

(c) Yn == 1 1
2+-+-_n Yn

5
Answer. (a) 2; (b) - d e; (c) e; (d) O.
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8. Find the function f (z) if

3f(x-1) - f C-:-X) = 2x.
3 1

Answer. f(x)="4(x+1)+ 4(x+1).

9. Find analytical relations and the natural domains of

the] following! functions: (a) f (1 - z); (b) f G) for

t (z) = log (Zl - f ),

Answer. (a) log (z' - 2z); z < 0, z > 2; (b) log 1-:-t;
0< Ix 1< 1.

10. Analyze the continuity and !differentiability of the
function f (x) = arcsin (sin z) within the limits of the
natural domain of the function.
Answer. The natural domain of the function f (x) is
]-00, 00[; the function is continuous everywhere; it is
differentiable at all points with the exception of points

n 3 5
x = ± 2' + 2' rr, ± 2 rt, · • ..

11. Prove that the 'function f (x) = .yx~ has no derivative
at point x = O.

12. Prove that 3x6
- 5x3 - 30x < 40 if I % I~ 2.

Hint. Find first that the maximum value of the poly­
nomial t (z) = 3zi - 5z3 - 30:: over the interval
[-2, 2] is below 40. To do this, find the values of f (x)
at the end points of the interval [-2, 2] and' at the
points at which the derivative of f (x) is zero (if these
points belong to the indicated interval).

13. Find the maximum and minimum values of the function
f (x) = z - 2 In z over the interval [1, e].
Answer. The minimum value is f (2) = 2 - 2 In 2,
the maximum value is f (1) = 1.

14. Find a point Xo at which the tangent to the graph of the
function f (x) = Xl + 1 is parallel to the straight line
11 = 3x.

3
Answer. Xo = 2.

15. Write the equation of the tangent to the graph of the
function f (x) == x2 - 4z + 5 at point %0 == 1.
Answer. y = -2% + 4.
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(d) / (x) = tan2 x;

(a) / (x) == ;Y'x;

(c) f(x)=Yx2 + 5;

Note. The equation of the tangent to the graph of the
function / (x) at x == Xo is: y == / (xo) + t' (xo) (x - xo),
where t' (xo) is the value of the derivative of the func­
tion at Xo.

16. Find the derivatives of the following functions:
-t

(b) / (x) = x2 + j ;

(e) / (x) = sin! 5x; (f) f (z) == arcsin Yx;
x~-1 1+x

(g) / (x) = ln -10 ; (h) f (x) = In y .
1+x2

1 2% %
Ansuier, (a) n··-; (b) - ( 2+3)2; (c) ..r

n V x ll, - l X J' x 2+5
2 sin x 1

(d) COS8 X (e) 20sin35xcos5x; (f) 2'Yx(1-x)

( ) ~. (h) 1-x
g x2 - 1 ' (1+ x) (1+ x2) •

17. Verify that the functions F I = cos" X + cos! x, F2 =
= cos 2.1: - i sin~ 2.1:, F 3 := cos" X + 3 cos" X +
+ 2 sin2 x are the antiderivatives of one and the same
function. Find F I - F I and J?a - Fl.
Answer. F I - F I == 1; Fa - F I = 2.

18. Find the area of the curvilinear trapezoid described by
the graph of the function / (x) = x' + 1 over the inter­
val [-3, 3].
Answer. 24.

19. Find the difference in areas of the curvilinear trapezoids
defined by the graphs of the functions /1 = e" and
I, = e-x over the interval [0, 1].

1
Answer. e + -.e

20. Find the value of a minimizing the area of the cur­
vilinear trapezoid defined by the graph of the function
/ (x) = (x - a)2 + a2 over the interval [0, 1].

1
Answer. a = 4.
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21. Find the area of a figure bounded by the graph of the
function! (x) = x 2 - 2x + 2 and two tangents to this
graph, drawn at points Xl === 0 and X 2 = 2.

2
Answer. 3.

22. Find the numbers obtained by evaluating the integral
2

Jf (z) dx of the following functions:
1

(a) !(x)=l-; (b) f(x)=~; (c) !(x)=-!-a ; (d) j(x)=z x x

1
=X4-

t 3 7
Answer. (a) In 2; (b) 2"; (c) '8; (d) 24'

23. Ftnd the functions obtained by evaluating the integral
x

Jf (t) dt of the fa l lowi ng fu nc ti ODS:

t

1 1 1
(a) f (t) = T; (b) / (t) = T2; (c) t (t) = tJ; (d) f (t) =

i
== ""'i'4.

Answer. (a) lnx; (b)

1 1
(d) - 3x3 +'3·

24. Verify that f (.x) = (x + 1) eX satisfies the equation
I' (x) - f (z') = e",

25. Find a particular solution of the equation /' (x) = f (x)
such that f (x) := 2 for x = 2.
Answer. t (z) = 2 exp (x - 2).

26. Consider the equation t' (x) = f (x). Find a particular
solution for which the tangent to the graph at point :.co
intersects the ordinate axis at point Yl'

Answer. ! (x) = -1s, exp (x - xo).
-xo

Hint. Make use of the equation of tangent (see Note
to problem 15).
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27. Consider the graphs of different particular solutions of
the equation j' (x) === f (x). Verify that at the same
point Xo the tangents to all these graphs intersect the
abscissa axis at a common point x = Xo - 1.

28. Find the nth derivative of the following functions:
(a) j (x) = sin x; (h) f (x) == cos a .

Answer. (a) sin(x+
n
2
n

) ; (b) cos(x+ n
; ) .

29. Find the value of the fourth derivative of the function
j (x) = In eX for x = 2.

3
Answer. - s.

30. Find the area of the curvilinear trapezoid defined by
the graph of the third derivative of the function f (x) =
= XO - 2x2 + X - 1 over the interval 10, 1l.
Answer. 20.
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