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1.8 Bézout’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.9 Base Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.10 Extra Results as Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.11 Example Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.12 Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A special Factorization Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2 Modular Arithmetic Basics 45
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Remainder Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Residue classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.1 Why congruence is more useful than equality . . . . . . . . . . . . . . 48
2.5 Two special Equal Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5.1 Interlude (Equal Sets) . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3



4 CONTENTS

2.6 Fermat’s Little Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.7 Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7.1 Inverses behave like fractions . . . . . . . . . . . . . . . . . . . . . . 53

2.8 Simple Properties of Inverses and Wilson’s Theorem . . . . . . . . . . . . . . 55

2.9 General Equal Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.10 Euler’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.10.1 Euler’s Totient Function . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.11 General Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.12 Extra Results as Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.13 Example Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.14 Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

More on Binomial Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Lucas’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2 Interesting Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3 Arithmetic Functions 77

3.1 Number of Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 Sum of Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Euler’s Totient Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Multiplicative Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.1 Dirichlet Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
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Preface

Number Theory has been studied and discussed since the dawn of man; be it counting apples
or studying Pythagorean triples. It is the heart of mathematics. With time and years of
work, people started to unravel new and beautiful properties of these numbers. Despite
having developed all the advanced tools today, the Elementary tools are still very powerful.
A good understanding of these is required to do almost anything in maths today.

Olympiads today aren’t what they were when they started; the problems are much more
diverse and harder. One needs a lot of practice and experience to get their hand on these. The
best part, however, is that even the hardest of problems have solutions with the simplest of
ideas. However, the tree of possible approaches branches out very fast and it is our intuition
that leads us through the dark. This book is intended to give a more conceptual approach
to the discipline, and each topic is explained in depth and focused more into building a clear
map of all the topics: the explanations in this book are done in the way I have understood
these topics, and the methods I use to make connections across all areas in Number Theory
are presented here. The solved examples are precisely handpicked that depict special ideas
and teach you how to think on these problems. The most challenging part was to choose
these problems; there are the great classics, and there are problems from today’s Olympiads.
Hence, I have tried to keep a balance between the two throughout the book. I have to
admit that I did not cover certain topics in Olympiad Number Theory such as irreducibility
criterion and functional equations over N, but have largely covered all the other important
topics.

I would like to share the pattern of this book before we start. Each chapter contains the-
ory with solved examples. I personally suggest that you read the solved examples with care
and try to pin point the main ideas, because that’s how you will learn new ideas much better.
At times I leave certain details by writing why? in a bracket. You should try to answer this
in order to check if you are on the same page with me. Many sections have a subsection called
Problems for Practice, which would generally include some very important results/lem-
mas you should remember that we would use in the future. The results I choose shouldn’t be
very hard to prove, but still enough to test your understanding.Occasionally, these contain
some cute and easy yet instructive problems too. The end of each chapter contains a section
on some final example problems, which include some of the hardest problems you would
see in the chapter. The Problems section starts off with easy problems and moves on
towards some very hard and challenging problems.

The component of book that I am the most excited about is the hints and solutions
system. While I have added solutions only to some of the hardest or most elegant problems,
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I have added hints to almost all of them, which might just help you hit the key step you were
missing, or even make a hard problem you otherwise couldn’t approach more approachable
by giving a step-by-step guide. Some chapters also have a Special Section at the end, which
contain an interesting topic related to our discussion that might not be so mainstream to
have been covered in the theory before, however still very elegant or useful (or just interesting
in its own right).

While this is a Number Theory book, staying away from Combinatorial ideas is impossi-
ble. One idea that will be very recurrent in this book is the idea of looking at the larger
picture, which is why you will find many tables in this book. This basically means to look
at all possibilities at once together instead of treating them as different. You will understand
this much better once you read the book. Another suggestion is to try to visualize things
as much as possible. The more visual the approach, the better chances of you finding the
right path.

As per the pre-requisites, I would assume the knowledge of basic pre-calculus topics,
mainly basic Set Theory, the Binomial Theorem and AP, GP sequences. The knowledge
of complex numbers and logarithms is occasionally useful too. Also, some common proof
writing techniques such as the method of contradiction and the principle of mathematical
induction.

I hope that you enjoy this book. Have fun!
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Chapter 1

Divisibility

Divisibility is the first chapter we start Number Theory with. The ideas involved in a number
being divisible by another leads to all sorts of definitions and results. We explore some of
them in this chapter.

1.1 Multiplication Tables

To truly understand divisibility, we must look at its source; multiplication tables. Let’s pick
an example, the table of 5.

...

−2× 5 = −10

−1× 5−−5

0× 5 = 0

1× 5 = 5

2× 5 = 10

3× 5 = 15

4× 5 = 20

5× 5 = 25

6× 5 = 30

7× 5 = 35

...

So, the set of multiples of 5 is:

M = {. . . ,−10,−5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, . . . }.

We haven’t even started yet and we already have our first definition: any number in this list
is called a multiple of 5, and is said to be divisible by 5. In general, we have the following
definition:

13



14 CHAPTER 1. DIVISIBILITY

Definition 1.1.1. A number n is said to be a multiple of m if it appears in the multiplication
table of m.

The concept of divisibility deals with the division operation. We recall that a number
m divides n if n is in the multiplication table of m. In Number Theory, we have a special
symbol for this:

Definition 1.1.2. A number n is divisible by m if n is a multiple of m. Also, we say m
divides n and write this symbolically as

m | n.

This is read as ”m divides n.” For example, we have 7 | 14, 8 | 0 and 17 | −34. Please
note that the number after ” | ” is the multiple, unlike in fractions, where we would write
the multiple first as n/m (for instance 14/7 = 14

7
= 2, so 7 | 14). Don’t get confused!

1.2 Divisibility Properties

1.2.1 Basic Results

Now that we have defined a notation, let’s investigate its properties. Firstly, we write down
some obvious ones.

Theorem 1.2.1. Let x, y, z be integers.

• We have x | x.

• We always have 1 | x and x | 0.

• If x | y and y | z, then x | z.

• If x | y, we can find an integer k so that y = kx. Here, k can be negative.

The last one is particularly useful. It basically says:

m | n⇐⇒ n

m
∈ Z.

This property will be used a lot when we want to convert divisibility into algebra. For
example, using this, we can prove the third property. Suppose x | y and y | z. Then
y
x
, z
y
∈ Z. Hence

z

x
=
y

x
· z
y
∈ Z⇔ x | z.

Let’s now talk about some special properties.
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1.2.2 Special Property 1

Look again at the multiplication table of 5, only the positive numbers this time. If x | y,
then x must be ”smaller” than y. This feels true. But should it always be? Let’s try to
answer this.

Suppose x | y. So, y must be an element from the set

{. . . ,−3x,−2x,−x, 0, x, 2x, 3x, . . . }.

Which numbers are larger than x here? Right, only about half of these. However, considering
the absolute value, we find |y| > |x| always except if y = 0. Hence our intuition was right.
Let’s write this down:

Theorem 1.2.2. If x | y for two integers, then either y = 0 or |x| 6 |y|.

The case y = 0 is very easy to miss and an extremely important result! If you miss it, you
have an incomplete solution. Not just that, it is often the key idea in a solution. Remember
that! Also, the absolute value must not be forgotten.

Question 1.2.1. In which cases can you ignore the absolute value sign?

1.2.3 Our First Formal Proof

Here we formally prove the lemma above (this is not to say our previous argument was
wrong, but this is another one that you would generally find in books):

Proof. Write y = kx. Then if k = 0, then y = 0. Otherwise if k 6= 0, then k ≥ 1 as it’s an
integer. Then y = kx > x.

Wait, did we not need the absolute signs then? Here’s the trick. In inequalities, if you
multiply by a negative number, the sign reverses. For instance 5 > 2 but −5 < −2.

Question 1.2.2. Find another mistake in the proof.

In y = kx, you do remember k can be negative, right? That’s why we need absolute
signs. So here’s the correct proof.

Proof: Write y = kx. If k = 0, then y = 0. Otherwise k 6= 0 implies

|y| = |k| · |x| > |x|.

Here, note that we needed |k| > 1. Why is this true? Well, k 6= 0 and since |k| is a natural
number (hence positive), hence |k| > 1.
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1.2.4 Special property 2

There’s one more important property about divisibility I would like to point out. LetM be
the set of multiples of 5 again, i.e.

M = {. . . ,−5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, . . . }.

Let c be any integer. What happens if we multiply any number in this set by c? The resulting
number still stays in M. Do you see why?

So n ∈M =⇒ cn ∈M for any integer c.

Now consider any two elements of M, and add them. For instance, 10 + 30 = 40. Is the
number still in M? Yes! This is true because 5a+ 5b = 5(a+ b) is always divisible by 5.

So x, y ∈M =⇒ x+ y ∈M.

Combining the above two results we can write:

Lemma 1.2.1. For any two numbers x, y ∈M, we have ax+ by ∈M for any integers a, b.

The above is true since ax, by ∈ M, and hence so is their sum. What does this mean?
This means that 5 | x, y implies 5 | ax and 5 | by for any a, b. Further, 5 | ax + by. In
particular, when b is negative, we get results like 5 | x− y, 2x− 3y and so on.

Again, let’s generalize this to any number instead of 5. The general version gives us one
of the most useful property of divisibility:

Theorem 1.2.3. Suppose c | x, y. Then c | ax+ by for any a, b ∈ Z.
We finish this discussion with a list of properties, some of which we discussed above, and

the others which I leave as exercises to prove.

Theorem 1.2.4. Let x, y, z be integers.

• x | x.

• 1 | x and x | 0.

• x | y, y | z =⇒ x | z.

• If z | x, y, then z | ax+ by for any integers a, b (possibly negative).

• If x | y, then either y = 0, or |x| ≤ |y|.

• If x | y and y | x, then x = ±y, i.e. |x| = |y|.

• x | y if and only if xz | yz for some non-zero integer z.

• x | y =⇒ x | yz for any z.

The two special properties we discussed and the last property given above would be the
most useful in problem solving. For instance, suppose we had n | 2n + 1. Then we can
subtract 2n (why?) from the right side to get n | 1 which implies n = ±1. In general, in
divisibility relations like these, clever expressions are added/subtracted/multiplied to reduce
the right side to something more manageable.
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Problems for Practice

Problem 1.2.1. Show that if n > 1 is an integer, we can’t have n | 2n2 + 3n+ 1.

Problem 1.2.2. Let a > b be natural numbers. Show that we can’t have a | 2a+ b.

Problem 1.2.3. For 2 fixed integers x, y, prove that

x− y | xn − yn

for any integer n. (Hint: Long division)

1.3 Euclid’s Division Lemma

This is one of the first theorems that people use to start studying Number Theory. Consider
again the (positive) multiples of 5 :

M = {0, 5, 10, 15, 20, 25, 30, 35, 40, . . . }
These contain some of the natural numbers. What about other naturals not in this list? For
instance, where would we insert 32 in the list?

Yes, we write 32 between 30 and 35, and write 32 = 30 + 2 = 5× 6 + 2. Similarly,

33 = 5× 6 + 3

34 = 5× 6 + 4

35 = 5× 6 + 5

36 = 5× 6 + 6.

However, the numbers 35, 36 won’t come in between 30, 35. So better ways to write them is:

35 = 5× 7 + 0

36 = 5× 7 + 1.

As usual, our question is to generalize our tricks.

Lemma 1.3.1. For any integers b, a, we can find a number 0 ≤ r < a such b is r more than
a multiple of a.

The important bit here is 0 ≤ r < a. This is the same idea as when we wrote 36 as
5× 7 + 1 instead of 5× 6 + 6.

Question 1.3.1. Why do we need 0 ≤ r and not 0 < r? Also, why r < a and not r ≤ a?

What’s a more mathematical way to write this?

Theorem 1.3.1 (Euclid’s Division Lemma). For any integers b, a, we can find unique
integers q, r such that

b = aq + r, 0 ≤ r < a.

Here, q is called the quotient, and r the remainder. Don’t be scared by this statement,
this is what you have always been doing in long division.
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1.4 Primes

So now is the time to study primes. A number is called a prime if it has only two divisors,
1 and the number itself. The list of primes is:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, . . .

It is important here to note that 2 is the only even prime. So at times, parity arguments
work well with problems related to primes.

Question 1.4.1. Is 1 a prime?

Primes lie at the heart of Number Theory. As we will soon see, they form the atoms of all
numbers, and understanding them is equivalent to understanding all numbers. However, life
isn’t so simple. There is no known pattern in primes (we will soon prove that no polynomial
pattern is possible) and just the fact that factorizing into large primes is hard forms the base
of cryptography. There have been many estimates related to primes, one of the most notable
being the Prime Number Theorem, which states

π(n) ∼ n

log n
.

What this means is the number of primes less than a number n is approximately equal to
n/ log n, and this estimate gets better as n gets larger. Crazy right?

I can talk about primes all day. However, let’s not get too ahead of ourselves for now. A
simple question we can ask right now is the following: how many primes are there? This was
answered by Euclid over 2000 years back! He proved that there are infinitely many primes.
We will look at the proof later.

Problems for Practice

Problem 1.4.1. Find all positive integers n for which 3n − 4, 4n − 5, and 5n − 3 are all
prime numbers.

Problem 1.4.2. If p < q are two consecutive odd prime numbers, show that p + q has at
least 3 prime factors. Sol: pg. 277

1.4.1 Fundamental Theorem of Arithmetic

Clearly, you can reduce any composite number into a product of primes. The best part is
the following:

Theorem 1.4.1 (Fundamental Theorem of Arithmetic). Any natural number greater than
1 has a unique prime factorization upto order.

Unique means two things: there is at least one way and also at most one way. So you
would be able to write any number as a product of primes, and there would be no other way



1.5. LOOKING AT NUMBERS AS MULTISETS 19

to do so (except for changing the order, like writing 2× 5 as 5× 2. These are considered the
same.) So, for instance, you can write 45 = 32 × 5 but not in any other way.

Thus, any number n can be written as

n = pα1
1 p

α2
2 · · · p

αk
k

where p1, . . . , pk are primes and α1, . . . , αk are non-negative integer. Note that an exponent
can be zero too. For instance 24 = 23 × 31 × 50.

Note here that 1 is the only natural number that does not have a prime factorization.

One of the most useful tips I can give you for this chapter is this: Imagine a number by
its prime factors! I will use this idea a lot and expect you to keep this in mind as it would
be used in problems more than you can imagine. The next section is based on this idea:

1.5 Looking at Numbers as Multisets

Considering how every number can be broken down into its prime factors, and these prime
factors are the identity of the number, it’s often useful to think of numbers as sets of prime
factors.

So here’s how it goes. The number 1 is the empty set. The number 6 would be the set
{2, 3} as 6 = 2× 3. The number 70 would similarly be {2, 5, 7}. But what about the number
4 = 22? We know that a set can’t have repeated elements. So how do we write this? The
solution is to consider multisets, which are the same as sets but allow repeated elements. So
4 ≡ {2, 2}. In general,

n = pα1
1 p

α2
2 · · · p

αk
k ≡ {p1, . . . , p1︸ ︷︷ ︸

α1 times

, p2, . . . , p2︸ ︷︷ ︸
α2 times

, . . . , pk, . . . , pk︸ ︷︷ ︸
αk times

}.

Note that we use the symbol ≡, which means they are ”equivalent”. In this chapter, we
would use small letters to denote numbers, and capital letters to denote their sets (unless
otherwise stated). So if n = 20, then N = {2, 2, 5}. If the number is negative, we can just
add −1 to the set. For instance −20 would be {−1, 2, 2, 5}

We clearly have the following theorem:

Theorem 1.5.1 (Divisibility in Sets). Let a, b be two integers. Then

a | b⇐⇒ A ⊂ B.

What is the advantage of thinking in terms of sets? Well, sets have Venn Diagrams.
Thinking geometrically/pictorially is always better (that’s how the human brain functions).
A lot of properties of GCD, LCM are, for instance, trivialized when you think about them
as sets and use Theorem 1.5.1.
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1.6 GCD and LCM

We can now define the GCD.

Definition 1.6.1. The GCD, or the Greatest Common Divisor of two numbers is the
number obtained by the set of common prime factors. For two numbers m,n, it is denoted
by gcd(m,n), or often just (m,n).

This is often called the HCF, i.e. the Highest Common Factor. Suppose you have
m = 22 × 53 × 71 and n = 23 × 32 × 72, then gcd(m,n) = 22 × 7. In general,

gcd(m,n) = M ∩N.

Clearly gcd(a, b) divides both a, b. However the ”greatest” in GCD has a special purpose:

Lemma 1.6.1. Let a, b be integers. The GCD of a, b is the largest number which divides
both a, b. In particular, gcd(a, b) ≤ a, b.

Why are these definitions the same? To explain this, think in terms of the prime factors!
Suppose the GCD is not the largest. Then some other number is the largest one, call x.
But any common prime factors of a, b are already contained in gcd(a, b). So x cannot have
anything more.

Now we have the following useful property which you should find easy to prove:

Lemma 1.6.2. Let a, b, c be three integers. Then

c | a, c | b =⇒ c | gcd(a, b).

I will give a geometric interpretation of this lemma, which also makes it very easy to
prove.

A B
C

We have the two sets A,B. The common region is gcd(a, b) by definition. The shape in
the common region is C. Since c divides both a, b, hence C ⊂ A and C ⊂ B. Thus, C lies in
the A∩B region, which is the same as saying c | gcd(a, b) by Theorem 1.5.1. Hence proved!

I will now let you reason out why the following is true:
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Lemma 1.6.3 (The Prime Factorization of GCD). Let a, b be two integers with prime fac-
torization:

a = pα1
1 p

α2
2 · · · p

αk
k

b = pβ11 p
β2
2 · · · p

βk
k

where αi, βi are non-negative integers (possibly 0). Then

gcd(a, b) = p
min{α1,β1}
1 p

min{α2,β2}
2 . . . p

min{αk,βk}
k .

We can similarly define the LCM, the Least Common Multiple in two equivalent
ways:

Definition 1.6.2. Let a, b be two integers.

1. We have

lcm(a, b) = A ∪B.

2. The LCM of a, b is the least number divisible by both a, b. In particular, a, b ≤
lcm(a, b).

3. If the prime factorizations of a, b are

a = pα1
1 p

α2
2 · · · p

αk
k

b = pβ11 p
β2
2 · · · p

βk
k

where αi, βi are non-negative integers (possibly 0), then

lcm(a, b) = p
max{α1,β1}
1 p

max{α2,β2}
2 . . . p

max{αk,βk}
k .

Just like Lemma 1.6.2, we have the following (which is useful)

Lemma 1.6.4. Let a, b, c be integers. Then

a | c, b | c =⇒ lcm(a, b) | c.

I will let the proof as an exercise (just look at the venn diagram again).

Now we have the following property that connect the GCD and LCM, that you might
have seen:

Lemma 1.6.5 (Product of GCD and LCM). Let a, b be two integers. Then

gcd(a, b) lcm(a, b) = ab.
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There are two ways to prove this. The first one is

gcd(a, b) lcm(a, b) =
(
p
min(α1,β1)+max(α1,β1)
1

)
. . .
(
p
min(αk,βk)+max(αk,βk)
k

)
= pα1+β1

1 . . . pαk+βkk = ab.

The second proof is by looking at the venn diagram. Note that the sum of A∪B and A∩B
gives the sum of A,B (why?) This proves the lemma!

Comment 1.6.1: Recall that the sum of two sets A,B, which we denote by A+B, is
kind of like the union in which we include all the elements of A,B, and the multiplicity
of each element is added in A + B. For example if A = {2, 2, 3} and B = {2, 3, 3, 5},
then A ∪ B = {2, 2, 3, 3, 5}, A ∩ B = {2, 3} while A + B = {2, 2, 2, 3, 3, 3, 5}, which is
different from both A∪B and A∩B. Check that (A∪B) + (A∩B) = A+B (by the
Venn Diagram). This fact corresponds to the Principle of Inclusion-Exclusion for two
sets:

|A ∪B|+ |A ∩B| = |A|+ |B|.

Before we end, here’s an important definition:

Definition 1.6.3. Two numbers a, b are called coprime or relatively prime if gcd(a, b) = 1.

In other words, they have no common prime factors. These types of numbers come a lot,
and we will come across them a lot.

A simple question that stood for long was: how many primes are there? This was
answered by Euclid as back as in 300 BC. Now that we have a fair understanding of divisibility
and primes, let us discuss his proof.

Theorem 1.6.1 (Euclid). Prove that there are infinitely many primes.

This is an amazing proof. It goes by the powerful method of contradiction, by assuming
there are only finitely many primes {p1, p2, . . . , pk}. The key trick now is to define the number

N = p1p2 . . . pk + 1.

Now, clearly N is pairwise coprime1 to all p1, p2, . . . , pk. However, clearly N > 1 and so by
the Fundamental Theorem of Arithmetic, it must have a prime divisor p. However, p would
be different from all p1, p2, . . . , pk, contradicting the fact that {p1, . . . , pk} are all the primes.
This is the desired contradiction!

1If a number x is ”pairwise coprime” to some numbers a, b, c, then that means it is coprime to each
number, i.e. gcd(x, a) = gcd(x, b) = gcd(x, c) = 1. We define ”pairwise coprime” for more than 3 numbers
similarly.
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Problems for Practice

Problem 1.6.1. Prove that gcd(a, b) = a if and only if a | b.

Problem 1.6.2. If p is a prime, prove that gcd(a, p) ∈ {1, p}.

Problem 1.6.3. Let a, b be relatively prime. Show that if a | c, b | c, then ab | c.

1.7 Euclid’s Division Algorithm

Key tip: Think of the gcd in terms of common prime factors!

Suppose m = p2q and n = pq2r. Clearly gcd(m,n) = pq. Now, m + n = p2q + pq2r =
pq(p+ qr) = gcd(m,n)(p+ qr). In general, the thing we can take common outside in m+ n
is gcd(m,n). And the 2 things inside would have no common factor (why?). Now answer the
following:

Question 1.7.1. Why is gcd(a+ b, b) = gcd(a, b)?

Question 1.7.2. Why is gcd(a+ 3b, b) = gcd(a, b)?

Generalizing the above problems, we have

Lemma 1.7.1. Let a, b be integers. We can write a = bq+r for integers q, r where 0 ≤ r < b.
Then the lemma states that

gcd(a, b) = gcd(r, b).

It is often helpful to remember things pictorially:

The more useful fact to remember is that gcd(a, b) = gcd(a± kb, b). Just like in ” | ” di-
visibility, you subtract things carefully to simplify expressions. This lemma is a consequence
of this idea since:

gcd(a, b) = gcd(bq + r, b) = gcd(bq + r − b(q), b) = gcd(r, b).

One consequence of the above is the so called Division Algorithm. Suppose want to
find gcd(370, 100). Write

370 = 3× 100 + 70.
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By the lemma, we find gcd(370, 100) = gcd(70, 100). Then write

100 = 70× 1 + 30.

So gcd(70, 100) = gcd(70, 30). Then we can similarly proceed and get the chain:

gcd(370, 100) = gcd(70, 100) = gcd(70, 30) = gcd(10, 30) = 10.

The last part is because 10 divides 30.

The general algorithm is defined in a similar way, just keep on reducing gcd(a, b) to
gcd(b, r) and eventually one number will divide the other.

Question 1.7.3. Why must the algorithm terminate? That is, why does it stop eventually
and not go on forever?

I will give another example: let’s find gcd(124, 440).

440 = 124× 3 + 68

124 = 68× 1 + 56

68 = 56× 1 + 12

56 = 12× 4 + 8

12 = 8× 1 + 4

8 = 2× 4 + 0.

We stop when get 0 as a remainder. Thus, we get the chain

gcd(440, 124) = gcd(124, 68) = gcd(68, 56) = gcd(56, 12) = gcd(12, 8) gcd(8, 4) = 4.

Problems for Practice

Problem 1.7.1. Find gcd(120, 500) using the algorithm.

Problem 1.7.2. Show that gcd(4n+ 3, 2n) ∈ {1, 3}.

Problem 1.7.3. Let a, b be integers. We can write a = bq + r for integers q, r where
0 ≤ r < b. Then our lemma states that

gcd(a, b) = gcd(r, b).

However, is lcm(a, b) = lcm(r, b)?

1.8 Bézout’s Theorem

Try the following problem:
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Problem 1.8.1. Let a, b, x, y, n be integers such that

ax+ by = n.

Prove that gcd(a, b) divides n.

After all the work we have done, can you see a one line proof? We now talk more about
this equation. A natural question that arises is, given a, b, what values can ax + by take as
x, y ∈ Z? Call a number n special if

ax+ by = n

has a solution in (x, y). Let a = 2, b = 4. Which ones are special? We look at the larger
picture now (you read the preface, didn’t you?), and consider all elements of the form 2x+4y.
This forms the following table: (the top row is the value of x, the column that of y, and the
element in column X, row Y is 2X + 4Y )

−2 −1 0 1 2 . . . x

−2 −12 −10 2 4 6 . . .
...

−1 −8 −6 4 6 8 . . .
...

0 −4 −2 0 2 4 . . .
...

1 0 2 4 6 8 . . .
...

2 4 6 8 10 12 . . .
...

3 8 10 12 14 16 . . .
...

...
...

...
...

...
...

. . .
...

y . . . . . . . . . . . . . . . . . . 2x+ 4y

Every special number is obviously divisible by 2 (why?). It seems that every multiple of
2 is in the table. In particular so is gcd(2, 4) = 2.

Let’s not get too ahead of ourselves and directly ask about all the numbers in the table.
First we ask ourselves does gcd(a, b) always appear in the table of (a, b), i.e. is gcd(a, b)
always special?

Example 1.8.1

Let (a, b) = (3, 6). Then gcd(3, 6) = 3 and

3(1) + 6(0) = 3

If (a, b) = (35, 42), then gcd(a, b) = 7 and

35(5) + 42(−4) = 7.

So our conjecture is true for the pairs (3, 6), (35, 42).
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Problem 1.8.2. Let (a, b) = (8, 12). Find x, y ∈ Z such that

ax+ by = gcd(a, b).

Problem 1.8.3. Let (a, b) = (7, 12). Find x, y ∈ Z such that

ax+ by = gcd(a, b).

So our conjecture is gcd(a, b) is always special.

In fact, if ax+ by = gcd(a, b) has a solution (x, y) = (x0, y0), then

a(mx0) + b(my0) = m(ax0 + byy) = m gcd(a, b)

for any m. So every multiple of gcd(a, b) is expressible as ax + by. In other words, every
multiple of gcd(a, b) is special !

This is the famous Bézout’s lemma:

Theorem 1.8.1 (Bézout’s theorem). Let a, b be integers. Then the equation

ax+ by = n

has a solution if and only if gcd(a, b) divides n.

Note the if and only if. It means two things (as usual): If ax + by = n, then gcd(a, b) |
n (we did this earlier). Also, if gcd(a, b) | n, then we can find x0, y0 integers such that
ax0 + by0 = n.

We will not prove this now, rather prove it in the example problems.

Example 1.8.2 (Euclid’s Lemma)

If c | ab and gcd(c, a) = 1, then c | b.

One way to do this is to look at the prime factors. Since c | ab, hence C ⊂ A + B.
However, gcd(c, a) = 1 implies C ∩A = φ and so C must entirely be inside B, which means
c | b. (in other words, a has no contribution in the divisibility so ignore it.)

However the proof using Bézout’s lemma has its own elegance. The idea is this: as
gcd(c, a) = 1, hence there exist integers x, y such that cx+ ay = 1. Then

cbx+ aby = b.

Now clearly c divides cbx. Also, c divides ab, and so c divides aby. Hence it divides cbx+aby,
i.e. the left side. So c | b. Hence done!
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Example 1.8.3 (PUTNAM 2000)

Prove the expression
gcd(m,n)

n

(
n

m

)
is an integer for all pairs of integers n ≥ m ≥ 1.

This is one of my favorite applications. This one is not very easy to approach directly.
However, if we write gcd(m,n) = mx+ny by using Bézout’s Lemma, with x, y ∈ Z (the fact
that x, y ∈ Z is the important one), then

gcd(m,n)

n

(
n

m

)
=
mx+ ny

n

(
n

m

)
= x · m

n

(
n

m

)
+ y

(
n

m

)
.

The second term is clearly an integer. For the first term, it’s not so direct why it should be
an integer. It may seem like this depends on x, which would only make the problem harder.
However, it turns out it is independent of x as the binomial coefficient ”absorbs” the m/n
fraction:

x · m
n

(
n

m

)
= x · m

n
· n!

m!(n−m)!
= x · (n− 1)!

(m− 1)!(n−m)!
= x

(
n− 1

m− 1

)
∈ Z

and so we are done.

1.9 Base Systems

How do we write numbers? The answer is pretty simple and the question is dumb. However,
if we truly investigate this question, we can do some interesting stuff.

Any number is written using the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Further, we write, say
514567 as

514567 = 5× 105 + 1× 104 + 4× 103 + 5× 102 + 6× 101 + 7× 100.

All these digits are at most 10. Hence this system is called the base 10 representation.

Suppose you had only the digits 0, 1. Then 2 = 1× 21 + 0× 20, and so we would write 2
as ”10”, if we were to do something similar to base 10. Since we are talking of base 2 (which
is also called binary), we write 2 as 10(2). As 3 = 1× 21 + 1× 20, so 3 = 11(2). Now, 4 would
become 1× 22 + 0× 21 + 0× 20, so we write 4 as 100(2). We similarly write other numbers:

5 = 101(2)

6 = 110(2)

7 = 111(2)

8 = 1000(2)

9 = 1001(2)

10 = 1010(2)

...
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I guess you would be able to see a pattern by now. How do we add numbers in base 2? This
is exactly similar to normal addition, except a carry over of 1 is taken for 1 + 1 = 10(2).

Question 1.9.1. Why don’t we have the digit 2 in base 2? Answer this in terms of the base
2 expansion, i.e. a0 + 2a1 + 4a2 + . . . .

Now, we can very similarly define other base systems. For instance, 9 in base 4 would be
21(4). How do we write a number in some other base? Suppose you have 52, and we want to
write this in base 3. So we would have

52 = a0 × 30 + a1 × 31 + a2 × 32 + · · ·+ ak × 3k.

Over here, we assume ak 6= 0 (why?), and hence ak ≥ 1. Now divide 52 by 3. Since a1× 31 +
a2 × 32 + . . . is divisible by 3, hence the remainder on dividing 52 by 3 has to be a0, which
comes out to 1. So we write 52 = 1 + 51. Next we have

51 = a1 × 31 + a2 × 32 + · · ·+ ak × 3k =⇒ 17 = a1 × 30 + a2 × 31 + · · ·+ ak × 3k−1.

Again, a1 is the only term on the right that isn’t divisible by 3 now. So, a1 is the remainder
when 17 is divided by 3, which is 2.

We can similarly keep going and find 52 = 1221(3). The above way was nice and algo-
rithmic (and so always works), but for smaller numbers guessing is a better job. How do we
guess it? Well, the key observation is that

a0 × 30 + a1 × 31 + a2 × 32 + · · ·+ ak × 3k ≥ 3k

and

a0× 30 + a1× 31 + a2× 32 + · · ·+ ak × 3k ≤ 2(30 + 31 + · · ·+ 3k) = 2× 3k+1 − 1

3− 1
= 3k+1− 1.

Hence, 3k ≤ 52 < 3k+1 (why?). So we basically want to know between which powers of 3
does 52 lie. This is easy; we can see that k = 3. Further, 1 · 33 ≤ 52 < 2 · 33, hence ak = 1
(why?) and k = 3. So now consider 52− 33 = 25. Now 25 lies between 9 and 27, and further
we 2 · 32 ≤ 25 < 3 · 32 and so ak−1 = 2. We can similarly find the rest of the digits.

The second method is easier to do for small numbers. To find the leading digit, we find
between which powers does n lie (this is what we have always been doing in base 10, right?).

Problem 1.9.1. Find 37 in base 5. Find 69 in base 2.

Problem 1.9.2. Show that any power of 2 is of the form 100 . . . 0 in base 2.

Problem 1.9.3. Prove in general that if n = a0 × `0 + · · · + ak × `k, then k is such that
`k ≤ n < `k+1 and ak is such that ak`

k ≤ n < (ak + 1)`k.

Problem 1.9.4. Let k be the integer just less than (or equal to) log`(n). Show that n has
exactly k + 1 digits in base `.
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An important question we haven’t answer yet is the following: is a base representation
unique? That is, is it possible that a number n has two different representations in base `?
The answer is no, and this is an incredibly useful fact about base system:

Theorem 1.9.1. Any number n has a unique representation in base `.
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1.10 Extra Results as Problems

In this section, we prove some more basic results related to divisibility. The first one is a
classic:

Example 1.10.1

Prove that
√
p is irrational for any prime p.

Assume on the contrary, and write
√
p = m/n, for some positive integers m,n. The key

assumption we make at this point is that m,n are coprime. Clearly we can assume this,
since otherwise just cancel out any common factors.

The most natural thing we can do now is square both the sides (since that is how the
square root is even defined), so we get m2 = pn2. Hence, p | m2. Since p is a prime, hence
p | m. Write m = pm∗.

Putting this back, we find p2(m∗)2 = pn2, so that n2 = p(m∗)2. Hence, p | n2. Again, p
is a prime so p | n. Hence, we have p | m and p | n, contradicting our assumption that m,n
were coprime. �

Question 1.10.1. Where did we use the fact that p is a prime?

The next result is useful too:

Example 1.10.2 (P)

ove that if p is a prime and 0 < k < p, then
(
p
k

)
is divisible by p.

For this, write(
p

k

)
=

p!

k!(p− k)!
= p · (p− 1)(p− 2) . . . (p− k + 1)

k(k − 1) . . . 1
= pS.

Now p divides this if S is an integer. Here’s the trick: we know pS is an integer. Since p is
coprime to all k, k − 1, . . . , 1 (why?), hence p has no contribution in making pS an integer
(basically Example 1.8.2). Hence, S must be an integer, and we are done.

Example 1.10.3 (Euclid’s Division Lemma)

Let a, b be integers. Prove that there exists unique integers q, r such that b = aq + r
with 0 ≤ r < a.

We have seen why this is true, however never gave a formal proof. Even though the proof
is almost identical to what we did, it is important since it is an application of the extremal
principle2.

2The extreme principle (or extremal principle) is a problem-solving technique that involves looking at
objects with extreme properties, such as the largest or smallest element. This is possible for sets which
have a smallest or largest object defined (for instance, the set N has no largest element but has a smallest
element).
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Proof. Just like what we did before, pick two multiples of a such that b lies between them.
This is the same as saying pick a q such that aq ≤ b < a(q + 1). It is easy to see that such
a q is unique. Now, define r = b− aq, which is uniquely defined by a, b. We claim that this
pair of (q, r) works.

Indeed, 0 ≤ r is clear since b ≥ aq by assumption. Now, since aq + q > b, hence
q > b − aq = r. Hence, the q, r exist and are unique, and r satisfies 0 ≤ r < a. So we are
done.

A very similar idea is seen in Example 1.11.8. The next example is a very useful result.

Example 1.10.4

Let a,m, n be positive integers. Prove that

gcd(am − 1, an − 1) = agcd(m,n) − 1.

First let’s get a feel of why this is true. If we get the gcd is something of the form ad− 1,
then ad − 1 | am − 1 and an − 1 both. So d | m,n and the largest d (which we need for
the greatest common divisor) would be gcd(m,n). Let’s now try to prove the result more
formally:

We present the more natural way to approach this question. Suppose m ≥ n. Then

g = gcd(am − 1, an − 1) = gcd((am − 1)− (an − 1), an − 1) = gcd(am−n − 1, an − 1).

Now again, if m− n ≥ n, we can get g = gcd(am−2n− 1, an− 1). In fact, if m = nk+ r with
r < n, we can get g = gcd(ar − 1, an − 1). Now, n > r, so we can reduce n to n − r and
so on. The key observation is that the exponents are following Euclid’s division algorithm
(think why). Hence, we would at the end have g = agcd(m,n)−1. This is hard to think of, so I
suggest you take some examples (such as (m,n) = (15, 4)) and see convince yourself.

We will see a simpler solution to this problem in the next chapter. For now, let’s prove
Bézout’s theorem.

Example 1.10.5 (Bézout’s Theorem)

Let a, b be integers with gcd(a, b) = d. Then there exist integers x, y such that ax+by =
d.

There are two proofs to this that we will discuss. The first one will give us an algorithm
on how to find x, y explicitly. The second one will be an existence type proof, where we just
show x, y exist, without knowing anything about them (we will such similar themes in the
Constructions chapter.)

Suppose we want to express 5 as a linear combination of 45 and 65. We write

65 = 45× 1 + 20

45 = 20× 2 + 5

20 = 5× 4 + 0
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So, we reverse the above to get 5 in terms of 45, 65.

5 = 45− 20× 2

= 45− (65− 45(1))× 2

= 45(3)− 65(2).

Let’s do another example. Suppose we want to express 1 as a linear combination of 7, 12.
Firstly,

12 = 7× 1 + 5

7 = 5× 1 + 2

5 = 2× 2 + 1

2 = 1× 2.

Reversing,

1 = 5− 2(2)

= (12− 7(1))− (7− 5(1))(2)

= 12− 7(1)− 7(2) + (12− 7(1))(2)

= 12− 7(3) + 12(2)− 7(2)

= 12(3)− 7(5)

The basic idea is to keep replacing the remainders. This works in general too.

Of course the above proof was not rigorous. So to write a formal proof, we say ”consider
Euclid’s division algorithm, and start working in the reverse order. In each step, replace
the remainders.” This is a valid argument, although doesn’t give a complete feel about the
proof. So I explained it using examples.

The second proof is more combinatorial in nature (and again, matches with our theme
of looking at the larger picture)

Proof. The larger picture in this case is ALL the elements of the form ax+by, i.e. we consider
the set S = {ax + by | x, y ∈ Z}. Clearly, each element is an integer. Now, as we saw in
the table, the elements are all multiples of gcd(a, b), so that the smallest positive element is
gcd(a, b). So this is the idea: Take the smallest positive element of S, say d, achieved for
(x0, y0). We need to show d = gcd(a, b).

Now, ax0 + by0 = d. We need to show d = gcd(a, b). Now showing equality is hard in
number theory, so we show d | gcd(a, b) and gcd(a, b) | d. The latter is clearly true (why?),
so let’s focus on the former. For this, we must try to show that d divides both a, b (why?).

Suppose not. Write a = dk + r with 0 < r < d (why 0 < r not 0 ≤ r?). Then
r = a− dk = a− (ax0 + by0)k = a(1− x0k) + b(y0k). Hence, r ∈ S with 0 < r < d. However
this contradicts our assumption. Hence, d | a. Similarly, d | b and we are done.
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Example 1.10.6 (Four Number Lemma)

Let a, b, c, and d be positive integers such that ab = cd. Show that there exists positive
integers p, q, r, s such that

a = pq, b = rs, c = ps, d = qr.

Proof. This is not very hard to show: since

a

c
=
d

b
,

hence the two fraction both equal a common reduced fraction, say q
s

with gcd(q, s) = 1.
Then, (a, c) = (pq, ps) for some p and (b, d) = (rs, rq) for some r. So we are done.

The result is useful in problems. For instance, show the following:

Problem 1.10.1. Prove that if ab = cd, then a+ b+ c+ d is not a prime number.
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1.11 Example Problems

Let’s begin with an easy problem.

Example 1.11.1 (All Russia Mathematics Olympiad 1995)

Let m,n be positive integers such that

gcd(m,n) + lcm(m,n) = m+ n.

Show that one of the two numbers is divisible by the other.

Let gcd(m,n) = g. The simplest thing we can do is to convert the LCM into GCD. So

g +
mn

g
= m+ n =⇒ mn+ g2 = g(m+ n) =⇒ (m− g)(n− g) = 0

which gives either g = m or g = n. Why is this enough?

Example 1.11.2

If p is an odd prime, and a, b are coprime, show that

gcd

(
ap + bp

a+ b
, a+ b

)
∈ {1, p}.

Write
ap + bp

a+ b
= ap−1 − ap−2b+ · · ·+ bp−1.

We divide the above by (a+ b). Do this using long division to find the remainder when the
above is divided by a+ b. This gives us

ap−1 − ap−2b+ · · ·+ bp−1

= (a+ b)(ap−2 − 2ap−2b+ 3ap−3b2 − · · · − pbp−2) + pbp−1.

So,

gcd

(
ap + bp

a+ b
, a+ b

)
= gcd(a+ b, pbp−1).

Now a+b and bp−1 are coprime as a and b are coprime. So, the above gcd equals gcd(a+b, p),
which is either 1 or p. �

Example 1.11.3 (Iran 2005)

Let n, p > 1 be positive integers and p be prime. Given that n | p− 1 and p | n3 − 1,
prove that 4p− 3 is a perfect square.
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This is an amazing problem. In these types of problems, we try to extract as much
information as we can, by bounding and simplifying the multiple. So n | p − 1 implies
p ≥ n+ 1, and also p = nk + 1.

Also p | (n− 1)(n2 + n+ 1) implies p | n− 1 or p | n2 + n+ 1 (why?). However, p | n− 1
is impossible (why?). So p | n2 + n+ 1. This gives p ≤ n2 + n+ 1. Further,

nk + 1 | n2 + n+ 1 | kn2 + kn+ k =⇒ nk + 1 | kn2 + kn+ k − n(nk + 1) = nk + k − n.

So, nk+ 1 ≤ nk+k−n =⇒ n+ 1 ≤ k. In terms of p, this means n(n+ 1) + 1 ≤ nk+ 1 = p.
Does this ring a bell? Earlier we had p ≤ n2 + n + 1. So p = n2 + n + 1 holds! This then
directly gives 4p− 3 = (2n+ 1)2.

Question 1.11.1. Since nk + 1 | nk + k − n =⇒ nk + 1 ≤ |nk + k − n|. Why we did we
not consider the absolute value?

Example 1.11.4 (APMO)

Are there distinct prime numbers a, b, c which satisfy

a|bc+ b+ c, b|ca+ c+ a, c|ab+ a+ b?

Think of bc+b+c as (b+1)(c+1)−1. So a | (b+1)(c+1)−1. To make the right side more
symmetric, we can multiply the relation by (a+ 1) to get a | (a+ 1)(b+ 1)(c+ 1)−a− 1. We
can of course, add a to the right term to get a | (a+ 1)(b+ 1)(c+ 1)− 1. This is completely
symmetric, and so we get

a, b, c | (a+ 1)(b+ 1)(c+ 1)− 1.

Normally, this would imply lcm(a, b, c) | (a + 1)(b + 1)(c + 1) − 1 (why?). However, in this
case lcm(a, b, c) = 1 (why?). So we get

abc | (a+1)(b+1)(c+1)−1. =⇒ abc | (a+1)(b+1)(c+1)−1−abc = ab+bc+ca+a+b+c.

Now, we turn to size arguments, since the right side doesn’t seem to be something of the
form abc, 2abc, 3abc, . . . (it seems to be much less). So, we get

1 ≤ 1

ab
+

1

bc
+

1

ca
+

1

a
+

1

b
+

1

c
.

At this point, we see that the right side gets very small very soon. To formalize this idea,
we assume a < b < c, and so we get

1 ≤ 1

ab
+

1

bc
+

1

ca
+

1

a
+

1

b
+

1

c
≤ 3

a2
+

3

a
.

This fails if a ≥ 4. So, a ≤ 3. Since a is a prime, hence a ∈ {2, 3}. Now, this becomes a
classic casework type problem.
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1. Suppose a = 2. Then

1 ≤ 1

2b
+

1

2c
+

1

bc
+

1

b
+

1

c
+

1

2
=⇒ 1

2
≤ 3(b+ c) + 2

2bc
.

So, bc ≤ 3(b + c) + 2. Considering the left side is a product and the right a sum,
it is expected that this cannot hold for large values of b, c. So a small test would be
sufficient. However, we can do it faster by writing it as (b − 3)(c − 3) ≤ 11. Then
keeping in mind that b, c are primes, we can do a casework again to find possible values
of b, c. Keep in mind that 2 = a < b < c.

Once we bound the values of b, c, we plug them in back in abc | (a+ 1)(b+ 1)(c+ 1)−1
and check which works.

2. Suppose a = 3. This case is also similarly dealt with (we can use 3 = a < b < c to
reduce some work of ours).

Spoiler alert: the answer is that no such primes exist.

Next, we try a really nice problem, which shows how clever rearranging, an ”algebra
thing”, can be useful.

Example 1.11.5 (AMM)

Show that for all prime numbers p,

Q(p) =

p−1∏
k=1

k2k−p−1

is an integer.

The product is

Q(p) =
(11 · 22 . . . (p− 1)p−1)

2

(1 · 2 . . . (p− 1))p+1 .

Looking at the numerator, it is quite natural to regroup terms as(
1 · 2 · 3 . . . (p− 1)

)(
2 · 3 . . . (p− 1)

)(
3 . . . (p− 1)

)
. . .
(
(p− 1)

)
.

This product is clearly

(p− 1)! · (p− 1)!

1!
· (p− 1)!

2!
. . .

(p− 1)!

(p− 2)!
.

Hence, we can write

Q(p) =

(
((p− 1)!)p−1

1! · 2! . . . (p− 2)!

)2

· 1

((p− 1)!)p+1
=

((p− 1)!)p−1

(1! · 2! . . . (p− 1)!)2
.
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We again rearrange cleverly to get

Q(p) =
1

pp−1
(p!)p−1

(1! · 2! . . . (p− 1)!)2
=

(
1

p
· p!

1!(p− 1)!

)(
1

p
· p!

2!(p− 2)!

)
. . .

(
1

p
· p!

(p− 1)!1!

)

Hence we obtain the amazing result that

Q(p) =

p−1∏
k=1

(
p
k

)
p
.

Now each fraction is an integer (why?), hence so is the product. We are thus done.

Example 1.11.6 (HMMT 2017)

Find all pairs (a, b) of positive integers such that a2017 + b is a multiple of ab.

Usually, products are much easier to deal with than summations in divisibility. Here we
have the term ab. Now we are not able to simplify this equation if use ab, but we can use a
and b individually. We get a | a2017 + b and b | a2017 + b. So we get a | b and b | a2017. The
first one is simpler than the second, so we use that. Let b = ak. So put this back and the
problem becomes

ak | a2016 + k.

Did you see what just happened? This is excatly identical to the problem, except that we
reduced 2017 to 2016. The interesting part is that we can do this again and again. At the
end, we will end up with a` | 1 + ` for some ` (why?). So ` = 1 and hence a ∈ {1, 2}.

If a = 1, it is easy to get b = 1. If a = 2, then 2b | 22017 + b and so b | 22017. Hence, b is a
power of 2, write b = 2ω with ω ≤ 2017. Then

2ω+1 | 22017 + 2ω = 2ω
(
22017−ω + 1

)
.

So, 2 | 22017−ω + 1, which is possible only if 2017 = ω. Hence, we get the solution pairs
(a, b) = (1, 1), (2, 22017).

The next problem is a nice application of the four number lemma.

Example 1.11.7 (India Practice TST 2017 D2 P2)

Let a, b, c, d be pairwise distinct positive integers such that

a

a+ b
+

b

b+ c
+

c

c+ d
+

d

d+ a

is an integer. Prove that a+ b+ c+ d is not a prime number
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Proof. Let X be the sum. We also define

Y =
b

a+ b
+

c

b+ c
+

d

c+ d
+

a

d+ a
.

Now observe that X + Y = 4. In particular, Y is also an integer. Further,

X =
a

a+ b
+

b

b+ c
+

c

c+ d
+

d

d+ a

>
a

a+ b+ c+ d
+

b

a+ b+ c+ d
+

c

a+ b+ c+ d
+

d

a+ b+ c+ d
= 1.

Similarly, Y > 1. Now since X, Y are integers that add to 4, hence X = Y = 2. But then

0 = X − Y =
a− b
a+ b

+
b− c
b+ c

+
c− d
c+ d

+
d− a
d+ a

=
ac+ ad− bc− bd+ ac− ad+ bc− bd

(a+ b)(c+ d)
+
ab− ac+ bd− cd+ bd− ab+ cd− ac

(b+ c)(a+ d)

= 2(ac− bd)

(
(b+ c)(a+ d)− (a+ b)(c+ d)

(a+ b)(b+ c)(c+ d)(d+ a)

)
= 2(ac− bd) · (a− c)(b− d)

(a+ b)(c+ d)(a+ d)(b+ c)
.

So ac = bd. Hence, by the Four Number Lemma, we find integers p, q, r, s ≥ 1 such that
a = pq, b = pr, c = rs, d = qs. So a+ b+ c+ d = (p+ q)(r + s) is not a prime.

We finish by a nice combinatorial problem, which showcases the ideas and intuition we
developed in this chapter.

Example 1.11.8 (STEMS 2019 Maths A Subjective P2)

Find all subsets S ⊂ Z that satisfy a, b ∈ S =⇒ 2a− b ∈ S.

Observe that the arithmetic mean of b, 2a − b is b. So practically the condition tells us
that if we are given two numbers, then the next number in the AP formed by them is also
in the list. Further, so is the previous number in the AP (why?).

Now if S = {. . . , x−d, x, x+d, . . . } is an AP, then it works: if a = x+kd, b = x+ `d, we
have 2a− b = x + (2k − `)d ∈ S. Hence all AP sequences works. Now the question is, does
there exist a non-AP set S? This is where we use our intuition from multiplication tables
(which are AP sequences themselves).

The idea is to pick one AP and show no element cannot be outside that AP. Which AP
do we pick? We know that any two elements generate an AP. We would want to choose the
AP which is the ”longest” and ”densest”, in the sense that it covers the other APs. This is
the same as the common difference being the lowest. So this is the key trick: Pick r such
that r is the smallest difference between two elements, i.e. r = min

a,b∈S
|a− b|.
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Now if a− b = r, then we have the AP

{. . . , b− r, b, b+ r, . . . } ⊂ S.

Suppose we have an element outside this AP, say c. Then it must lie between two elements.
However, then it would be a distance less than r from some element of the AP! That is, pick k
such that b+kr ≤ c < b+(k+1)r. Then c−(bk+r) < (b+(k+1)r)−(bk+r) = r, contradicting
the minimality of r (do you observe the resemblance of this with euclid’s division lemma?).
Hence, we are done. �
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1.12 Practice Problems

Problem 1.12.1. Show that any composite number n has a prime factor ≤
√
n.

Problem 1.12.2 (IMO 1959/1). Prove that for any natural number n, the fraction

21n+ 4

14n+ 3

is irreducible. Hints: 306

Problem 1.12.3. Let x, y, a, b, c be integers.

1. Prove that 2x+ 3y is divisible by 17 if and only if 9x+ 5y is divisible by 17.

2. If 4a+ 5b− 3c is divisible by 19, prove that 6a− 2b+ 5c is also divisible by 19.

Hints: 137 91 276

Problem 1.12.4. Define the nth Fermat number Fn by Fn = 22n + 1. Show that Fm, Fn are
coprime for any m,n. 3

Problem 1.12.5. Prove that for each positive integer n, there is a positive integer m such
that each term of the infinite sequence m+ 1,mm + 1,mmm + 1, . . . is divisible by n. Hints:

403 421

Problem 1.12.6 (Romania Mathematical Olympiad). Let a, b be positive integers such
that there exists a prime p with the property lcm(a, a+ p) = lcm(b, b+ p). Prove that a = b.
Hints: 59 281 261

Problem 1.12.7 (St. Petersburg 1996). Find all positive integers n such that

3n−1 + 5n−1 | 3n + 5n.

Hints: 329 378

Problem 1.12.8 (Russia 2001 grade 11 Day 2/2). Let a, b be naturals such that ab(a+b)

is divisible by a2 + ab+ b2. Show that |a− b| > 3
√
ab. Hints: 177 223 Sol: pg. 277

Problem 1.12.9 (Germany). Let m and n be two positive integers relatively prime to
each other. Prove that for every positive integer k, the following statements are equivalent:

1. n+m is a divisor of n2 + km2;

2. n+m is a divisor of k + 1.

3Here 22
n

= 2(2
n), i.e. we calculate 2n first. For instance, 22

3

= 28 = 256. In general, for such towers, we

start from the top. So 22
22

= 22
4

= 216 = 65536.
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Hints: 392

Problem 1.12.10 (Japan 2020 Junior Finals P3). Find all tuples of positive integers
(a, b, c) such that

lcm(a, b, c) =
ab+ bc+ ca

4
.

Hints: 343 226 401

Problem 1.12.11 (Iran MO 2017 Round 2/1). Prove the following:

1. There doesn’t exist a sequence a1, a2, a3, . . . of positive integers such that for all i < j,
we have gcd(ai + j, aj + i) = 1.

2. Let p be an odd prime number. Prove that there exists a sequence a1, a2, a3, . . . of
positive integers such that for all i < j, p - gcd(ai + j, aj + i).

Hints: 390 458 301

Problem 1.12.12 (All Russian Olympiad 2017 Day1 Grade 10 P5). Suppose n is a
composite positive integer. Let 1 = a1 < a2 < · · · < ak = n be all the divisors of n. It is
known, that a1 + 1, . . . , ak + 1 are all divisors for some m (except 1,m). Find all such n.
Hints: 237 73 477

Problem 1.12.13 (IMO 2002/1). Let n ≥ 2 be a positive integer, with divisors 1 = d1 <
d2 < . . . < dk = n. Prove that d1d2 + d2d3 + . . . + dk−1dk is always less than n2, and
determine when it is a divisor of n2. Hints: 305 5 235 34

Problem 1.12.14 (Russia 2001 Grade 10 Day 2/4). Find all odd positive integers
n > 1 such that if a and b are relatively prime divisors of n, then a+ b− 1 divides n. Hints:

389 312 103 377 209

Problem 1.12.15 (INMO 2019/34). Let m,n be distinct positive integers. Prove that

gcd(m,n) + gcd(m+ 1, n+ 1) + gcd(m+ 2, n+ 2) ≤ 2|m− n|+ 1.

Further, determine when equality holds. Hints: 304 83 277 Sol: pg. 278

Problem 1.12.16 (USAMO 2007/1). Let n be a positive integer. Define a sequence
by setting a1 = n and for each k > 1, letting ak to be the unique integer in the range
0 ≤ ak ≤ k − 1 for which a1 + a2 + · · · + ak is divisible by k. For instance, when n = 9,
the obtained sequence is 9, 1, 2, 0, 3, 3, 3, . . . . Prove that for any n, the sequence a1, a2, . . .
eventually becomes constant. Hints: 136 264 Sol: pg. 278

Problem 1.12.17 (USAMO 2007/5). Prove that for every nonnegative integer n, the
number 77n + 1 is the product of at least 2n+ 3 (not necessarily distinct) primes. Hints: 49

310 Sol: pg. 278

4Indian National Mathematical Oolympiad (the USAMO of India)



42 CHAPTER 1. DIVISIBILITY

Problem 1.12.18 (ELMO 2017/1). Let a1, a2, . . . , an be positive integers with product
P , where n is an odd positive integer. Prove that

gcd(an1 + P, an2 + P, . . . , ann + P ) ≤ 2 · gcd(a1, a2, . . . , an)n.

Hints: 418 85 196 424 Sol: pg. 279

Problem 1.12.19 (IMO 2001/6). Let a > b > c > d be positive integers and suppose
that

ac+ bd = (b+ d+ a− c)(b+ d− a+ c).

Prove that ab+ cd is not prime. Hints: 468 90 78 168 Sol: pg. 279



1.12. PRACTICE PROBLEMS 43

z A special Factorization Trick

This section is not a direct part of the chapter’s theory, however presents a useful trick in
some factorization problems.

Lemma 1.12.1 (Factorizing Polynomials). Let

f(x) =
∑

0≤i≤p−1

xai ,

where ai are non-negative integers and p is a prime. If they form a reduced residue system
modulo p, then f(x) is divisible by

g(x) =
∑

0≤i≤p−1

xi.

Here, a ”reduced residue class mod p” basically means that the remainders on division
by p cover all the numbers 0, 1, . . . , p − 1 (see the next chapter). This is based on the fact
that any polynomial which has ζp as a root is divisible by 1 + x+ · · ·+ xp−1, where ζp is the
pth root of unity (an analogue of the Factor Theorem. This is discussed more in the special
section of Integer Polynomials)

A classic problem is to factorize x5 + x + 1. A clever but unmotivated route is to write
it as

x5 − x2 + x2 + x+ 1 = x2(x3 − 1) + (x2 + x+ 1) = (x2 + x+ 1)(x3 − x+ 1).

However, once we observe that ω5 + ω + 1 = ω2 + ω + 1 = 0 (or say {5, 1, 0} is a complete
class modulo 3), we can directly say that x2 + x + 1 would be a factor and then use long
division! Here’s a similar problem:

Problem 1.12.20 (AwesomeMath 2019 Admission Test A). Show that 20192018+2020
has at least 3 primes factors.

As a hint, write the given as 20192018+2019+1. This is something of the form x2018+x+1.
By the lemma, x2 + x+ 1 is a factor, and that’s the key part of the problem.

Try the following problem now:

Problem 1.12.21. Prove that 1280000401 is composite.

As an exercise, try extending the lemma to any number n instead of just a prime. You
might wanna read about reduced residue class modulo n from the next chapter before.
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Chapter 2

Modular Arithmetic Basics

2.1 Motivation

In divisibility, we saw that dealing with remainders was at times more useful, for instance
if r = 0 we have divisibility. The main reason for this is that remainders are smaller than
the original numbers. This was the idea on which Euclid’s Algorithm was based. Modular
arithmetic dwells on this idea in much more depth. We start off by a different motivation,
and we would later see the remainder idea is the same.

Consider the following clock face

The clock has only the numbers from 1 to 12. Where to place the other numbers? If we
think about it, we would place 13 over 1. So then 13 ≡ 1 on a clock. (we don’t write 13 = 1
since that’s not true, but ≡ means ”equivalent to”, which fits here).

Also, 26 ≡ 2 and 100 ≡ 4. We would in general write a ≡ b if a, b are the same points on
the clock.

Question 2.1.1. Give a mathematical characterization/formula of when two points are the
same on the clock.

If you said 12 | a − b, then congrats, you got it right. So a ≡ b on the clock when
12 | a − b. But there are more things than a clock in this world. How would the general
” ≡ ” be defined?

45
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In general, for any integer n we would write

a ≡ b (mod n)

if n | a− b.

Question 2.1.2. Is 131 ≡ 32 (mod 11)?

Question 2.1.3. Why is 131 ≡ −1 (mod 11)?

So, negative numbers are also allowed.

Problems for Practice

Problem 2.1.1. Show that a+ n ≡ a (mod n).

Problem 2.1.2. Let a, n be fixed integers. Show that the set of integers b such that b ≡ a
(mod n) form an arithmetic progression. What is the common difference?

Problem 2.1.3. Show that the set of integers a such that a ≡ 0 (mod n) is the set of
multiples of a.

2.2 Remainder Idea

The set of integers a such that a ≡ 2 (mod 5) is infinite, which is S2 = {. . . ,−8,−3, 2, 7, 12, 17, . . . }.
The set of integers a such that a ≡ 9 (mod 5) is infinite, which is S4 = {. . . ,−6,−1, 4, 9, 14, 19, . . . }.

Infinite sets can be harder to deal with. So instead, we only consider the smallest non-
negative element here.

Question 2.2.1. In the set of integers a such that a ≡ b (mod n) for some fixed n, convince
yourself that the smallest non-negative element is the remainder when b is divided by n.

For example, for a ≡ 9 (mod 5), the smallest element is 4, which is the remainder when
9 is divided by 5.

In general, when we write a ≡ r (mod n), we try and keep the second number as the
remainder for simplicity. Thus,

12 ≡ 2 (mod 10)

120 ≡ 0 (mod 15)

11 ≡ 11 (mod 21)

So in a ≡ r (mod n), if r is the remainder, we would have 0 ≤ r < n (why?).
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2.3 Residue classes

Suppose n = 3. There are only 3 possible remainders on division by 3 : 0, 1 and 2. So we can
put every integer in one column of the following table:

0 (mod 3) 1 (mod 3) 2 (mod 3)
...

...
...

−6 −5 −4
−3 −2 −1
0 1 2
3 4 5
6 7 8
...

...
...

In Divisibility, we studied the multiplication table which was the first column. So, modular
arithmetic gives us a better grip over ALL integers. So in some sense, the whole chapter
that we did on divisibility is only the first column of our table!

The three columns above are called the 3 ”residue classes” modulo 3. In general we have
the following:

Definition 2.3.1. Pick a natural number n, and a non-negative number r < n. Then the
rth residue class is the set of integers a that satisfy a ≡ r (mod n). Equivalently, it is the
set of all integers that leave r as a remainder when divided by n.

These integers are:

{. . . , r − 2n, r − n, r, r + n, r + 2n, r + 3n, . . . }.

Problems for Practice

Problem 2.3.1. Guess why the above classes are called ”residue” classes.

Problem 2.3.2. Show that the number of the classes modulo n is exactly n.

2.4 Basic Properties

As in divisibility, does modular arithmetic respect addition? That is, is the following true?

a ≡ r (mod n), b ≡ s (mod n) =⇒ a+ b ≡ r + s (mod n)?

Question 2.4.1. We have 10 ≡ 1 (mod 3) and 8 ≡ 2 (mod 3). What is 10 + 8 (mod 3)? Is
it 1 + 2?

The answer is yes! To see why, write a = nx+ r and b = ny + s. Then

a+ b = n(x+ y) + (r + s).
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Ok, so do they preserve multiplication? That is,

a ≡ r (mod n), b ≡ s (mod n) =⇒ ab ≡ rs (mod n)?

Question 2.4.2. We have 10 ≡ 1 (mod 3) and 8 ≡ 2 (mod 3). What is 10× 8 (mod 3)? Is
it 1× 2?

Again, the answer is yes! I will leave it as an exercise to prove.

Thus, we have the following two very important properties:

Theorem 2.4.1 (Properties of Modulus). Let a, b, r, s be integers such that for a given
integer n, we have a ≡ r (mod n) and b ≡ s (mod n). Then

1. a+ b ≡ r + s (mod n).

2. ab ≡ rs (mod n).

This is better than Theorem 1.3.1 to find the remainder since we can directly use the
second property here without having to completely multiply a = nx+ r and b = ny + s.

2.4.1 Why congruence is more useful than equality

A small note on why this modular symbol is really helpful. As we have seen, showing equality
is hard in number theory, and there are more interesting relations between numbers than
being equal. The ≡ sign just behave likes the = sign, since we can add, subtract and multiply
anything on the two sides just as in equations (later we will see how to divide). We can
exponentiate stuff and practically anything we can do with = applies here.

a ≡ b (mod n) =⇒ a+ c ≡ b+ c, ac ≡ bc, ac ≡ bc (mod n).

Thus, how = helps us in linear equations and all, ≡ helps us in showing divisibility and
related stuff.

Problems for Practice

Problem 2.4.1. Show that ab has remainder rs mod n by writing a = nx+r and b = ny+s
and evaluating ab.

Problem 2.4.2. Find the remainder when 210 is divided by 10.

Problem 2.4.3. Find 1002× 560 (mod 7).

Problem 2.4.4. Show that if a ≡ b (mod n), then ka ≡ kb (mod n) for any integer k.

We can now destroy some problems from the last chapter that were challenging back
then:
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Problem 2.4.5. Show that a− b | an − bn for any integer n.

Problem 2.4.6. If p is an odd prime, and a, b are coprime, show that

gcd

(
ap + bp

a+ b
, a+ b

)
∈ {1, p}.

Some interesting results can be very easily derived using modular arithmetic:

Problem 2.4.7 (Very Important). Let f be a polynomial with integer coefficients. Show
that a − b | f(a) − f(b) for any integers a, b. This is the same as saying f(a + d) ≡ f(a)
(mod d).

Problem 2.4.8 (Important). Show that ka ≡ kb (mod n) implies a ≡ b (mod n) if and
only if gcd(k, n) = 1.

Let’s try a nice problem together:

Example 2.4.1 (Russia 2001)

Find all primes p and q such that p+ q = (p− q)3.

Firstly, test some values of (p, q) and guess the answer. After that let’s try to solve it
systematically.

Directly expanding the right side won’t be so useful. Let’s take the equation modulo
something special. The most obvious choices are mod p and mod q. We can try both. Mod p
gives q ≡ −q3 (mod p) and so p | q(q2 + 1). Mod q gives p ≡ p3 (mod q) and so q | p(p2− 1).
Not very useful.

However, here’s the trick. As p + q = (p − q)3, we also have (p + q) | (p − q)3. So,
(p− q)3 ≡ 0 (mod p+ q). But p− q ≡ −2q (mod p+ q) so (−2q)3 ≡ 0 =⇒ (p+ q) | 8q3.

Now what we note is that if gcd(p+ q, q) 6= 1, then gcd(p, q) = gcd(p+ q, q) 6= 1 implies
p = q. In that case, however, we get p+ p = (p− p)3 = 0, which is impossible.

So gcd(p+q, q) = 1. Hence in p+q | 8q3, we must have p+q | 8 because the q3 contributes
nothing. So p + q ∈ {1, 2, 4, 8}. We can now manually list positive numbers that add to 8,
which are (1, 7), (2, 6), (3, 5), (4, 4). As p, q are primes, the only possible pair is (p, q) = (3, 5)
or (5, 3). Is this the answer you guessed?

2.5 Two special Equal Sets

Consider any number a and a prime p so that gcd(a, p) = 1 (this is the same as saying a 6= 0
(mod p)). Let’s see what happens to the non-negative multiples of a :

S = {0, a, 2a, 3a, . . . } (mod p).
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It’s better if we work with an example. Suppose a = 3 and p = 7. Then

S = {0, a, 2a, . . . } = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, . . . }.

If we consider the elements of the set modulo 7, then

S ≡ {0, 3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 0, 3, 6, . . . } (mod 7).

We observe the sequence is periodic.

Question 2.5.1. What’s the periodicity?

In general too, we observe that ia ≡ (i + p)a (mod p) and so we can write S =
{0, a, 2a, . . . , (p − 1)a} because elements don’t repeat in sets (we are talking about sets
here, not multisets). Can we shorten this set further? That is, are there any more equal
numbers in here?

Let’s take the help of our example once more. Suppose a = 3 and p = 7. Then

S = {0, a, 2a, . . . , 6a} = {0, 3, 6, 9, 12, 15, 18} = {0, 3, 6, 2, 5, 1, 4} (mod 7).

Aha! No elements are equal. Can we prove this in general?

Suppose two elements were equal. Then they would be of the form ai, aj for 0 ≤ i 6= j ≤
(p− 1). Then

ai ≡ aj (mod p) =⇒ a(i− j) (mod p) ≡ 0 =⇒ p | a(i− j).

But we assumed gcd(a, p) = 1 at the start! Hence, we get p | (i− j) (why?). Is this possible?

Question 2.5.2. Try and find two integers i 6= j between 0, p− 1 such that p | i− j.

If you tried to, you would realize this is not possible. And the reason is simple, as
0 ≤ i 6= j < p, hence 0 < |i− j| < p. Thus, this is impossible, and we are done!

Now note that {0, a, 2a, . . . , (p−1)a} has p elements, and all these are distinct. However,
since there are only p remainders possible, hence this set must be the set of ALL remainders!
For instance, in our example we saw that

{0, a, 2a, . . . , 6a} = {0, 3, 6, 9, 12, 15, 18} = {0, 3, 6, 2, 5, 1, 4} (mod 7),

and observe that the last set contains all the remainders mod 7. Cool, isn’t it!

2.5.1 Interlude (Equal Sets)

What do equal sets mean? These are sets with the same elements. So what’s the difference
in them?

{1, 4, 6, 2} = {4, 6, 1, 2}.

That’s right, the only difference between them is the order of elements. In problem solving,
whenever we prove two sets are equal, the most common things we do is to equate the sum of
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elements, the sum of squares of elements and the product of element, because these operation
don’t depend on the order. Out of all these, sum of elements is the most useful, and is very
strong in its applications. It should be the first thing you do on seeing equal sets!

So, in our context, we basically derived that S = {0, 1, 2 . . . , (p − 1)} modulo p. Note
here that the element 0 in S is 0× a and in {0, 1, . . . , (p− 1)} is the first element. So we can
delete 0 from both the sets. Then we obtain:

Theorem 2.5.1 (Two Equal Sets). Let p be a prime and consider S = {1, 2, . . . , p − 1} to
be the set of non-zero remainder modulo p. Let a be any integer coprime to p.. Then

aS ≡ S (mod p).

Here, aS means the set obtained on multiplying each element of S by a. This gives us
many interesting results.

2.6 Fermat’s Little Theorem

Now let’s see where can we use this theorem. Firstly, let’s multiply the elements of both the
sets and equate them:

a · 2a · 3a · · · (p− 1)a ≡ 1 · 2 · 3 · · · (p− 1) (mod p).

This gives

ap−1 · (p− 1)! ≡ (p− 1)! (mod p).

Now, gcd((p− 1)!, p) = 1, hence we can divide both the sides by (p− 1)! by Problem 2.4.8.
Hence ap−1 ≡ 1

Now comes the interesting part: Since a was any number coprime to p, hence we obtain
the famous Fermat’s Little Theorem:

Theorem 2.6.1 (Fermat’s Little Theorem). Let a be any number relatively prime to a prime
p. Then

ap−1 ≡ 1 (mod p).

This is a very powerful result. It helps us compute an for large n. Don’t forget the
”relatively prime” part of the theorem.

In fact, we also have the following:

Theorem 2.6.2 (Fermat’s Little Theorem). Let a be any number. Then

ap ≡ a (mod p).

You can say we just multiplied both sides by a, so what’s special. The reason is that you
don’t need a, p relatively prime here!
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Problems for Practice

Problem 2.6.1. Show that ap ≡ a (mod p) holds in the case when gcd(a, p) 6= 1.

Problem 2.6.2. Let a, b be integers and p a prime. Show that p divides abp − apb.

Problem 2.6.3. Find

250 (mod 7).

2.7 Inverses

Now let’s look at the definition of ”equal sets”. It means that for any integer 0 < b < p, we
can find an integer x such that

ax ≡ b (mod p).

In particular, if b = 1, then ax ≡ 1 (mod p).

What this means is if gcd(a, p) = 1, then there always exists a multiple of a which is 1
mod p.

Theorem 2.7.1 (Inverses). Let p be a prime and a be an integer coprime to a. Then there
always exists and integer x such that

ax ≡ 1 (mod p).

This integer x is called the inverse of a.

For instance, let’s try and find the inverse of 3 modulo 7. Write down the first (p − 1)
multiples (why first (p− 1)?) and check:

3× 1 ≡ 3, 3× 2 ≡ 6, 3× 3 ≡ 2 (mod 7)

3× 4 ≡ 5, 3× 5 ≡ 1, 3× 6 ≡ 4 (mod 7)

So, 5 is the inverse of 3.

We denote the inverse of a by a−1. At times we even use 1
a
.

The existence of inverse allows us to divide! For instance, if b 6≡ 0 (mod p), then

a

b
≡ a · b−1 (mod p).

For instance, check the following are true:

2

3
≡ 2 · 3−1 ≡ 3 (mod 7),

3

8
≡ 3 · 8−1 ≡ 3 (mod 7),

20

46
≡ −1

2
≡ 3 (mod 7). (2.1)

Now if we want to solve the equation ax ≡ b (mod p) with a 6≡ 0 (mod p), we can easily do
so. The solution is x ≡ b

a
= b · a−1 (mod p).
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Let me clear a possible confusion at this point. No, inverses do not always exist. For
example mod 6, we don’t have an inverse of 2 since:

2× 1 ≡ 2, 2× 2 ≡ 4, 2× 3 ≡ 0 (mod 6)

2× 4 ≡ 2, 2× 5 ≡ 4 (mod 6)

We observe that 1 never appears, hence 2 does not have an inverse here. So modulo 6, we
cannot divide by 2.

Thus, the fact that an inverse always exists modulo a prime is very special (and useful).
I hope the above example helps you appreciate Theorem 2.7.1.

2.7.1 Inverses behave like fractions

As if the existence of an inverse wasn’t special enough, we also have the fact that inverses add
and multiply like fractions. This basically means you can literally use inverses like fractions
without worrying! For instance, in normal fractions,

2

3
+

3

8
=

16 + 9

24
=

25

24
. (2.2)

Modulo 7, the left side is (using equation 2.1)

2

3
+

3

8
= 2 · 3−1 + 3 · 8−1 = 3 + 3 = 6 (mod 7).

The right side of 2.2 is
25

24
≡ 4

3
≡ 4 · 3−1 ≡ 6 (mod 7).

Thus, 2.2 holds modulo 7 too, despite the fact that these are not really fractions modulo 7.
In general:

Lemma 2.7.1 (Inverses add like Fractions). Let b, d 6≡ 0 (mod p). Then for any a, c, we
have

a

b
+
c

d
≡ a · b−1 + c · d−1 ≡ (ad+ bc) · (bd)−1 ≡ ad+ bc

bd
(mod p)

just like normal fractions.

More important than the proof of this is the following:

Question 2.7.1. Convince yourself that this is not obvious.

If you truely believe that Lemma 2.7.1 is not obvious, then let me prove it for you.

Proof. Observe that

bd(a · b−1 + c · d−1) = bd(a · b−1) + bd(c · d−1) ≡ ad+ bc (mod p).

Dividing both the sides by bd we get the result.
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Multiplication of inverses is also similar:

Lemma 2.7.2 (Inverses multiply like Fractions). Let b, d 6≡ 0 (mod p). Then for any a, c,
we have

a

b
· c
d
≡ (a · b−1) · (c · d−1) ≡ (ac) · (bd)−1 ≡ ac

bd
(mod p)

just like normal fractions.

Here’s an example: In normal fractions,

2

3
· 3

8
=

1

4
. (2.3)

Viewing these fractions as inverse, the left side modulo 7 is

2

3
· 3

8
≡ (2 · 3−1) · (3 · 8−1) = 3 · 3 ≡ 2 (mod 7)

On the other hand, the right side of of 2.3 is

1

4
≡ 4−1 ≡ 2 (mod 7).

Thus, 2.3 holds modulo 7 too.

Proving Lemma 2.7.2 is rather easy and so I leave it as an exercise.

Problems for Practice

Problem 2.7.1. Prove Lemma 2.7.2.

Problem 2.7.2. Find the inverse of all {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} modulo 11.

Problem 2.7.3. Show that 0 does not have an inverse modulo p. What about p?

(If you say this is because 1/0 is not defined or is ∞, then that argument is true for
normal fractions, but not here. This proof fails modulo p because inverses aren’t exactly
division. Find a different proof.)

Problem 2.7.4. Prove that if a 6≡ 0 (mod p), then

ap−2 ≡ a−1 (mod p).

Problem 2.7.5. Prove that the inverse of an is the nth power of the inverse of a. That is,

(a−1)n ≡ (an)−1 (mod p).

Using this, find the inverse of 256 modulo 47.
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2.8 Simple Properties of Inverses and Wilson’s Theo-

rem

I will talk about some simple properties of inverses here. Firstly note that an inverse is
unique. What I mean is a−1 is unique modulo p. For instance you can’t have both 2a ≡ 1
(mod p) AND 7a ≡ 1 (mod p). The number x such that ax ≡ 1 (mod p) would be unique.

The reason is simple. If ax ≡ 1 (mod p) and ay ≡ 1 (mod p) for 0 ≤ x, y ≤ p− 1, then
ax ≡ ay =⇒ p | a(x − y). As gcd(a, p) = 1, hence p | x − y. But 0 < x − y < p so this is
impossible.

Another simple property is that if a is the inverse of b then b is the inverse of a. That is,

a ≡ b−1 =⇒ a−1 ≡ b (mod p).

Don’t read ahead till this feels obvious to you too!

So we can basically pair up numbers with their inverses. For example modulo 11, we
have the following pairs:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} =⇒ (1, 1), (2, 6), (3.4), (5, 9), (7, 8), (10, 10). (2.4)

Wait, the pairs (1, 1), (10, 10) have the same elements. So now we ask when is a the inverse
of a. This is the same as saying a · a ≡ 1 (mod p), i.e. p | (a− 1)(a+ 1). Hence p | (a− 1) or
p | (a + 1) (why?). This is the same as saying a ≡ 1 or a ≡ −1. So these are the only cases
in which a is the inverse of a.

Thus, if we ignore these bad pairs, then in any pair (a, b) we would have a 6= b. Further
every remainder mod p is in some pair. So, if we multiply ALL of them, we get something
very interesting:

2 · 3 · 4 . . . 9 = (2 · 6) · (3 · 4) · (5 · 9) · (7 · 8)

= 1 · 1 · 1 · 1 · 1 = 1 (mod 11).

So if we multiply both the sides by 1 · 10 ≡ −1 (mod 11), we find

10! ≡ −1 (mod 11).

Interesting right? This is a special case of a much more general result, the famous Wilson’s
theorem:

Theorem 2.8.1 (Wilson’s Theorem). Let p be a prime. Then

(p− 1)! ≡ −1 (mod p).

This is proved exactly in the same way as we did for 10!, that is pairing up with inverses.
This is a very cool theorem and probably the most used one when it comes to factorials
modulo something.
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Actually, I would be lying to you if I said this was Wilson’s theorem. There’s a bit more
to it. It also says that if n is any natural satisfying (n − 1)! ≡ −1 (mod n), then n must
be a prime. Woah. This is one of the rare criterions/formulas that we have for testing if a
number is prime. So if you want to check if n is a prime, then you just calculate (n − 1)!
and check if it’s −1 modulo n.

Sadly, finding (n− 1)! is hard and not feasible even for a computer for large values of n.
To get an idea of how large factorials get, 100! has 158 digits. Nonetheless, I will write the
full theorem here:

Theorem 2.8.2 (Wilson’s Theorem). For any integer n, we have

(n− 1)! ≡ −1 (mod n)

if and only if n is a prime.

Note here the ”if and only if” means two things: if (n − 1)! ≡ −1 (mod n), then n is a
prime, and also if n is a prime, then (n− 1)! ≡ −1 (mod n).

Practice Problems

Problem 2.8.1. Prove that if n is any natural satisfying (n − 1)! ≡ −1 (mod n), then n
must be a prime.

Problem 2.8.2. Let p be a prime. Show that the remainder when (p − 1)! is divided by
p(p− 1) is p− 1.

Problem 2.8.3. Let n be an integer. Calculate

gcd(n! + 1, (n+ 1)!).

2.9 General Equal Sets

Earlier we got

aS ≡ S (mod p)

for any a with gcd(a, p) = 1 and S = {1, 2, . . . , p − 1}. Let’s try to generalize this to any
integer n instead of just a prime p. Note that the only fact we used in the proof was that a
and any element in S is coprime to p. (Confirm this by reading the proof again.)

I will leave it as an exercise to prove this, but here’s the full result:

Theorem 2.9.1 (General Equal Sets). Let n be any integer. Let S be the set of integers less
than n and relatively prime to n. Let a be any integer coprime to n. Then

aS ≡ S (mod n).
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The proof is exactly the same. Note that S is not {1, 2, 3, . . . , n − 1}. It is only the set
of integers coprime to n. Note that 1 ∈ S always holds (why?).

For example, if n = 15 and a = 4, then S = {1, 2, 4, 7, 8, 11, 13, 14}. So

4S ={4, 8, 16, 28, 32, 44, 52, 56}
≡{4, 8, 1, 13, 2, 14, 7, 11} (mod 15).

Check that the second set is the same as S. Now we will do exactly what we did before to
obtain general Fermat’s Little Theorem and general Inverses. Before we move on, let me
just clarify the following:

Definition 2.9.1. The set S is called a reduced residue system modulo n.

2.10 Euler’s Theorem

We obtained Fermat’s theorem by multiplying the elements of aS and S and equating them.
Let’s do the same here. Let |S| be the number of elements in S. Then

(a · 1) . . . (a · (n− 1)) ≡ 1 · · · (n− 1) (mod n).

Hence,

a|S|
∏

1≤i<n
gcd(i,n)=1

i ≡
∏

1≤i<n
gcd(i,n)=1

i (mod n).

The product here means the product of all numbers between 1, n that are coprime to n.

Again, we can cancel this product from both the sides using Problem 2.4.8 since it is
coprime to n (why?). Thus we get

a|S| ≡ 1 (mod n) for all a coprime to n (2.5)

This is cooler than Fermat’s little theorem since we have a general mod here.

Question 2.10.1. Check that when n = p is a prime, we have S = {1, 2, 3, . . . , p − 1} and
hence |S| = p− 1 in that case. Thus confirm that this result implies Fermat’s Little theorem
and hence is more general.

For instance, when n = 15, we have S = {1, 2, 4, 7, 8, 11, 13, 14}, and so |S| = 8. So, for
any a coprime to 15 we have a8 ≡ 1 (mod 15). For instance check that 118 ≡ 1 (mod 15).

However, this would be better if we had a formula for |S| in general. Turns out, mathe-
maticians left nothing hanging. Here’s what we are looking for:

2.10.1 Euler’s Totient Function

Recall that S was the set of integers less than n coprime to n. So we need to find how many
numbers less than n are coprime to it. This function was discovered by Euler, and is called
Euler’s Totient Function1

1Fun Fact: even though Euler was the first one to use this function (officially), it took over 100 years for
the current notation and name to be coined!
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Definition 2.10.1. Let n be a positive integer. The function ϕ(n) is called Euler’s totient
function, and it denotes the number of positive integers less than n that are coprime to it.

Question 2.10.2. Find ϕ(2), ϕ(3), ϕ(4), ϕ(5), ϕ(6), ϕ(7), ϕ(8), ϕ(9) and ϕ(10).

Question 2.10.3. Show that ϕ(p) = p− 1 when p is a prime.

How do we find ϕ(100)?

Ok, I won’t trouble you much. I would just give you the formula.

Theorem 2.10.1 (Euler’s Totient Function). Let n = pα1
1 p

α2
2 . . . pαkk be its prime factoriza-

tion. Then

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pk

)
.

Another way of writing is (which is easier to use)

ϕ(n) = pα1−1
1 pα2−1

2 . . . pαk−1k · (p1 − 1) · (p2 − 1) · · · · (pk − 1).

The way I like to remember it is that for each prime p, reduce the power of p by 1 and
multiply by (p− 1).

This formula is derived by a lemma, that is incredibly useful in itself so I will mention it
here:

Lemma 2.10.1 (ϕ is multiplicative). For any two coprime integers m,n, we have

ϕ(mn) = ϕ(m)ϕ(n).

People often forget the coprime part. Don’t make the same mistake!

Comment 2.10.1: A function f : N→ C is called multiplicative if

f(mn) = f(m)f(n) for all coprime m,n.

It is called completely multiplicative if

f(mn) = f(m)f(n) for all m,n.

We will talk about these more in the chapter on arithmetic functions.

Back to our previous discussion, 2.5 gives us the so called Euler’s Theorem:

Theorem 2.10.2 (Euler’s Theorem). Let n ≥ 2 be an integer and a be any integer coprime
to n. then

aϕ(n) ≡ 1 (mod n).
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Problems for Practice

Problem 2.10.1. Find 298 (mod 33)

Problem 2.10.2. Find 530 modulo 62.

Problem 2.10.3. What happens if gcd(a, n) 6= 1? Does there exist any integer m such that
am ≡ 1 (mod n)?

Problem 2.10.4. Show that n | 2n! − 1 for all odd n.

2.11 General Inverses

Look again at Theorem 2.9.1. Using that we obtain that there is some integer x ∈ S for which
ax ≡ 1 (mod n). We call x the inverse of n. Remember the condition that gcd(a, n) = 1.
Thus:

Theorem 2.11.1 (General Inverses). Let n ≥ 2 be any positive integer. Then every number
a with gcd(a, n) = 1 has an inverse, that is a number x such that

ax ≡ 1 (mod n).

We write x = a−1.

This is an amazing theorem. We can now divide modulo any number, well almost. In
fact, we have only proved that if gcd(a, n) = 1, then a has an inverse. What if gcd(a, n) 6= 1?
Does an inverse exist in that case?

Turns out the answer is no. Let’s take an example. Suppose n = 9 and a = 3. Then

3× 1 ≡ 3, 3× 2 ≡ 6, 3× 3 ≡ 0 (mod 9)

3× 4 ≡ 3, 3× 5 ≡ 6, 3× 6 ≡ 0 (mod 9)

3× 7 ≡ 3, 3× 8 ≡ 6, 3× 9 ≡ 0 (mod 9)

We do not find a 1 in there, so 3 does not have an inverse modulo 9. So we have

Lemma 2.11.1 (Inverses don’t always exist). If n is a natural number, and a is an integer,
then a has an inverse modulo n if and only if gcd(a, n) = 1. In particular, if gcd(a, n) > 1,
then a does not have an inverse.

Problems for Practice

Problem 2.11.1. Find the inverse of all {1, 3, 5, 7} modulo 8. What do you observe? Can
you explain this?

Problem 2.11.2. Does there exist an inverse for 5 modulo 10? What about 4?
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Problem 2.11.3. Show that gcd(a−1, n) is also 1.

Problem 2.11.4. Prove that if gcd(a, n) 6= 1, then a cannot have an inverse.
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2.12 Extra Results as Problems

It should not be surprising that there are a lot of interesting results in modular arithmetic.
We present a few as problems here.

Example 2.12.1

Let a,m, n be integers. Suppose d sastifies

am ≡ 1 (mod d) and an ≡ 1 (mod d).

Then,
agcd(m,n) ≡ 1 (mod d).

This is very useful, and is just a modular analgoue of Example 1.10.4 (see comments
below). However, proving this using modular arithmetic is easier. Using Bézout’s lemma,
we find x, y ∈ Z such that mx+ ny = gcd(m,n). So

amx+ny ≡ amx · any ≡ (am)x · (an)y ≡ 1 (mod d)

and we are done.

Comment 2.12.1: Let’s try to prove Example 1.10.4 using this. Suppose d =
gcd(am−1, an−1). To show d = agcd(m,n)−1, we show agcd(m,n)−1 | d and d | agcd(m,n)−1.

The former is easier to prove: just note that agcd(m,n) − 1 divides both am − 1, an − 1,
hence it divides their gcd d. Next, since

am ≡ 1 (mod d) and an ≡ 1 (mod d),

the above example problem tells us that d | agcd(m,n) − 1. Hence we conclude d =
agcd(m,n) − 1.

Example 2.12.2

Suppose a, b, d ∈ Z and n ∈ N such that ad ≡ bd (mod n). Show that

a ≡ b

(
mod

n

gcd(n, d)

)
.

For example, 6 ≡ 2 (mod 4) =⇒ 3 ≡ 1 (mod 2), not 3 ≡ 1 (mod 4). In other words,
if we want to cancel out a common factor of a, b, we would also have to reduce the thing
inside mod. In particular, note that ka ≡ kb (mod n) implies a ≡ b (mod n) if and only if
gcd(k, n) = 1 (this is Problem 2.4.8).

Proof. We have n | d(a − b). Now, the d contributes only to gcd(d, n) in this divisibility.
Hence, n/ gcd(d, n) divides a− b, as needed.



62 CHAPTER 2. MODULAR ARITHMETIC BASICS

A more formal argument would be to write n = gn∗, d = gd∗ with g = gcd(n, d). Then
n∗ | d∗(a − b) but since n∗, d∗ are coprime, hence n∗ | a − b (by Euclid’s lemma, Example
1.8.2).

Example 2.12.3 (Freshman’s Dream)

Let a.b be integers and p be a prime. Prove that

(a+ b)p ≡ ap + bp (mod p).

The is mockingly called the Freshman’s dream because (x + y)n = xn + yn is a very
common mistake made by Freshmen. However, their mistake is not a mistake anymore
modulo p.

The proof of this is to use the binomial theorem:

(a+ b)p = ap +

(
p

1

)
ap−1b+ · · ·+ bp (mod p).

Now, if you try to take examples, you will observe that p divides all the binomial coefficient
above. This is in fact true and a very useful result:

p |
(
p

k

)
∀1 ≤ k ≤ p− 1.

The proof of this is not very hard, since
(
p
k

)
= p!

k!(p−k)! and the numerator is divisible by p,
while the denominator isn’t. So, using this we obtain that all the coefficients are 0 modulo
p, and so we get (a+ b)p ≡ ap + bp (mod p).

Problem 2.12.1. Use Freshman’s dream and induction to prove Fermat’s Little Theorem.

Comment 2.12.2 (Just some facts): The result (a+ b)p = ap + bp is not true over
integers, but is true over integers modulo p. We often denote the set of integers modulo
p by Z/pZ or Fp (we will use the second notation in this book). If we think of Fp as a
”structure”, i.e. a system of certain numbers, then this identity holds over this system.
Turns out there are more interesting and general systems over which this holds true.
However, they are beyond the scope of this book.

Also, if we define a function σ over Fp by saying σ(t) = tp, then we just showed
σ(a+ b) = σ(a) + σ(b). The function σ is called a Frobenius endomorphism and is
also defined over general systems about which we talked above.

Since I mentioned a very convenient notation in the comments, I would highlight it here
too:
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Definition 2.12.1. The set of integers modulo p is denoted by Fp, where p is a prime. It is
also denoted by Z/pZ.

Here, it is important to note that p is a prime. Writing F10 is an incorrect use of the
notation. However, you can use Z/10Z to denote the set of integers modulo 10. The notations
might seem obscure at this point, however it is explained better using the notion of fields
and quotient rings from abstract algebra. So if you fight the notation right now, you would
be contradicting yourself a few years later in college. So just use the notation blindly, as it
is convenient.

Problem 2.12.2. Use induction to show that

(a+ b)p
i ≡ ap

i

+ bp
i

(mod p)

for any prime p and any non-negative integer i.

Example 2.12.4

Let p be a prime. Prove that

xp − x = x(x− 1)(x− 2) . . . (x− (p− 1)) (mod p)

for any x.

Just see that for any x, one of x, x − 1, . . . , x − (p − 1) is 0 modulo p. Hence, the right
side becomes 0 modulo p. What about the left side? Well, that is zero for any residue
too by Fermat’s Little Theorem! Hence, if we define the polynomials f(x) = xp − x and
g(x) = x(x− 1) . . . (x− (p− 1)), then f(x) ≡ g(x) (mod p) for any x.

If you see carefully, this doesn’t say that the polynomials f(x), g(x) are the same (i.e.
have the same coefficients modulo p), it merely says it would give the same value. For
instance, xp ≡ x (mod p) is true for all x value-wise, but the polynomials xp and x are
obviously different.

So the natural question now is if f(x), g(x) are equal as polynomials too. We answer this
question in the special section of the chapter ”Modular Arithmetic Advanced”.

Example 2.12.5 (Wolstenholme’s Theorem)

Let p > 3 be a prime. Prove that if

1 +
1

2
+

1

3
+ · · ·+ 1

p− 1
=
m

n
,

where m,n are coprime integers, then p2 | m.
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The above theorem can be stated by saying

1 +
1

2
+

1

3
+ · · ·+ 1

p− 1
≡ 0 (mod p2) (2.6)

since denominators make sense as long as they are coprime to p2 (why?). For instance, if
p = 7, then this says that 49/20 is divisible by 49.

We have to prove Equation 2.6. A common theme in problem solving is to solve a
simplified problem. In this case, we try to prove Equation 2.6 modulo p instead of p2.
Suppose p = 7. Then

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
=

49

20
.

If we try to find this sum in a different way, we must look at it as an algebraic sum instead of a
number theoretic one. One common trick in such algebra problems is Gaussian pairing, which
is pairing of ”opposite terms” (the same technique Gauss used to find sum of 1+2+ · · ·+100,
the old folklore). This works here if we form the pairs 1

i
+ 1

p−i since the numerator is p. For
instance, when p = 7,

1 +
1

2
+ · · ·+ 1

7
=

(
1 +

1

6

)
+

(
1

2
+

1

5

)
+

(
1

3
+

1

4

)
=

7

1× 6
+

7

2× 5
+

7

3× 4
.

Clearly, each term is divisible by 7 and hence so is their sum!

In general, since p > 2, p − 1 is even and we can pair off terms smoothly. Writing our
observation succinctly using the sigma notation, we find

p−1∑
i=1

1

i
=

p−1
2∑
i=1

(
1

i
+

1

p− i

)
= p

p−1
2∑
i=1

1

i(p− i)
≡ 0 (mod p).

And that’s how we get the result modulo p. What about p2 though? We now only need to
show

p−1
2∑
i=1

1

i(p− i)
≡ 0 (mod p).

Well, at this point we must try something new. First of all, since (p− i) ≡ −i (mod p),
hence each denominator above can be replaced by −i2. Now, pairing did work well for us,
however it complicated one thing, the number of terms. Luckily, we can multiply by 2 to
restore (why?). So

2

p−1
2∑
i=1

1

i(p− i)
≡

p−1∑
i=1

1

i2
(mod p).

Since we are dealing with terms of the form 1/i = i−1, hence there is no way we can miss
inverses; they can easily help us get rid of the fractions. However, we don’t know what i−1

would be. Let’s fall back to our example of p = 7. We can calculate

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+

1

62
≡ 12 + 42 + 52 + 22 + 32 + 62 (mod 7).
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We immediately observe that each residue appears in the sum. Luckily, observing this
fact is harder than proving it. The proof just follows since {1−1, 2−1, . . . , (p − 1)−1} ≡
{1, 2, . . . , p − 1} (mod p) (why? If i−1 ≡ j−1, then cross multiplying gives i ≡ j (mod p)).
So

1

12
+

1

22
+

1

(p− 1)2
≡ −(12 + 22 + · · ·+ (p− 1)2)

= −(p− 1)p(2p− 1)

6
(mod p),

where we used the sum of first n squares formula. We must show the above is 0 mod p.
But since p > 3, hence gcd(p, 6) = 1. Thus p has no contribution in making p(p−1)(2p−1)

6
an

integer, and hence (p−1)(2p−1)
6

is also an integer. So the right side is p times an integer, which
is thus 0 (mod p). So we are done!

Too much discussion happened here. Let’s try and neatly summarize our argument into
one equation! (note where we used = and where ≡, denoting where we used algebraic facts
vs number theoretic facts)

2

p−1∑
i=1

1

i
=
∑
i=1

(
1

i
+

1

p− i

)

=

p−1∑
i=1

p

i(p− i)

≡ p

p−1∑
i=1

−1

i2

≡ −p
p−1∑
i=1

i2

= −p
2(p− 1)(2p− 1)

6
≡ 0 (mod p2).

Can you link each line above with our discussion?
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2.13 Example Problems

I will try to cover a variety of problems in this section. Some may be clever, some may be
boring problems with not much insight. However, you should learn to face the truth!

Example 2.13.1 (USAMO 1991/3)

Show that, for any fixed integer n ≥ 1, the sequence

2, 22, 222 , 222
2

, . . . (mod n)

is eventually constant.

(The tower of exponents is defined by a1 = 2, ai+1 = 2ai . In other terms, we start

working from the top, for instance 222
2

= 224 = 216 = 65536.)

For convenience, define ai to be the ith term of the sequence. Firstly, assume n is odd.
Since 2ϕ(n) ≡ 1 (mod n), hence if we can ak ≡ ak+1 ≡ ak+2 ≡ . . . (mod ϕ(n)) for some k,
we would get

2ak︸︷︷︸
=ak+1

≡ 2ak+1︸︷︷︸
=ak+2

≡ 2ak+2︸︷︷︸
=ak+3

≡ . . . (mod n),

which is what we want. So if we can show if the sequence 〈ai〉 eventually becomes constant
modulo ϕ(n), we can conclude that it eventually becomes constant modulo n as well. So we
have to prove the same problem for ϕ(n) instead.

The key observation now is ϕ(n) < n. So we have reduced the problem from case n to a
smaller case. Hence, we can use (strong) induction! Here’s how it goes:

Proof. Check the base case of n = 1, and assume the result till some n− 1. If n is odd, we
can reduce the problem to smaller case ϕ(n), for which it is true by the induction hypothesis.
We just have to manage n even now. In this case, we try to eliminate the ”even part” of n
and work. So if n = 2mn∗ with n∗ odd, then pick k large enough such that ak > m. So

2ak ≡ 2ak+1 (mod n)⇔ 2ak−m ≡ 2ak+1−m (mod n∗)

and again use the induction hypothesis as n∗ < n (here we used the result from Example
2.12.2).

Sometimes, simple modular considerations can be useful:

Example 2.13.2

Given
34! = 295232799039a041408476186096435b0000000,

in decimal representation, find the numbers a and b.
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Proof. We know that 9|34!. Also we know from the rule of divisibility by 9 that for all
naturals n, n ≡ S(n) (mod 9), where S(n) is the sum of digits of n. Hence, 9|a + b + 136
and so a+ b ∈ {8, 17}, as 0 ≤ a, b ≤ 9.

We also know that 11|34!. Also, a number modulo 11 is congruent to the alternating sum
of the digits in the number, read from left to right. Therefore, 11|(77+a)−(59+b) = 18+a−b
and so a− b ∈ {−7, 4} as 0 ≤ a, b ≤ 9.

Now, note that a + b and a − b have the same parity. Hence, the only possibilities are
(a+ b, a− b) = (8, 4) and (17,−7), and the two cases yield (a, b) = (6, 2) or (a, b) = (5, 12),
respectively. But since a, b ≤ 9, hence the second case is impossible. Thus, (a, b) = (6, 2)
proving the claim.

Another example where modular constraints help us bound things:

Example 2.13.3 (St. Petersburg 2008)

Given three distinct natural a, b, c show that

gcd(ab+ 1, bc+ 1, ca+ 1) ≤ a+ b+ c

3

Proof. Suppose d = gcd(ab+1, bc+1, ca+1). Then ab, bc, ca ≡ −1 (mod d), and so ab−bc =
b(a − c) ≡ 0 (mod d). Now if b, d have a common factor, say p > 1, then p | d | ab + 1.
Combining with p | b, we get p | ab + 1 − b(a) = 1, a contradiction. Hence b, d are coprime
and so d | a− c.

Similarly, d | a − b, b − c. Thus, a ≡ b ≡ c (mod d). Now, assume without loss of
generality that a > b > c (strict inequalities since they are given to be distinct). Hence
a ≥ b+ d ≥ c+ 2d. So

a+ b+ c ≥ 3a+ 3d ≥ 3d =⇒ a+ b+ c

3
≥ d.

Hence we are done.

Not all problems are nice and sweet, some may involve simple ideas with which you work
a lot, typically means a lot of case work. For instance the following:

Example 2.13.4 (Azerbaijan Balkan Math Olympiad Third TST 2015)

Find all natural numbers n for which there exist primes p and q such that the following
conditions are satisfied:

1. p+ 2 = q, and

2. 2n + p and 2n + q are both primes
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Proof. We will show that such primes exist if and only if n ∈ {1, 3}. By these conditions,
we have that (p, p+ 2, p+ 2n, p+ 2n + 2) are all primes.

Clearly, p 6= 2 because else q = 4, which is not a prime. Let us assume for the moment
that p 6= 3. Thus, p ≥ 5.

1. If n is even, then (p, p + 2, p + 2n, p + 2n + 2) ≡ (p, p + 2, p + 1, p) (mod 3) and so at
least one of p, p + 2, or p + 2n is divisible by 3. This is clearly false since we assumed
these numbers are primes and p ≥ 5.

2. If n is odd, then (p, p+ 2, p+ 2n, p+ 2n + 2) ≡ (p, p+ 2, p+ 2, p+ 1) (mod 3) and so at
least one of p, p + 2, or p + 2n + 2 is divisible by 3, and since they are all primes, one
of them must be 3. This is again a contradiction because we assumed p ≥ 5.

Hence, we must have p = 3 and (3 + 2n, 5 + 2n) is a pair of primes. It is easy to see that
this condition is satisfied for n = 1 and n = 3 but not for n = 2. We will show that there is
no n > 3 that satisfies this condition. First, notice that if n > 3, then

5 + 2n > 3 + 2n > 13.

If n is even, say n = 2z, then 5 + 2n = 5 + 4z ≡ 5 + 1 ≡ 0 (mod 3), but since 5 + 2n > 3,
this number cannot be a prime, a contradiction. Thus, n is odd. Set n = 2k + 1 for some
integer k.

If k is even, then

3 + 2n = 3 + 2 · 2n−1 = 3 + 2 · 4k

≡ 3 + 2 · (−1)k

≡ 3 + 2 ≡ 0 (mod 5),

which is a contradiction because 3 + 2n > 5. So, k is odd. Set k = 2r + 1 for some integer
r, and so n = 4r + 3.

If r ≡ 1 (mod 3), write r = 3z + 1. Then, we have

5 + 2n = 5 + 24r+3 = 5 + 8 · 16r

≡ 5 + 2r

≡ 5 + 23z+1

≡ 5 + 2 · 8z

≡ 5 + 2 ≡ 0 (mod 7),

and we get a similar contradiction to the ones previous cases.

If r ≡ 2 (mod 3), say r = 3z + 2, then

3 + 2n = 3 + 24r+3 = 3 + 8 · 16r

≡ 3 + 2r

≡ 3 + 23z+2

≡ 3 + 4 · 8z

≡ 3 + 4 ≡ 0 (mod 7),
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a contradiction.

This means that 3|r. Write r = 3s for some integer s so that n = 12s+ 3. Thus,

5 + 2n = 5 + 212s+3

= 5 + 8 ·
(
212
)s

≡ 5 + 8 ≡ 0 (mod 13),

a contradiction.

Hence, we have exhausted all the possibilities and so n = 1 and n = 3 are the only
possible solutions.

Finally, we look at an amazing combinatorial-number theory problem. Euclid gave a
construction for showing the infinitude of primes. Somebody made a problem out of that
construction.

Example 2.13.5

Let P be the set of all prime numbers over naturals. Let M be a subset of P with at
least 3 elements. Choose any proper subset A of M. Consider the number

nA := −1 +
∏
p∈A

p

Suppose that any prime divisor of nA lies in M for all A ⊂M.

Show that M ≡ P .

We start by trying to manually show each prime is in M, at least for as many primes as
we can. Firstly, M has at least 3 elements. So choose an odd prime p ∈ M. Then n{p} is
even and so 2 ∈M.

Next, if a prime p of the form 3k + 1 lies in M, then n{p} is divisible by 3. Otherwise
there exists a prime p of the form 3k + 2 and so n{2,p} = −1 + 2p is divisible by 3. Thus, in
either case we get that 3 ∈M.

Then n{2,3} = 5 implies that 5 ∈M. Also, n{3,5} =⇒ 7 ∈M. The problem has the same
construction as that of Euclid’s. So this problem is screaming at us to try to do what he
did, show that the ”set” is infinite; in case the set of primes, and in our case the set M.

Claim. M is an infinite set

Proof. Assume on the contrary, and set M = {p1, p2, · · · pn}. We can’t directly consider nM
since the subset we choose must be a proper subset.

Hence, choose S = {p1, p2, · · · , pi−1, pi+1, · · · , pn}, i.e. we have removed pi from M. Let
P be the product of the elements of M. Then every factor of nS must be in M, and so we
must have

P

pi
− 1 = pai for some a
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This is true because gcd(nS, pj) = 1 for all j 6= i. Now this holds for all primes pi ∈ M. We
act greedily and choose pi = 2. Then

P

2
− 1 = 2a

Note that 7|P since 7 ∈M. Hence considering this equation modulo 7 yields

2a ≡ −1 (mod 7)

It is easy to see that this has no solutions and so we are done.

(We could also have done this mod 15 as 3, 5 ∈M.)

Now we just need to show that given any prime q, there exists some good set of primes
A from M such that q|nA. The best we can do is to choose a set of equal primes from M,
but this is not possible since we can’t use repeated elements. But we can fix this idea.

Note that M is infinite so mod q some residue occurs infinitely many times in M. Suppose
that p1 ≡ p2 ≡ · · · modulo q. Then take A to be the first q − 1 elements from pi. Then

nA ≡ pq−11 − 1 ≡ 0 (mod q)

and we are done!
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2.14 Practice Problems

Problem 2.14.1. How many prime numbers p are there such that 29p + 1 is a multiple of
p?

Problem 2.14.2 (Useful Result). Let p be a prime and 0 ≤ k ≤ p−1 be an intger. Prove
that (

p− 1

k

)
≡ (−1)k (mod p).

Hints: 180

Problem 2.14.3 (IMO 1979/1). Let a and b be natural numbers such that

a

b
= 1− 1

2
+

1

3
− 1

4
+ · · · − 1

1318
+

1

1319
.

Prove that a is divisible by 1979. (Note: 1979 is a prime) Hints: 350 407

Problem 2.14.4 (RMO 2016 P62). Let {a1, a2, a3, . . . , } be a strictly increasing sequence
of positive integers in an arithmetic progression. Prove that there is an infinite subsequence
of the given sequence whose terms are in a geometric progression. Hints: 288

Problem 2.14.5. Let f(x) be a polynomial with integer coefficients. Show that there does
not exist a N such that f(x) is a prime for all x ≥ N. In other words, f(x) is not eventually
always a prime. This problem shows that prime numbers don’t follow any polynomial pattern
either. Hints: 308

Problem 2.14.6 (IMO 2005/4). Determine all positive integers relatively prime to all the
terms of the infinite sequence

an = 2n + 3n + 6n − 1, n ≥ 1.

Hints: 130

Problem 2.14.7 (IMO 1986/1). Let d be any positive integer not equal to 2, 5, or 13.
Show that one can find distinct a and b in the set {2, 5, 13, d} such that ab−1 is not a perfect
square. Hints: 379 84 9

Problem 2.14.8. Let a and b be two relatively prime positive integers, and consider the
arithmetic progression a, a+ b, a+ 2b, a+ 3b, . . .

1. (G. Polya) Prove that there are infinitely many terms in the arithmetic progression
that have the same prime divisors. Hints: 265 156 349

2. Prove that there are infinitely many pairwise relatively prime terms in the arithmetic
progression. Hints: 487 37

2Regional Mathematical Oolympiad (the AIME of India)
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Problem 2.14.9. Prove that

1. every positive integer has at least as many divisors of the for 4k + 1 as divisors of the
form 4k + 3;

2. there exist infinitely many positive integers which have as many divisors of the form
4k + 1 as divisors of the form 4k + 3;

3. there exist infinitely many positive integers which have more divisors of the form 4k+1
than divisors of the form 4k + 3.

Hints: 457 116 435

Problem 2.14.10 (IberoAmerican 2005/3). Let p > 3 be a prime. Prove that if

p−1∑
i=1

1

ip
=
m

n

with gcd(m,n) = 1, then p3 | m. Hints: 357 207 284 231

Problem 2.14.11 (Sierpiński). Prove that for any positive integer s, there is a positive
integer n whose sum of digits is s and s | n. Hints: 200 397 197 Sol: pg. 280

Problem 2.14.12 (IMO Shortlist 2001 N4). Let p ≥ 5 be a prime number. Prove that
there exists an integer a with 1 ≤ a ≤ p− 2 such that neither ap−1 − 1 nor (a+ 1)p−1 − 1 is
divisible by p2. Hints: 204 218 467 66

Problem 2.14.13 (USAMO 2018/4). Let p be a prime, and let a1, . . . , ap be integers.
Show that there exists an integer k such that the numbers

a1 + k, a2 + 2k, . . . , ap + pk

produce at least 1
2
p distinct remainders upon division by p. Hints: 194 241 115 Sol: pg. 281

Problem 2.14.14 (Balkan 2016/3). Find all monic polynomials f with integer coefficients
satisfying the following condition: there exists a positive integer N such that p divides
2(f(p)!) + 1 for every prime p > N for which f(p) is a positive integer. (A monic polynomial
has a leading coefficient equal to 1.) Hints: 341 321 67 436

Problem 2.14.15 (Iran 3rd round 2017 Numbers theory final exam P1). Let x and
y be integers and let p be a prime number. Suppose that there exist relatively prime positive
integers m and n such that

xm ≡ yn (mod p)

Prove that there exists an unique integer z modulo p such that

x ≡ zn (mod p) and y ≡ zm (mod p).

Hints: 20 365 108 Sol: pg. 281
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Problem 2.14.16 (IMO Shortlist 2015 N3). Let m and n be positive integers such that
m > n. Define

xk =
m+ k

n+ k

for k = 1, 2, . . . , n + 1. Prove that if all the numbers x1, x2, . . . , xn+1 are integers, then
x1x2 . . . xn+1 − 1 is divisible by an odd prime. Hints: 104 328 192 471 Sol: pg. 281

Problem 2.14.17 (ELMO 2019/5). Let S be a nonempty set of positive integers such
that, for any (not necessarily distinct) integers a and b in S, the number ab+ 1 is also in S.
Show that the set of primes that do not divide any element of S is finite. Hints: 233 30 10 480

Sol: pg. 282
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z More on Binomial Coefficients

One property of the binomial coefficient we have seen so far is

p |
(
p

k

)
∀1 ≤ k ≤ p− 1.

Another interesting property is Problem 2.14.2. In this special section, we discuss more.

Lucas’s Theorem

This theorem is very useful in understanding how binomial coefficients behave modulo primes.
But first, we do a problem:

Example 2.14.1

Show that the coefficients of a binomial expansion (a+b)n where n is a positive integer,
are all odd, if and only if n is of the form 2k − 1 for some positive integer k.

We want to show that (
n

m

)
≡ 1 (mod 2) ∀ 0 ≤ m ≤ n

if and only if n = 2k − 1. (In other words, this tells us excatly which rows of the Pascal
triangle have all terms odd).

Suppose that n = 2k − 1. We want to show
(
n
m

)
is always odd. Since k is arbitrary,

our first bets should be on induction. Assume the result till k − 1 and let’s prove it for k.
Since we want to look at all the binomial coefficients at once, it is best to use the binomial
theorem, and the simplest expression is (X + 1)n. So∑

0≤m≤n

(
n

m

)
Xm = (X + 1)n

= (X + 1)2
k−1

= (X + 1)2·(2
k−1−1)+1

=
(

(X + 1)2
k−1−1

)2
· (X + 1).

So, if we let t = 2k−1−1, then (X+1)t = X t+at−1X
t−1+ · · ·+a1X+1, where a1, a2, . . . , at−1

are all odd (why?). So(
(X + 1)2

k−1+1
)2
· (X + 1) =

(
X t + at−1X

t−1 + · · ·+ 1
)2

(X + 1)

At this stage, we can simply look at the coefficient of Xm (for any m) in the above expansion
and check it will be odd. For instance, the coefficient of Xn−1 = X2t would be (1+2at−1) (of
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course, you would need to elaborate more on why the coefficients would be odd in a proper
proof, but I leave the details to the interested reader). However, since

(
n
m

)
was the coefficient

of Xm, hence this binomial coefficient is odd.

Thus, we have proven one direction of the problem. The other direction is more tricky,
which asks us to show that

(
n
m

)
is always odd for 1 ≤ m ≤ n implies n is of the form 2k + 1.

So I will just give the theorem’s statement:

Theorem 2.14.1 (Lucas’s Theorem). For non-negative integers m and n and a prime p,
the following congruence relation holds:

(
n

m

)
≡

k∏
i=0

(
ni
mi

)
(mod p)

where

n = nkp
k + nk−1p

k−1 + · · ·+ n1p+ n0

and

m = mkp
k +mk−1p

k−1 + · · ·+m1p+m0

are the base p expansions of m and n respectively. This uses the convention that
(
n
m

)
= 0 if

n < m.

Note that this finishes the problem above easily, since we must have
(
ni
mi

)
must always

be odd impliying that ni = 1, which corresponds to n be of the form 11 . . . 1(2) = 2k − 1 for
some k.

The cleanest proof for this uses generating functions, with a method slightly similar to
the one we found for the previous problem. However, there are some technical details you
need to know to fully appreciate the proof, so you can find it in the special section of the
chapter: Integer Polynomials.

This theorem is very useful in proving some binomial identities. Here are some problems
to try:

Problem 2.14.18. Let a, b ∈ N and p be a prime. Prove that(
pa

pb

)
≡
(
a

b

)
(mod p).

Problem 2.14.19. Find a formula for the number of entries in the nth row of Pascal’s
triangle that are not divisible by p, in terms of the base-p expansion of n.

2 Interesting Lemmas

In this part, we talk about two interesting properties related to the binomial coefficients.
They give nice formulas for

(
p
k

)
and

(
k
p

)
.
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Lemma 2.14.1. Let p be an odd prime. Then(
k

p

)
≡
⌊
k

p

⌋
(mod p),

where b•c represents the floor function (aka the greatest integer function).

This is not very tricky to prove, and very easy if you use Lucas’s theorem. So the proof
is left as an exercise. Another useful property is

Lemma 2.14.2. Let
1

k
≡ (−1)k−1

p

(
p

k

)
(mod p2).

The proof to this is pretty straightforward too:

1

p

(
p

k

)
=

(p− 1)(p− 2) . . . (p− k + 1)

k(k − 1) . . . 1

≡ (−1)(−2) . . . (−k + 1)

k(k − 1) . . . 1

= (−1)k−1
1

k
(mod p).

Here are two problems using the above lemma (note: they are challenging problems even
after using this lemma)

Problem 2.14.20 (ELMO 2009/6). Let p be an odd prime and x be an integer such that
p | x3 − 1 but p - x− 1. Prove that

p | (p− 1)!

(
x− x2

2
+
x3

3
− · · · − xp−1

p− 1

)
.

Problem 2.14.21 (IMO Shortlist 2011 N7). Let p be an odd prime number. For every
integer a, define the number

Sa =
a

1
+
a2

2
+ · · ·+ ap−1

p− 1
.

Let m,n ∈ Z, such that

S3 + S4 − 3S2 =
m

n
.

Prove that p divides m.



Chapter 3

Arithmetic Functions

This chapter is largely about discussion of some common arithmetic functions you will come
across in Olympiads, and talks more about multiplicative functions in general too.

But first we ask: what is an arithmetic function? How are they different from normal
functions? Well, here’s the technical definition:

Definition 3.0.1. An arithmetic function, often called as a number-theoretic func-
tion, is a function f : N→ C.1

So the difference really is only in the domain and range. Now here are two things we
have defined earlier too:

Definition 3.0.2. An arithmetic function is called multiplicative if

f(mn) = f(m)f(n) for all coprime m,n.

It is called completely multiplicative if

f(mn) = f(m)f(n) for all m,n.

Multiplicative functions are very interesting and have many interesting operations and
properties, for instance the Dirichlet Convolution.

There’s also the notion of additive functions:

Definition 3.0.3. An arithmetic function is called additive is

f(mn) = f(m) + f(n) for all coprime m,n.

However, this is not so useful for us now. We will largely talk about one additive function
in this book, which would be νp, the largest exponent function.

Question 3.0.1. Try and guess the meaning of completely additive arithmetic func-
tions.

Let’s now look at some arithmetic functions and start the game.

1Hardy & Wright include in their definition the requirement that an arithmetical function ”expresses
some arithmetical property of n” (source: [14])

77
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3.1 Number of Divisors

I feel that starting this topic without the following classic would be injustice:

Example 3.1.1

The cells in a jail are numbered from 1 to 100 and their doors are activated from a
central button. The activation opens a closed door and closes an open door. Starting
with all the doors closed the button is pressed 100 times. When it is pressed the k-th
time the doors that are multiples of k are activated. Which doors will be open at the
end?

Let’s make a table to get an idea of the process. A ”1” denotes an open door, and a ”0”
denotes a closed door.

1 2 3 4 5 6 7 8 . . . 100
Initial 0 0 0 0 0 0 0 0 . . . 0

First move 1 1 1 1 1 1 1 1 . . . 1
Second move 1 0 1 0 1 0 1 0 . . . 0
Third move 1 0 0 0 1 1 1 0 . . . 0
Fourth move 1 0 0 1 1 1 1 1 . . . 1
Fifth move 1 0 0 1 0 1 1 1 . . . 0
Sixth move 1 0 0 1 0 0 1 1 . . . 0

...
...

...
...

...
...

...
...

...
. . .

...

As of now, we are looking at the rows (each move). Instead, let’s now look at the columns2.
Then we see that, the number 6 for instance, is activated at the kth move if and only if k | 6.
Thus, 6 would be swapped at the 1st, 2nd, 3rd and 6th moves. So, it goes 0→ 1→ 0→ 1→ 0
and so it’s 0 at the end (confirm this from the table).

So, in general, we find that n is operated d(n) times, where d(n) is the number of divisors
of n. So if we can know more about the arithmetic function d(n), we might be able to tackle
this problem. This is what this section in the book has to offer.

Definition 3.1.1. Let n be a positive integer. Then the number of divisors of n as a function
is denoted by d(n).

Now divisibility is best dealt with by looking at the prime factors. Let’s take an example,
say n = p3. Then its divisors will be

{1, p, p2, p3} =⇒ d(p3) = 4.

Suppose we keep two prime factors this time; n = p3q2. Then its divisors will be

{1, p, p2, p3, q, pq, p2q, p3q, q2, pq2, p2q2, p3q2} =⇒ d(p3q2) = 12.

2Double Counting anyone?
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So in general, a prime divisor is of the form pαqβ where 0 ≤ α ≤ 3 and 0 ≤ β ≤ 2. So there
are 4 options for α and 3 options for β. Thus, basic combinatorics3 tells us that there would
be 4× 3 = 12 divisors. Note that this matches with what we wrote above. Generalizing this
idea, we obtain the following formula:

Theorem 3.1.1 (Formula for d(n)). Let n ∈ N such that its prime factorization is

n = pα1
1 p

α2
2 . . . pαkk .

Then

d(n) = (1 + α1)(1 + α2) . . . (1 + αk).

So, back to the Example 3.1.1, if we want a door to be open at end (meaning a 1 at the
end), it must be operated on an odd number of times. So, we would want

d(n) = (1 + α1)(1 + α2) . . . (1 + αk)

to be odd. This is possible if and only if all of the factors (1 + α1), (1 + α2), . . . (1 + αk)
are all odd, which corresponds to α1, α2, . . . , αk all being even. This is the same as saying
n is a perfect square (why?). Hence the doors that will be open at the end would be
1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

Question 3.1.1. Where was the hypothesis ”the button is pressed 100 times” used?

We have thus also shown the following:

Lemma 3.1.1. The function d(n) is odd if and only if n is a square.

Is there a formula for d(n) in terms of n? Not really, but we can bound it to get an idea
of how large d(n) can really be. For instance, the simplest bound is:

Lemma 3.1.2. We have

d(n) ≤ 2
√
n.

One way to try and do this is directly use the formula. Then we have to prove:∏
(1 + αi) ≤ 2

∏
p
αi/2
i .

However, this seems weird to prove. So we try something different, and maybe something
simpler. Because of the 2 IN 2

√
n, we feel some pairing type argument might be involved in

the proof.

Indeed, if d | n, then n/d | n. Also, since d · n/d = n, hence one of them is smaller than√
n (why?). This is sufficient to imply the bound (why?).

Question 3.1.2. Is d(n) multiplicative?

3The principle of multiplication, to be more specific.
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3.2 Sum of Divisors

Suppose now we want the sum of divisors of n. This is often denoted by σ(n). Suppose
n = p3. Then the sum of its divisors is

1 + p+ p2 + p3 =
p4 − 1

p− 1
.

Consider n = p3q2. We mentioned all the divisors of p3q2 in the previous section. To add it,
we need to be clever with the grouping. So let’s make a table for all its divisors:

1 p p2 p3

1 1 p p2 p3

q q pq p2q p3q
q2 q2 pq2 p2q2 p3q2

This is much more organized. We now fix a row and add its elements. Then we get

(1 + p+ p2 + p3) + q(1 + p+ p2 + p3) + q2(1 + p+ p2 + p3) = (1 + q + q2)(1 + p+ p2 + p3).

Thus,

σ(p3q2) =
p4 − 1

p− 1
· q

3 − 1

q − 1
.

If you think carefully, you would realize this is the same as σ(p3q2) = σ(p3)σ(q2). This raises
the question, is σ multiplicative? The answer is yes, and the proof is an argument similar to
the one above. We can write prove this in one line: Since all the factors of n are numbers of
the form pβ11 . . . pβkk with 0 ≤ βi ≤ αi for all i, hence we can use the identity

σ(n) =
∑

0≤βi≤αi
∀1≤i≤k.

pβ11 . . . pβkk =

( ∑
0≤β1≤α1

pβ11

)
. . .

( ∑
0≤βk≤αk

pβkk

)
.

Note here that the right side is σ(pα1
1 ) . . . σ(pαkk ), which corresponds to σ being multiplicative.

Question 3.2.1. Convince yourself the above identity is true. If you can’t directly see why,
try and take examples, for instance n = p3q2, pq2, pqr2.

Hence, we obtain the following formula for σ :

Theorem 3.2.1 (Formula for σ(n)). Let n ∈ N such that its prime factorization is

n = pα1
1 p

α2
2 . . . pαkk .

Then

σ(n) =
pα1+1
1 − 1

p1 − 1
. . .

pαk+1
k − 1

pk − 1
.

However, more useful than just the formula above is the following fact:

Theorem 3.2.2. The function σ is multiplicative. Further,

σ(pα) = 1 + p+ p2 + · · ·+ pα =
pα+1 − 1

p− 1
.



3.3. EULER’S TOTIENT FUNCTION 81

3.3 Euler’s Totient Function

We have already discussed this function before, however, I would like to remind you of the
very important fact that ϕ is multiplicative. We will first give the morally right way to prove
this

Question 3.3.1. Show that if gcd(m,n) = 1, then gcd(x,mn) = 1 if and only if gcd(x,m) =
gcd(x, n) = 1 (again, this is an if and only if. You have to show that both =⇒ and ⇐=).

Now we look at all the numbers less than mn and pinpoint the ones which are coprime
to mn (the idea of looking at the larger picture is quite recurrent, isn’t it?). Since we wanna
do this in an organized way, we make a table (you should be used to this by now)

1 2 . . . m
m+ 1 m+ 2 . . . 2m

...
...

. . .
...

m(n− 1) + 1 m(n− 1) + 2 . . . mn.

Clearly, each row is a complete residue class modulo m (why?). There are this ϕ(m) numbers
in each row coprime to m.

Also, each column is a complete resiude class modulo n (why?). Thus, there are ϕ(n)
elements in each column that we have our eyes on. Overall, there are ϕ(m)ϕ(n) elements
coprime to mn that are less than it, and so we are done since there are ϕ(mn) such numbers
in the list by definition.

We now have the following beautiful result due to Gauss:

Theorem 3.3.1 (Gauss). For any positive integer n, we have∑
d|n

ϕ(d) = n.

For instance, if n = 10, then ϕ(1) +ϕ(2) +ϕ(5) +ϕ(10) = 1 + 1 + 4 + 4 = 10. As of now
we present a very clever proof, and the idea shown here is very useful.

Proof. Consider the n fractions:
1

n
,

2

n
. . .

n

n
.

Reduce each fraction to its lowest form. Then any new denominator d will clearly divide n.
Further, the number of fractions with denominator d is ϕ(d) (test this with an example).
This is because we get d in the denominator after cancelling the factor n/d and the remaining
numerator must be coprime to d (else we can reduce the fraction further). Hence, the number
of fractions (which is n) is also the sum ϕ(d) as d varies over all the divisors of n (why?). So
we obtain the desired identity.

Let’s hunt for a more direct proof now. So look again at this result for n = 10. Observe
that

ϕ(1) + ϕ(2) + ϕ(5) + ϕ(10) = 1 + ϕ(2) + ϕ(5) + ϕ(2)ϕ(5) = (1 + ϕ(2))(1 + ϕ(5)).
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If the result was true for n = 2, 5, then we would get 1 +ϕ(2) = 2, 1 +ϕ(5) = 5. So the right
side above becomes 2× 5 = 10. So this seems to resemble ”multiplicativeness”.

In general, this is true; the left side of Theorem 3.3.1 is multiplicative. Again, this can
be expressed neatly using the summation notation (which does exactly what we did above)

∑
d|n

ϕ(d) =
∑

0≤βi≤αi
∀1≤i≤k.

ϕ
(
pβ11 . . . pβkk

)
=

( ∑
0≤β1≤α1

ϕ
(
pβ11

))
. . .

( ∑
0≤βk≤αk

ϕ
(
pβkk

))
. (3.1)

(Note the resemblance of this with the way in which we proved σ is multiplicative).

So, now we just need to show ϕ(1)+ϕ(p)+ϕ(p2)+ · · ·+ϕ(pα) = pα (which is the theorem
for n = pα). However, this is easy to do using ϕ(pk) = pk − pk−1 (We get a telescoping sum.
Try it yourself). So the right side of Equation 3.1 becomes

pα1
1 . . . pαkk = n.

And this proves
∑

d|n ϕ(d) = n, so we just found another proof!

I hope this was enough to convince you how powerful the idea of a function being mul-
tiplicative really is. The next section is now a more general discussion on these functions,
which teaches us how to use the above idea in a more general setting and use them to their
full power.

Problems for Practice

Problem 3.3.1. Prove that for all composite n

ϕ(n) ≤ n−
√
n.

Prove that for all n 6∈ {2, 6},
ϕ(n) ≥

√
n.

The problem below uses basic analysis, so feel free to skip it if needed.

Problem 3.3.2 (The zeta function). The zeta function is defined as

ζ(s) =
1

1s
+

1

2s
+

1

3s
+ . . . .

Note that this is an infinite sum, and does not always converge to a single value. For instance,
ζ(−1) = 1 + 2 + 3 + 4 + . . . clearly diverges.

1. Use basic calculus to show that ζ(s) converges if and only if s > 1. In particular, show
that ζ(1) diverges.

2. Use the Fundamental Theorem of Arithmetic, prove that

ζ(s) =
∏

p prime

(
1 +

1

ps
+

1

p2s
+ . . .

)
=
∏

p prime

(
ps

ps − 1

)
.
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3. (Optional) Use the result above to show that there are an infinite number of primes.

Now, a famous theorem (Basel’s problem) states that

1

12
+

1

22
+

1

32
+ · · · = ζ(2) =

π2

6
.

Prove that, (
6

π2

)
n2 < σ(n)ϕ(n) < n2.

Comment 3.3.1: This implies that the product σ(n)ϕ(n) behaves like n2, even though
both the terms aren’t stable (in the sense that they can be really large at a point and
very small all of a sudden. The product somehow balances out each others growth).

3.4 Multiplicative Functions

This section will be slightly harder and technical (considering this chapter is in the ”Funda-
mentals” part of the book) so can be skipped for a first reading. Also, some experience with
the sigma notation (especially swapping the order of summations) is highly recommended.

Before we even start, I would highlight the star idea that motivated us to think about
multiplicative functions: It is sufficient to determine a multiplicative function for
prime powers. Now let’s generalize the summation idea we used to prove σ and the LHS
of Theorem 3.3.1 are multiplicative:

Theorem 3.4.1. Let f be a multiplicative function. Then

F (n) =
∑
d|n

f(d)

is also multiplicative.

Even though it might seem to ”look” different from σ, you can immediately see how this
implies that the LHS of Theorem 3.3.1 is multiplicative. The proof of this Theorem has the
same idea, which is splitting the sum into product of sums:

Proof. We want to show F (mn) = F (m)F (n). This is possible using the definition of F
(note that each divisor of mn can be broken down into a unique divisor of m times a divisor
of n since m,n are coprime):

F (mn) =
∑
d|mn

f(mn) =

∑
d|m

f(m)

∑
d|n

f(n)

 = F (m)F (n).

So we are done.
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Let’s see the power of this. In particular, let’s see how is this related to σ. Write

σ(n) =
∑
d|n

d =
∑
d|n

id(d).

Here, id is the identity function, i.e. id(n) = n for all n. Clearly id is multiplicative, and
hence so is σ using Theorem 3.4.1! That was easy, right? Thus, once we determine σ for
prime powers, we basically have determined σ for all integers. The prime power is case is
easy to do, so we can prove the formula for σ very easily using this result.

Further, since ϕ is multiplicative, hence∑
d|n

ϕ(n)

becomes multiplicative. So we just have to prove Theorem 3.3.1 for prime powers now, which
we had shown was very easy!

We can now do much more than just σ. Write

d(n) =
∑
d|n

1 =
∑
d|n

1(d).

Here, the function 1 is defined as the constant function which always has the value 1. Clearly,
1 is multiplicative. Hence, by Theorem 3.4.1, d is multiplicative! Of course, d(pα) = α + 1,
so we can directly get the formula for d too.

Now we define something called the Möbius function, which will be very important for
our future discussion.

Definition 3.4.1. The Möbius function µ(n) is defined as:

µ(n) =


1 if n = 1

(−1)m if n is square-free and has m prime divisors

0 if n is not square-free.

An integer n is called square-free if it is not divisible by any square number (greater than 1),
i.e. any prime divisor has exponent at most 1 in n.

For instance, µ(1) = 1, µ(11) = −1, µ(6) = 1 and µ(12) = 0. This function is very useful
because the following 2 properties:

Theorem 3.4.2. The Möbius function µ is multiplicative.

I won’t leave everything as an exercise, but if you want you can try to prove it. Anyway,
if m or n is not squarefree, then neither is mn so µ(mn) = 0 = µ(m)µ(n). Otherwise since
gcd(m,n) = 1, they have no common factors and hence mn is not square free, so µ(mn) 6= 0.
Assume m,n > 1 (deal with that case separately, it’s an easy one). Now clearly µ(mn) =
µ(m)µ(n) holds since the number of prime factors get added (use (−1)x+y = (−1)x(−1)y).
That’s it, we are done. Another very useful property is the following:
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Theorem 3.4.3. We have ∑
d|n

µ(d) =

{
1 if n = 1

0 if n > 1.

This is not very hard to prove, and in fact a good combinatorics exercise. I will leave the
proof as an exercise. There’s a useful notation for the right side:

Definition 3.4.2. The Dirichlet Delta Function δ is an arithmetic function defined by

δ(n) =

{
1 if n = 1

0 if n > 1.

It is not to hard to see that δ is multiplicative. Theorem 3.4.3 thus says∑
d|n

µ(d) = δ(n).

Problems for Practice

Problem 3.4.1. Prove Theorem 3.4.3.

Problem 3.4.2. Let d(n) denote the number of positive divisors of n. For a positive integer
n we define f(n) as

f(n) = d(k1) + d(k2) + · · ·+ d(km)

where 1 = k1 < k2 < · · · < km = n are all divisors of the number n. Find a formula for f(n)
in terms of the prime factorization of n.

3.4.1 Dirichlet Convolution

We observe the sum with indices varying over d | n are a common theme in multiplicative
function. Based on this idea, we have something called the Dirichlet convolution:

Definition 3.4.3. Let f, g be two arithmetic functions (not necessarily multiplicative). Then
the Dirichlet Convolution of f, g, denoted by f ∗ g is defined as

f ∗ g =
∑
d|n

f(d)g
(n
d

)
.

For instance,

(f ∗ g) (15) = f(1)g(15) + f(3)g(5) + f(5)g(3) + f(15)g(1).

Now observe that
∑

d|n f(d) = f ∗ 1. Further, f(n) = f ∗ δ. Some important examples are
the following:

Lemma 3.4.1. We have the following:
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1. µ ∗ 1 = δ.

2. 1 ∗ 1 = d.

3. id ∗ 1 = σ.

4. ϕ ∗ 1 = id.

5. µ ∗ 1 = δ.

(Prove these) We have the following properties of ∗ that make it very useful:

Theorem 3.4.4. Some properties of the binary operation ∗ are

• Commutative, i.e. f ∗ g = g ∗ f ;

• Associative, i.e. (f ∗ g) ∗ h = f ∗ (g ∗ h);

• Identity is δ4, i.e. f ∗ δ = f ;

• Distributive over Addition, i.e. f ∗ (g + h) = f ∗ g + f ∗ h.

• The convolution of two multiplicative functions is multiplicative.

(This gives that (f, ∗) is an abelian group, if you know what it means.) We won’t prove
these, though it’s a good exercise. Note that the last property generalizes Theorem 3.4.1. It
is in general very useful to prove a function is multiplicative.

Now consider the following problem:

Example 3.4.1 (Classic)

We say a binary string is special if it cannot be expressed as a concatenation of several
identical smaller strings. For example, 101101101 is not special, but 10101 is. How
many special strings are there of length n?

Directly approaching to count these is hard. So we take a different route. Firstly, there
are 2n binary strings of length n. Suppose that f(n) is the number of special strings of length
n. Clearly, every string of length n is uniquely expressed as a concatenation of a special string
of length d (concatenate it n/d times) where d divides n. So we find

2n =
∑
d|n

f(d) = f ∗ 1.

This is useful, however not enough to obtain f. We want a way to ”invert” the above. This is
exactly what is done by the Möbius Inversion Formula, which we discuss in the next section.

4The identity, unlike what you might have expected, is not 1.
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Problems for Practice

Problem 3.4.3. Prove Lemma 3.4.1 and Theorem 3.4.4.

Problem 3.4.4. Show that

σ(n) =
∑
m|n

ϕ(m)d
( n
m

)
.

This is an interesting relation between the three functions we have discussed.

3.4.2 Möbius Inversion

We have seen that δ acts as the identity for (arithmetic) functions under Dirichlet’s convo-
lution. For a function f, an inverse g would be a function satisfying f ∗g = δ. Can you think
of any one such (f, g) pair?

Recall Theorem 3.4.3. It gives µ ∗ 1 = δ. This is a very useful fact, and can help us find
the invert the equation we wanted to! Suppose f ∗ 1 = g. Then

g ∗ µ = (f ∗ 1) ∗ µ
= f ∗ (1 ∗ µ)

= f ∗ δ = f.

Thus, we have obtained the following:

Theorem 3.4.5 (The Möbius Inversion Formula). Let f, g be arithmetic functions. Then
for all n ∈ N,

g(n) =
∑
d|n

f(d)⇔ f(n) =
∑
d|n

g(d)µ
(n
d

)
.

Equivalently, we can say that

g = f ∗ 1⇔ f = g ∗ µ.

We have only proven f ∗ 1 = g =⇒ f = g ∗ µ. We, however, did not show the opposite
direction (note that the theorem says the two results are equivalent). I will leave this as an
exercise (it will help you get used to Dirichlet’s convolution).

Now we are done with Example 3.4.1! Since 2n = f ∗ 1, hence we get

f(n) =
∑
d|n

2dµ
(n
d

)
,

which is what we wanted to find.

As an application problem, we try and prove a result which is one of my all time favorites;
a beautiful result indeed.



88 CHAPTER 3. ARITHMETIC FUNCTIONS

Example 3.4.2 (Sum of primitive roots of unity)

For any n ∈ N, the sum of the nth primitive roots of unity is µ(n). In other words,

µ(n) =
∑

1≤k≤n
(k,n)=1

exp

(
2πik

n

)
.

Firstly, check the result for n = 1 and henceforth assume n > 1. If you go about trying
to tackle it directly, you will have a hard time. However, since sum of all the nth roots of
unity is 0, this kind of reminds us of Example 3.4.1. Also, looking at µ(n) on the left side,
we are motivated to try something related to Möbius Inversion. Let f(n) be the function on
the right side. We want to prove

µ ∗ δ = f ⇔ f ∗ 1 = δ,

where the last step used Möbius inversion. This looks much simpler, especially since we
don’t have µ (which was harder to handle otherwise). We just have to prove

∑
d|n

∑
1≤k≤d
(k,d)=1

exp

(
2πik

d

)
= δ(n) = 0 (since n > 1) (3.2)

The left side is a double summation, so hard to think about directly. Let’s take an example
of n = 10 and see how it looks (in fact, we only need to look at the fractions k/d for now):

d = 1 : {1/1}
d = 2 : {1/2}
d = 5 : {1/5, 2/5, 3/5, 4/5}
d = 10 : {1/10, 3/10, 7/10, 9/10}

Since we want the sum to be zero (and we know the sum of all roots of unity is 0), we try
to convert these elements into something like that:

d = 1 : {1/1} = {10/10}
d = 2 : {1/2} = {5/10}
d = 5 : {1/5, 2/5, 3/5, 4/5} = {2/10, 4/10, 6/10, 8/10}
d = 10 : {1/10, 3/10, 7/10, 9/10}

We observe that each fraction of the form n/10 appears above! This means the sum in
Equation 3.2 would be 0 for n = 10 (why?) which is what we want to prove!

In general, all the fractions would appear in general in the double sum in Equation 3.2
in general for any n. This is the same idea as in the first proof of Theorem 3.3.1. Do you see
now why Equation 3.2 would be true?
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Problems for Practice

Problem 3.4.5. Prove the other direction of the Möbius Inversion formula.

Problem 3.4.6. The idea in Example 3.4.2 is the fact the following:{
1

n
,

2

n
, . . . ,

n

n

}
=

{{
k

d
: 1 ≤ k ≤ d

}
: d | n

}
.

Remember this idea and use it to prove for any n,∑
d|n

∑
1≤k≤d
(k,d)=1

1 = n.

Use the above to show ϕ ∗ 1 = id. Is this the same proof as the one we gave here 3.3.1?

3.5 Floor and Ceiling Functions

Suppose you are given a real number, but we want to deal with integers. What would you
do? If it’s r = 2.56, you might instead consider the integer 2 which is the one just less than
it. If it’s π, then you might consider 3. This is the idea of the floor function:

Definition 3.5.1. The floor function5, also called the greatest integer function, is a
function b•c : R→ Z such that for every real x, bxc is the integer n such that n ≤ x < n+1.

Note that the floor function is not an arithmetic function (why?). However, I decided to
include it here anyway. This is best understood by examples. For instance, b5c = 5, b2.45c =
2, b−3.14159265c = −4 and so on. So basically look at the number line and give the integer
just before it. Graphically, it looks like this:

The graph suggests why it is called the ”floor function”. It is clearly not continuous, and
discontinuous at every integer (can you explain this using the definition?).

5Technically these aren’t Arithmetic Functions since they are R→ Z. However, I still cover them in this
chapter.
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This function is widely used, especially in coding and computer science. There is one
similar function, called the ceiling function, denoted by d•e , which gives the integer larger
than x. For instance, d2.45e = 3, d−4.5e = −4 and d5e = 5. Lastly, we have something called
the fractional part:

Definition 3.5.2. Let x be a real number. Then the fractional part of x, denoted by {x}
is given by

{x} := x− bxc .

For positive reals, this is simply the decimal part. For instance, {4.7} = 0.7, {1} = 0. For
negative, it’s not exactly the decimal part, but something similar. For e.g. {−2.4} = 0.6.

These functions have a lot of properties. Probably the most useful ones are the following
(which follow directly from their definitions):

Lemma 3.5.1 (Properties). The definition gives the following properties:

1. x− 1 < bxc ≤ x.

2. x ≤ dxe < x+ 1.

3. 0 ≤ {x} < 1.

These are very useful in bounding, which is the key idea in equations involving these. An
important (yet simple) fact that we will use again and again is the following:

Lemma 3.5.2. Let x be a real and n ∈ Z. Then

1. bx+ nc = n+ bxc ;

2. dx+ ne = n+ dxe ;

3. {x+ n} = {x},

Example 3.5.1 (PreRMO 2017a)

aPre Regional Mathematical Oolympiad (the AMC of India)

Find the maximum value of x such that {x}, bxc , x form a geometric progression.

Probably the best advice I can give you to solve equations involving the floor function is:

Introduce the Fractional Part.

For instance, the following examples:

Example 3.5.2

Show that b2xc = 2 bxc or 2 bxc+ 1.
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Write 2x = n+ f, where n = b2xc and f = {x}. So,

b2xc = b2n+ 2fc = 2n+ b2fc .
Now, 0 ≤ 2f < 2 and so b2fc ∈ {0, 1}. Hence we are done.

Example 3.5.3 (RMO 2018/5)

Find all natural numbers n such that 1 +
⌊√

2n
⌋

divides 2n.

Let k =
⌊√

2n
⌋
. This is the same as saying that k is the unique integer such that

k2 ≤ 2n < (k + 1)2. Let 2n = k2 + x, so that 0 ≤ x ≤ 2k. Then

1 + k | k2 + x =⇒ 1 + k | k2 + x− (1 + k)(k − 1) = x+ 1.

Now, x + 1 ∈ {1, 2, . . . , 2k + 1} and so the only possibility for k + 1 | x + 1 is when x = k.
Thus, 2n = k2 + k.

Now we substitute back to find which k work. If 2n = k2 + k, then
⌊√

2n
⌋

= k and

k + 1 =
⌊√

2n
⌋

+ 1 | 2n = k2 + k

holds for all k. Hence, every k ∈ N works (k ∈ N since n ∈ N) and the answer is all triangular

numbers, i.e. all natural numbers of the form k(k+1)
2

.

Some problems simply use the definition and a simple idea to solve them. For instance,

Example 3.5.4

Prove that the sum
n3∑
i=1

b 3
√
xc =

(n)(3n3 − 2n2 − n+ 4)

4

is true for all n ∈ N

The key idea is that b 3
√
i3 + 1c = b 3

√
i3 + 2c = · · · = b 3

√
i3 + 3i2 + 3ic = i. Induction is

one way now. Here’s a more direct way:

n3∑
i=1

b 3
√
xc = n+

n−1∑
i=1

i(3i2 + 3i+ 1)

= n+ 3

(
n(n− 1)

2

)2

+
n(n− 1)(2n− 1)

2
+
n(n− 1)

2

= n+
n(n− 1)

2

(
3n(n− 1)

2
+ 2n− 1 + 1

)
= n+

n(n− 1)

2
· n(3n+ 1)

2

=
n(4 + n(n− 1)(3n+ 1))

4

=
n(3n3 − 2n2 − n+ 4)

4
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Problems for Practice

Problem 3.5.1 (Very Useful). One result we will use again and again throughout the
book is the following: If n ∈ N and x ∈ R, then

n ≤ x =⇒ n ≤ bxc .

This helps to strengthen our bounds. Keep this in mind whenever you have real numbers in
integer type inequalities!

3.5.1 Floor Functions of Rational Numbers

The following result is quite useful:

Lemma 3.5.3 (Floor Functions of Rational Numbers). Let p, q ∈ Z, q 6= 0, and r be the
remainder when p is divided by q. Then⌊

p

q

⌋
=
p− r
q

.

The proof is not hard, and left as an exercise. In fact the above is equivalent to the
following form of Euclid’s Division lemma:

p = q

⌊
p

q

⌋
+ r.

This is true because the multiple of q just less than p is q bp/qc .

Let’s see this apply to problems.

Example 3.5.5 (All Russian Mathematical Olympiad 2000)

Evaluate the sum ⌊
20

3

⌋
+

⌊
21

3

⌋
+

⌊
22

3

⌋
+ · · ·+

⌊
21000

3

⌋
.

Observe that

2i ≡

{
1 (mod 3) if i is even

2 (mod 3) otherwise.

Hence, the above sum equals

20 − 1

3
+

21 − 2

3
+

22 − 1

3
+ · · ·+ 21000 − 1

3
=

1

3

(
20 + 21 + · · ·+ 21000

)
− 501 · 1 + 500 · 2

3

=
1

3
(21001 − 2)− 500.
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Example 3.5.6 (2002 German Mathematical Olympiad)

Show that for all prime numbers p, we have

p−1∑
k=1

⌊
k3

p

⌋
=

(p+ 1)(p− 1)(p− 2)

4

Let xp be the non-negative remainder when x is divided by p. The result holds for p = 2, 3.
So assume p ≥ 5. We now claim that for any prime p,

p−1∑
i=1

i3p =
p(p− 1)

2

Proof. Simply note that

2

p−1∑
i=1

i3p =

p−1∑
i=1

i3p + (p− i)3p =

p−1∑
i=1

i3p +
(
p− i3p

)
= p(p− 1)

and we have the lemma.

Thus, using the lemma we are done, since

p−1∑
k=1

⌊
k3

p

⌋
=

p−1∑
k=1

k3 − k3p
p

=
1

p

((
p(p− 1)

2

)2

− p(p− 1)

2

)

=
(p− 1)

4
· (p2 − p− 2)

=
(p+ 1)(p− 1)(p− 2)

4
.

Question 3.5.1. Was p needed to be a prime? If yes, then where did we use this?

We can generalize the problem above:

Example 3.5.7

If n is odd, evaluate for any prime p > 2 the sum

p−1∑
k=1

⌊
kn

p

⌋
.

A hint to this is given as Problem 3.5.3.
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Problem for Practice

Problem 3.5.2. Prove Lemma 3.5.3.

Problem 3.5.3. Prove for odd n⌊
kn

p

⌋
+

⌊
(p− k)n

p

⌋
=
kn + (p− k)n

p
− 1.

Using this, solve Example 3.5.1.

3.5.2 More Floor Function identities

Let’s try the following:

Example 3.5.8

Let x be a real. Prove that

bxc+

⌊
x+

1

2

⌋
= b2xc .

Write x = n+ f, where n = bxc and f = {x}, Then the left side is

n+

⌊
n+ f +

1

2

⌋
= n+

(
n+

⌊
f +

1

2

⌋)
= 2n+

⌊
f +

1

2

⌋
.

Now,
b2xc = b2n+ 2fc = 2n+ b2fc .

Now, we just have to show

b2fc =

⌊
f +

1

2

⌋
.

For this, observe that both the sides are 0 when 0 ≤ f < 1/2, and both the sides are 1 when
1/2 ≤ f < 1. So we are done.

We can in fact extend the problem above to

bxc+

⌊
x+

1

3

⌋
+

⌊
x+

2

3

⌋
= b3xc .

Again, write x = n+ f. Then, after some simplification, we just want to prove⌊
f +

1

3

⌋
+

⌊
f +

2

3

⌋
= b3fc .

To prove this, we again employ the same method. Consider the three intervals
[0, 1/3), [1/3, 2/3), [2/3, 1). In the first interval, both the sides are 0. In the second, both

the sides are 1. In the last interval, both the sides are 2. Hence, we have a clear generalization
now, which is known as Hermite’s Identity
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Theorem 3.5.1 (Hermite’s Identity). Let x be any real and m ∈ N. Then

bxc+

⌊
x+

1

m

⌋
+ · · ·+

⌊
x+

m− 1

m

⌋
= bmxc .

We can do this in the same way as above; introduce fractional parts and look at intervals.
However, there is another solution (which actually has the same idea, but written differently)
which is a much more cooler way of doing this, and a useful trick.

Proof. Define f(x) to be the difference between the left side and the right side. Then

f

(
x+

1

m

)
=

⌊
x+

1

m

⌋
+

⌊
x+

2

m

⌋
+ · · ·+

⌊
x+

m

m

⌋
−
⌊
m

(
x+

1

m

)⌋
=

⌊
x+

1

m

⌋
+

⌊
x+

2

m

⌋
+ · · ·+ bxc+ 1− (bmxc+ 1) = f(x).

Hence, f(x) is periodic with period 1
m
. Thus, it suffices to find the value of f(x) for x ∈

[0, 1/m). However, in this interval it is easy to see that f(x) = 0 for all x. Hence f ≡ 0,
which is what we wanted to prove.

3.5.3 Floor function and Divisors

If you start to solve some of the more challenging problems involving d(n) and the floor
function, you would find that the solution of one uses the other.

But how is this possible? Mainly because of this identity:

number of multiples of d,which are ≤ n =
⌊n
d

⌋
, n, d ∈ N

A useful consequence of this is that if k, n ∈ N, then⌊n
k

⌋
−
⌊
n− 1

k

⌋
=

{
1, if k|n,
0, otherwise

(3.3)

You can see that 3.3 is particularly useful when inducting. One useful lemma we obtain this
way is

Let’s look at some examples.

Example 3.5.9 (IMO Shortlist 2006 N3)

We define a sequence (a1, a2, a3, . . .) by

an =
1

n

(⌊n
1

⌋
+
⌊n

2

⌋
+ · · ·+

⌊n
n

⌋)
,

where bxc denotes the integer part of x.

1. Prove that an+1 > an infinitely often.

2. Prove that an+1 < an infinitely often.
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The key idea is to define bn = nan. Then

bn − bn−1 =
∑

1≤k≤n

⌊n
k

⌋
−
⌊
n− 1

k

⌋
= d(n)

The last part follows since a summand in the summation is 1 if and only if k is a divisor of
n, and 0 otherwise. Hence,

an =
d(1) + · · ·+ d(n)

n
.

So it suffices to show d(n+ 1) > an and d(n+ 1) < an both hold infinitely often.

But this is easy. Note that d(n) ≥ 2 for all n with equality if and only if n is a prime. Now
a6 > 2 and so an > 2 for all n ≥ 6. Thus, set n = p−1 for a prime p. Then d(n+1) = 2 < an
holds true.

Also, note that d(n) is unbounded, as, for instance, d(2k) = k + 1. Hence we can find
infinitely many n + 1 such that d(n + 1) exceeds all the previous d(k). Hence, d(n + 1) >
max{d(1), · · · d(n)} ≥ an, as desired.

We proved an interesting result above, which is useful:

Lemma 3.5.4. For any n ∈ N,

d(1) + d(2) + · · ·+ d(n) =
⌊n

1

⌋
+
⌊n

2

⌋
+ · · ·+

⌊n
n

⌋
.

There are more interesting ways to prove this. Probably the most interesting one is to
double count by making a table. Here, the rows and columns are 1, 2, . . . , n, and an element
(i, j) is 1 if i is a factor of j, and 0 otherwise (we are basically making an incidence matrix).
For instance, for n = 8,

1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0
3 1 0 1 0 0 0 0 0
4 1 1 0 1 0 0 0 0
5 1 0 0 0 1 0 0 0
6 1 1 1 0 0 1 0 0
7 1 0 0 0 0 0 1 0
8 1 1 0 1 0 0 0 1

We will double count the number of 1s in the table. Say there are T 1s.

Fix a row, say the ith one. Then, the number of 1s here is
⌊
n
i

⌋
, since it denotes how

many multiples of i are there that are at most n. Hence, the number of 1s is

T =
⌊n

1

⌋
+
⌊n

2

⌋
+ · · ·+

⌊n
n

⌋
.

Next, if we fix a column, say the ith one, then the number of 1s here is the number of divisors
of i (why?). Hence, there are d(i) 1s. So,

T = d(1) + d(2) + · · ·+ d(n).
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Comparing the two results, we obtain our result. There’s a nice and sneaky way to do this
double counting using swapping the order of summations:

d(1) + · · ·+ d(n) =
n∑
i=1

d(i) =
n∑
i=1

∑
j|i

1

=
n∑
j=1

∑
1≤k≤n
j|k

1

=
n∑
j=1

⌊
n

j

⌋
=
⌊n

1

⌋
+ · · ·+

⌊n
n

⌋
.

Now, suppose in our table, instead of writing 1s, we write the multiple. So, the table now is

1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0
3 3 0 3 0 0 0 0 0
4 4 4 0 4 0 0 0 0
5 5 0 0 0 5 0 0 0
6 6 6 6 0 0 6 0 0
7 6 0 0 0 0 0 7 0
8 8 8 0 8 0 0 0 8

Now, if we try to double count S, the sum of all the elements, we get something interesting.
If we fix a row, then the sum of the elements is

S = 1
⌊n

1

⌋
+ 2

⌊n
2

⌋
+ · · ·+ n

⌊n
n

⌋
.

If we fix a column first, we get

S = σ(1) + σ(2) + · · ·+ σ(n).

Hence, we have just proven

Lemma 3.5.5. For any n ∈ N,

σ(1) + σ(2) + · · ·+ σ(n) = 1
⌊n

1

⌋
+ 2

⌊n
2

⌋
+ · · ·+ n

⌊n
n

⌋
.

Problems for Practice

Problem 3.5.4. The function d(n) doesn’t have a nice formula, and is far from continuous.
It is very large at some points and very small at just the next input. However, the average
function

f(n) =
d(1) + d(2) + · · ·+ d(n)

n

is more stable. Show that f(n) ≤ log n.
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Problem 3.5.5. Prove that

σ(1) + σ(2) + · · ·+ σ(n) ≤ n2.

Problem 3.5.6. Prove that σ(n) < n log n.
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3.6 Example Problems

Example 3.6.1 (Gauss)

Prove that for any coprime integers p, q, we have⌊
p

q

⌋
+

⌊
2p

q

⌋
+ · · ·+

⌊
(q − 1)p

q

⌋
=

(p− 1)(q − 1)

2
.

The standard way of doing this is to note that {p, 2p, . . . , (q − 1)p} forms a complete
residue class mod q as p, q are coprime. So, the remainders are exactly {1, 2, . . . , q − 1} and
the sum evaluates to

p

q
+

2p

q
+ · · ·+ (q − 1)p

q
− 1

q
(1 + 2 + · · ·+ (q − 1)) =

(p− 1)(q − 1)

2
.

Another elegant argument is the following: Let S be the left side of the equation we have
to prove. Consider the triangle formed by y = 0, x = p and y = px

q
. We double count the

number of lattice points6 inside the triangle.

Figure 3.1: Example with (p, q) = (4, 5).

The number of lattice points is clearly the area formed by lattice triangle inside, which
is (p − 1)(q − 1)/2 (why?). Further, for every x ∈ Z between 0, p, there are bpx/qc lattice

6A point (x, y) in the Cartesian plane is called a ”lattice point” if x, y both are integers.
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points above it inside the triangle. Hence, the number of lattice points is S. Hence, we get
S = (p− 1)(q − 1)/2.

Question 3.6.1. In the second proof, where did we use gcd(p, q) = 1? Also, why must
(p− 1)(q − 1)/2 always be an integer?

The next example is a nice problem.

Example 3.6.2 (Hungarian National Olympiad 1996)

For any positive integer m, denote by di(m) the number of positive divisors of m that
are congruent to i modulo 2. Prove that if n is a positive integer, then∣∣∣∣∣

n∑
k=1

(d0(k)− d1(k))

∣∣∣∣∣ ≤ n.

For this problem, first we try to think about d0(k)− d1(k). Pick a divisor d of k. Notice
that if d is even, then it is counted in d0(k), and if it is odd, it is counted in d1(k). Hence,
the contribution due to d in the difference is (−1)d. So

d0(k)− d1(k) =
∑
d|k

(−1)d.

Hence,

S =
n∑
k=1

(d0(k)− d1(k)) =
n∑
k=1

∑
d|k

(−1)d.

Now, the key trick is to swap the order of summations. We get

n∑
k=1

∑
d|k

(−1)d =
n∑
d=1

∑
1≤k≤n
d|k

(−1)d

=
n∑
d=1

(−1)d
⌊n
d

⌋
= −

⌊n
1

⌋
+
⌊n

2

⌋
−
⌊n

3

⌋
+
⌊n

4

⌋
− . . . .

We want to show this is at most n in absolute value. This is not hard now, because of the
simple observation that

n ≥
⌊n

1

⌋
≥
⌊n

2

⌋
≥ . . . .

Also, it is easy to see that S ≤ 0. We must thus show −S ≤ n. This follows since

−S =
⌊n

1

⌋
−
(⌊n

2

⌋
−
⌊n

3

⌋)
︸ ︷︷ ︸

≥0

− · · · ≤ n.
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Time for a challenging problem related to the σ function!

Example 3.6.3 (St. Petersburg 2011)

Let m,n, k be positive integers with n > 1. Show that σ(n)k = nm is impossible.

The key thing to note here is that σ(n)k = nm implies σ(n), n have the same set of prime
factors. Write n = pα1

1 . . . pαkk and σ(n) = pβ11 . . . pβkk .

Now since σ(n) > n, hence k < m. Now, kβi = mαi for each i, so βi > αi implying
βi ≥ αi + 1. Hence,

σ(n) =
pα1+1
1 − 1

p1 − 1
· · · p

αk+1
k − 1

pk − 1
≤ pβ11 − 1

p1 − 1
· · · p

βk
k − 1

pk − 1
< pβ11 · · · p

βk
k = σ(n),

and we have a contradiction.

As usual, we finish by a combinatorial stylish problem. This is actually just number
theory, but the thought process is more combinatorial (understanding the structure, often
called ”rigid” in Olympiad lingo.)



102 CHAPTER 3. ARITHMETIC FUNCTIONS

3.7 Practice Problems

Problem 3.7.1. Find all n ∈ N such that b
√
nc divides n. Hints: 122

Problem 3.7.2. Let a, b, n be positive integers with gcd(a, n) = 1. Prove that

∑
k

{
ak + b

n

}
=
n− 1

2
,

where k runs through a complete system of residues modulo n.

Problem 3.7.3. Let f(x) be defined for all rationals x ∈ [0, 1]. If

F (n) =
n∑
k=1

f

(
k

n

)
, G(n) =

n∑
k=1,(k,n)=1

f

(
k

n

)
,

then prove that G = ζ ∗ F, where ζ(n) is the sum of the primitive nth roots of unity. Hints:

127 410 225

Problem 3.7.4. Show that for all positive integers n,

b
√
n+
√
n+ 1c = b

√
4n+ 1c = b

√
4n+ 2c = b

√
4n+ 3c.

Hints: 95 21

Problem 3.7.5. Prove that for any n ∈ N,

σ(n)

d(n)
≥
√
n.

Hints: 58 250

Problem 3.7.6 (IMO 1968/6). Prove that for any positive integer n,⌊
n+ 1

2

⌋
+

⌊
n+ 2

4

⌋
+

⌊
n+ 4

8

⌋
+

⌊
n+ 8

16

⌋
+ · · · = n.

Hints: 198 39 351

Problem 3.7.7 (INMO 2014). Let n be a natural number. Prove that⌊n
1

⌋
+
⌊n

2

⌋
+ · · ·+

⌊n
n

⌋
+ b
√
nc

is even. Hints: 409
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Problem 3.7.8. Prove that for any integer n ≥ 1,

∑
m|n

(d(m))3 =

∑
m|n

d(m)

2

Hints: 463 414

Problem 3.7.9 (Belarus 1999). For n ≥ 2,

σ(n) < n
√

2d(n).

Hints: 381 11

Problem 3.7.10 (1998 Irish Mathematical Olympiad). Find all positive integers d
that have exactly 16 positive integral divisors d1, d2, . . . , d16 such that 1 = d1 < d2 < · · · <
d16 = d, d6 = 18 and d9 − d8 = 17. Hints: 25 155 213

Problem 3.7.11 (IMO 1991/2). Let n > 6 be an integer and a1, a2, · · · , ak be all the
natural numbers less than n and relatively prime to n. If

a2 − a1 = a3 − a2 = · · · = ak − ak−1 > 0,

prove that n must be either a prime number or a power of 2. Hints: 437 191 101

Problem 3.7.12 (IMO Shortlist 2016 C2). Find all positive integers n for which all
positive divisors of n can be put into the cells of a rectangular table under the following
constraints: each cell contains a distinct divisor; the sums of all rows are equal; and the
sums of all columns are equal. Hints: 259 47 427 Sol: pg. 282

Problem 3.7.13 (St. Petersburg City Mathematical Olympiad 1998). Prove that
the sequence d(n2 + 1) does not become monotonic from any given point onwards. Hints: 80

286 Sol: pg. 283

Problem 3.7.14 (IMO 1998/3). Determine all positive integers k such that

d(n2)

d(n)
= k

for some n ∈ N. Hints: 486 339 275 173

Problem 3.7.15 (IMO Shortlist 2004 N2). The function f from the set N of positive
integers into itself is defined by the equality

f(n) =
n∑
k=1

gcd(k, n), n ∈ N.
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1. Prove that f(mn) = f(m)f(n) for every two relatively prime m,n ∈ N.

2. Prove that for each a ∈ N the equation f(x) = ax has a solution.

3. Find all a ∈ N such that the equation f(x) = ax has a unique solution.

Hints: 113 382 268 293 44 114

Problem 3.7.16 (IMO Shortlist 2011 N1). For any integer d > 0, let f(d) be the smallest
possible integer that has exactly d positive divisors (so for example we have f(1) = 1, f(5) =
16, and f(6) = 12). Prove that for every integer k ≥ 0 the number f

(
2k
)

divides f
(
2k+1

)
.

Hints: 224 449 140 Sol: pg. 283

Problem 3.7.17 (ELMO 2017/4). An integer n > 2 is called tasty if for every ordered
pair of positive integers (a, b) with a+b = n, at least one of a

b
and b

a
is a terminating decimal.

Do there exist infinitely many tasty integers? Hints: 297 133 57 324 Sol: pg. 284

Problem 3.7.18 (USA TSTST 2016/4). Suppose that n and k are positive integers such
that

1 = ϕ(ϕ(. . . ϕ(︸ ︷︷ ︸
k times

n) . . . )).

Prove that n ≤ 3k. Hints: 455 203 89 1 289

Problem 3.7.19 (IMO Shortlist 2016 N2). Let d(n) be the number of positive divisors
of n. Let d1(n) be the number of positive divisors of n which have remainders 1 when divided

by 3. Find all positive integral values of the fraction d(10n)
d1(10n)

. Hints: 386 362 236 220 Sol: pg.

284

Problem 3.7.20 (China Mathematical Olympiad 2017/5). Let Dn be the set of di-
visors of n. Find all natural n such that it is possible to split Dn into two disjoint sets A
and G, both containing at least three elements each, such that the elements in A form an
arithmetic progression while the elements in G form a geometric progression. Hints: 149 24

314 111 Sol: pg. 285

Problem 3.7.21 (China 2015 TST 3/6). For all natural numbers n, define f(n) =
d(n!) − d((n − 1)!). Prove that there exist infinitely many composite n, such that for all
naturals m < n, we have f(m) < f(n). Hints: 448 273 109 291 Sol: pg. 286



Chapter 4

Diophantine Equations

Roughly speaking, Diophantine equations are equations that ask for integer solutions, which
otherwise may be unsolvable in real or complex numbers (or may even have infinitely many
solutions there). For instance, the equations x2 + y2 = 2. This has infinitely many solutions
is reals, in fact, any value of x with |x| ≤

√
2 gives a valid real (and of course in complex

numbers x can be anything and it would give a valid y). In integers, however, x = y = 1 is
the only solution.

This was an easy equation, however in general these problems can be very challenging.
For instance, Fermat’s Last Theorem, which is a very naive looking equation, took over 300
years to be solved!

There have been many advanced techniques developed in modern number theory to solve
such equations, for instance elliptic curves. However, in this chapter, we will look at some
simpler problems that appear in Olympiads that can be solved using elementary methods.
We look at many tricks and types of problems, and each section would contain problems
that can largely be solved using that technique only. However, a good problem would be a
combination of many techniques and require some ingenuity on its own too. You will find
such problems in the problem section.

4.1 Parity

Parity arguments are often useful, especially in problems involving primes.

Example 4.1.1

Let k be an even number. Is it possible to write 1 as the sum of the reciprocals of k
odd integers?

Let’s suppose

1 =
1

n1

+
1

n2

+ · · ·+ 1

nk
.

The given conditions give ni is odd for all 1 ≤ i ≤ k and k is even. This motivates a parity

105
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type argument. The simplest thing we can do now is cross multiply, which gives

n1n2n3 . . . nk = n2n3 . . . nk + n1n3 . . . nk + · · ·+ n1n2 . . . nk−1.

The left side is odd, and the right side is a sum of odd terms. There are k terms on the
right, so the right side is the sum of an even number of odd numbers, which is even (why?).
So we have a contradiction!

4.2 Factoring Equations

Let’s look at four very instructive examples, which though easy represent the 4 most funda-
mental ideas in a lot of Diophantine Equations involving factoring.

Example 4.2.1

Solve over integers:
(2x+ y)(2y + x) = 7.

The key observation here is that 2x+y, 2y+x are both integers. So, two integers multiply
to give 7. Now, this means they must be one of (1, 7), (7, 1), (−1,−7), (−7,−1). So you take
cases and find your solution set.{

2x+ y = 1

2y + x = 7

{
2x+ y = 7

2y + x = 1

{
2x+ y = −1

2y + x = −7

{
2x+ y = −7

2y + x = −1
.

Considering each case individually, we find no solutions.

Example 4.2.2

Find x, y ∈ Z such that
x2 = 12 + y2

We get x2 − y2 = 12. Then (x+ y)(x− y) = 12. So, two integers multiply to give 10, so
they can be ±(1, 12),±(2, 6),±(3, 4) and it’s permutations (for instance if (3, 4) is a solution,
then so is its permutation (4, 3)). We take cases now and finish, but there are 12 cases! The
key idea here is that if we have (x+ y) = a, (x− y) = b, then x = (a+ b)/2, which must be
an integer. So, a, b must have the same parity. This is the key idea: (x + y), (x − y) have
the same parity.

So, we only consider (6, 2), (2, 6), (−6,−2), (−2,−6) to get (x, y) = (4, 2), (4,−2), (−4, 2),
(−4,−2).

The key identity is
a2 − b2 = (a− b)(a+ b).

So keep your eyes open for even exponents. In particular is the case when y = 1 wherein
you get x2 − 1.
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Example 4.2.3

Find x, y ∈ Z such that
x2 + y2 = x+ y + 2.

Suppose we had x2 + y2 = 2x + 2y + 2. Then, we can complete the squares and write
(x−1)2+(y−1)2 = 4. So, (x−1, y−1) = (0,±2), (±2, 0) are the only possibilities. However,
completing the square is not so obvious here.

Here’s the trick: whenever you have x2±x, multiply both the sides by 4 to complete the
square. So, we have

4x2 − 4x+ 4y2 − 4y = 8 =⇒ (2x− 1)2 + (2y − 1)2 = 10.

So, (2x− 1, 2y − 1) = ±(1, 3),±(3, 1).

Example 4.2.4

Find x, y ∈ Z such that
xy = x+ y + 3.

Whenever you have xy and x, y terms involved, the key identity you should think of is
the following:

(x+ a)(y + b) = xy + xa+ yb+ ab.

In particular, when a = b = 1, we get

(x+ 1)(y + 1) = xy + x+ y + 1.

This is often called Simon’s Favorite Factorizing Trick (SFFT). Who is this Simon is
none of our business, but his favorite identity should be our favorite too because this is
incredibly useful in a lot of problems. For instance, in our problem we immediately see

xy − x− y = 3 =⇒ (x− 1)(y − 1) = 4.

Ofcourse the above is a variant of simon’s identity, however still very useful. In general, if
you have xy+kx+ `y, write it as (x+ `)(y+k)−k`. When you have sxy+kx+ `y, multiply
both the sides by s and then write the above as (sx+ `)(sy+k)−k`. So if 2xy− 3x− y = 1,
then write this as

2xy − 3x− y = 1⇔ (2x− 1)(2y − 3) = 5.

Let’s see some applications.

Example 4.2.5 (British Mathematical Olympiad Round 3, 2005)

The integer n is positive. There are exactly 2005 ordered pairs (x, y) of positive integers
satisfying:

1

x
+

1

y
=

1

n

Prove that n is a perfect square.
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Write the equation as nx + ny = xy. We use Simon’s trick and write it as (x − n)(y −
n) = n2. We are given that this has 2015 solutions. For any divisor d of n2, we have
(x − n, y − n) = (d, n2/d) is a valid solution pair. So, the number of solution equals the
number of divisors of d. So if d = pα1

1 . . . pαkk , then

(2α1 + 1) . . . (2αk + 1) = 2005 = 5× 401.

Hence, we find either k = 1 and α1 = 1002, or k = 2 and (α1, α2) = (2, 200). In either case,
αi are all even meaning n is a square number.

Example 4.2.6 (INMO)

Determine all non negative integral pairs (x, y) for which

(xy − 7)2 = x2 + y2.

Write this as

(xy)2 − 14xy + 49 = x2 + y2 ⇐⇒ (xy)2 − 12xy + 49 = x2 + y2 + 2xy

⇐⇒ (xy − 6)2 + 13 = (x+ y)2

⇐⇒ (x+ y − xy + 6)(x+ y + xy − 6) = 13.

Keeping in mind x, y ≥ 0, we have the possibilities (x + y − xy + 6, x + y + xy − 6) =
(1, 13), (13, 1). Solving these gives (x, y) = (7, 0), (0, 7), (3, 4), (4, 3).

Another useful result is that if ab = c2 with a, b coprime, then a, b are both perfect
squares (prove this). In fact, if gcd(a, b) = d, then a = du2, b = dv2 in general. Here’s a nice
application:

Example 4.2.7 (Iran 1997)

Let x, y be positive integers such that 3x2 + x = 4y2 + y. Prove that x− y is a perfect
square.

Rearrange the terms:

3x2 + x = 4y2 + y ⇐⇒ y2 = (x− y)(3x+ 3y + 1) ⇐⇒ x2 = (x− y)(4x+ 4y + 1).

Multiply the second and third equation to get

(xy)2 = (x− y)2(3x+ 3y + 1)(4x+ 4y + 1)

and so (3x+ 3y + 1)(4x+ 4y + 1) is a square. However,

gcd(3x+ 3y + 1, 4x+ 4y + 1) = gcd(3x+ 3y + 1, x+ y) = gcd(1, x+ y) = 1.

Hence, 3x + 3y + 1, 4x + 4y + 1 both are squares. Hence, y2 = (x − y)(3x + 3y + 1) shows
x− y is a square.
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4.3 Using Inequalities

Inequalities are very useful in Diophantine equations as they help us restrict our attention
to certain numbers. This is best seen by examples.

Example 4.3.1

Find all quadruples (x, y, z, w) of positive integers for which

x2 + y2 + z2 + 2xy + 2x(z − 1) + 2y(z + 1) = w2.

Firstly, observe that

(x+ y + z ± 1)2 = x2 + y2 + z2 + 1 + 2xy + 2x(z ± 1) + 2y(z ± 1)± 2z.

The key trick is thus the following bounding:

(x+ y + z − 1)2 < w2 < (x+ y + z + 1)2.

Hence, w must equal x+ y + z. Solving this gives x = y. Thus, the solutions are numbers of
the form (x, x, z, 2x+ z) for any x, z ∈ N.

Example 4.3.2 (Classic, also Gaussian Gamble 2020/2)

Find all pairs (x, y) of integers such that

x3 + y3 = (x+ y)2.

Suppose x + y 6= 0. Then x2 − xy + y2 = x + y. Clearly, the left side feels to be larger,
and this intuition is what makes us believe this will have only a few ”small” solutions. Now
multiply both the sides by 2 and write this as

(x− y)2 + (x− 1)2 + (y − 1)2 = 2.

So (x − 1)2, (y − 1)2 ≤ 2 implies 0 ≤ x, y ≤ 2. It is now easy to check the only solutions
as (x, y) = (0, 1), (1, 0), (1, 2), (2, 1), (2, 2). Further, we rejected the possibility of x + y = 0
above. In fact, any (k,−k) works too.

Example 4.3.3 (PUTNAM)

Find all positive integers n, k1, . . . , kn such that

k1 + k2 + · · ·+ kn = 5n− 4

and
1

k1
+ · · ·+ 1

kn
= 1.
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To anyone who has done enough inequalities, the first thing that the above equations
remind one of is the Cauchy-Schwarz (or AM-HM) inequality:

(5n− 4)(1) = (k1 + k2 + · · ·+ kn)

(
1

k1
+ · · ·+ 1

kn

)
≥ n2.

Hence, n ≤ 4. The rest of the problem which, although is simple case work, is a good exercise,
and hence left to the readers.

Example 4.3.4 (IMO SL 2010 N1)

Find the least positive integer n for which there exists a set {s1, s2, . . . , sn} consisting
of n distinct positive integers such that(

1− 1

s1

)(
1− 1

s2

)
· · ·
(

1− 1

sn

)
=

51

2010
.

We can assume 1 < s1 < s2 < · · · < sn (why not s1 ≥ 1?). Since si are integers, this gives
the stronger bounds 2 ≤ s1 ≤ s2 − 1 ≤ · · · ≤ sn − (n− 1). Thus si ≥ i+ 1. Hence

51

2010
=

(
1− 1

s1

)(
1− 1

s2

)
· · ·
(

1− 1

sn

)
≥
(

1− 1

2

)(
1− 1

3

)
· · ·
(

1− 1

n+ 1

)
=

1

2
· 2

3
. . .

n

n+ 1
=

1

n+ 1
.

Hence, n+ 1 ≥ (2010)/51 > 39 meaning n ≥ 39.

Now if we can show that si exist for n = 39, we would be done. For this, consider
{2, 3, . . . , 33, 35, 36, . . . , 40, 67}. Then

1

2
· 2

3
. . .

32

32
· 34

35
. . .

39

40
· 66

67
=

17

610
=

51

2010
.

4.4 Modular Contradictions

Modular arithmetic is very helpful when dealing with powers. For instance, a2 ≡ 0, 1
(mod 3) always. We have some more results that are often useful. Modular methods to
restraint variables is often a complete solution, but often just an important step. Some
useful relations are:

• a2 ≡ {0, 1} (mod 3);

• (odd)2 ≡ 1 (mod 8)

• a2 ≡ {0, 1} (mod 4);
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• a2 ≡ {0,±1} (mod 5);

• a3 ≡ {0,±1} (mod 7);

• a3 ≡ {0,±1} (mod 9).

In general, a
p−1
2 ≡ ±1 (mod p) by Fermat’s Little Theorem, and hence we can often try

looking for a prime modulus according to the exponent. So if we have terms of the form at,
and we find 2t+ 1 is a prime p, then mod p might help. Further, Euler’s theorem comes in
handy. For instance above, 6 = ϕ(9) and so a3 ≡ {0,±1} (mod 9).

Example 4.4.1 (RMO 2017/2)

Show that the equation

a3 + (a+ 1)3 + · · ·+ (a+ 6)3 = b4 + (b+ 1)4

has no solutions in integers a, b.

The key observation here is that {a, a + 1, . . . , a + 6} are 7 consecutive numbers, hence
they are {0, 1, . . . , 6} modulo 7 (in some order). So the left side is congruent to 03 + 13 +
· · ·+ 63 (mod 7), which comes to 0 + 1 + 1 + (−1) + 1 + (−1) + (−1) = 0 (mod 7). However,
{04, 14, . . . , 64} ∈ {0, 1, 2, 4, 4, 2, 1} (mod 7) (in this order) so

b4 + (b+ 1)4 ∈ {04 + 14, 14 + 24, . . . , 64 + 04} ≡ {1, 3, 6, 1, 6, 3, 1} (mod 7).

Thus, b4 + (b+ 1)4 ≡ 0 (mod 7) is impossible, and we are done.

Example 4.4.2 (IMO Shortlist 2002 N1)

What is the smallest positive integer t such that there exist integers x1, x2, · · · , xt with

x1
3 + x2

3 + · · ·+ xt
3 = 20022002 ?

The x3 motivates us to try mod 7 or 9. Now, 20022002 ≡ 0 (mod 7) and so this isn’t very
useful. Modulo 9, however, 20022002 is 4. Since x3i ∈ {0,−1, 1} (mod 9), hence we need at
least 4 terms, i.e. t ≥ 4.

Turns out t = 4 works. The construction isn’t very hard either:

20022002 = 2002 ·
(
2002667

)3
=
(
10 · 2002667

)3
+
(
10 · 2002667

)3
+
(
2002667

)3
+
(
2002667

)3
.

Example 4.4.3 (USAJMO 2013/1)

Are there integers a, b such that a5b+ 3 and ab5 + 3 are perfect cubes?
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The answer is no. Assume on the contrary that such a, b exist. Now, each cube is 0 or
±1 modulo 7. Hence, we must have a5b, ab5 ∈ {3, 4, 5} (mod 7). Multiply these two and we
get (ab)6 ≡ 1,−1, 2,−2, 4 (mod 7). By Fermat’s Little Theorem, we must have (ab)6 ≡ 1
(mod 7) and so (a5b, ab5) ≡ (3, 5), (5, 3) (mod 7). (note that 7 - a, b).

Now since 7 | 3(3) + 5, hence we get 7 | 3a5b+ ab5 or 7 | a5b+ 3ab5 and so 7 | 3a4 + b4 or
7 | a4 + 3b4. Assume the first case, as the second one is similar.

As gcd(a, 7) = gcd(b, 7) = 1, hence on setting x = a · b−1, we get 3x4 ≡ −1 (mod 7) and
so on checking the possibilities, we find x ≡ 2 ⇔ a ≡ 2b (mod 7). But then {3, 5} ≡ ab5 ≡
2b6 ≡ {2, 0} (mod 7), a contradiction.

Note: mod 9 also works.

Example 4.4.4 (USAMTS)

Prove that if m and n are natural numbers, then

3m + 3n + 1

cannot be a perfect square.

Suppose 3m + 3n + 1 = x2. Clearly, x is odd. Now, mod 4, this means 3m + 3n ≡ 0
(mod 4). Now, 3even ≡ 1 (mod 4) and 3odd ≡ 3 (mod 4). So, one of m,n must be even, and
the other odd.

In fact, we can do better. Every congruence above holds mod 8 too. So 3m + 3n ≡ 0
(mod 8), and 3even ≡ 1 (mod 8), 3odd ≡ 3 (mod 8). Now, we can easily see 3m + 3n ∈
{1 + 1, 1 + 3, 3 + 1, 3 + 3} 63 0 (mod 8), and we are done.

4.5 Fermat’s Last Theorem

Fermat’s Last Theorem is a famous theorem of Fermat which despite its innocuous statement
is very hard to prove.

Theorem 4.5.1 (Fermat’s Last Theorem). Let n ≥ 3 be an integer. Then the equation

an + bn = cn

has no solutions in positive integers a, b, c.

Question 4.5.1. What happens if a, b, c are allowed to be negative?

The proposition was first stated as a theorem by Fermat around 1637 in the margin
of a copy of Arithmetica, where he wrote that he had a proof that was too large to fit in
the margin. Of course. Other such unproved theorems written off by him were eventually
proven, however this one was stuck harder in mathematicians path than others. It was
recently proved in 1994 by Andrew Wiles after a shocking 358 years! Of course we don’t
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discuss the proof in this book; it’s the pinnacle of the theory of diophantine equations. We
will only look at some variants and fun problems.

Example 4.5.1 (Rejected from ELMO Proposals)

Find all positive integers x, y, z satisfying xy(x2 + y2) = 2z4

There are standard albeit boring ways of doing this, however one way stands above all,
making it a ”troll problem”. Note that (a+b)2+(a−b)2 = 2(a2+b2) and (a+b)2−(a−b)2 =
4ab. Hence multiply both the sides by 8 and write it as

((x+ y)2 − (x− y)2)((x+ y)2 + (x− y)2) = (x+ y)4 − (x− y)4 = (2z)4

which has no solutions by Fermat’s last theorem. So we are done.

Of course using Fermat’s last theorem here feels like cheating and morally wrong, but
it works. In fact, we only used the case n = 4 of the big theorem, and it turns out that
case isn’t very hard to prove. However, we would have to talk more about the case n = 2
of the equation (which is not covered in the theorem), which leads us to the discussion of
Pythagorean triplets:

4.5.1 Pythagorean Triplets

Definition 4.5.1. A triplet of three integers (a, b, c) is called a pythagorean triplet if

a2 + b2 = c2.

The name is obviously inspired from Pythagoras’ theorem. Now, it turns out that we can
categorize all pythagorean triplets. Firstly, note that if gcd(a, b, c) = k, then we can cancel
off a factor of k2 from both the sides. So assume gcd(a, b, c) = 1. Such pythagorean triplets
are called primitive.

Theorem 4.5.2. Let (a, b, c) be a primitive pythagorean triplet. Then there exist integers
m,n such that (a, b, c) = (2mn,m2 − n2,m2 + n2).

Obviously if a, b, c are of this form, then a2 + b2 = c2 is true. However, the amazing part
is that this is the only possibility. The proof is a good exercise, so try it yourself before
reading it.

Proof. Firstly, note that if a number divides 2 of {a, b, c}, then it must divide the third,
which contradicts our assumption of primitive. So assume every pair is coprime. So one of
a, b is odd, suppose a. Then if b is odd, then c is even. But a2 + b2 ≡ 2 (mod 4) while c2 ≡ 0
(mod 4). So suppose b is even, and hence c is odd.

We have a2 = c2−b2 = (c+b)(c−b). Now, we know that if xy = z2, then x = dm2, y = dn2

where d = gcd(x, y) and m,n are arbitrary integers. Here,

gcd(c+ b, c− b) = gcd(2c, c+ b) = 1,
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since c+ b is odd.

So c + b = x2, c − b = y2, then c = (x2 + y2)/2 and b = (x2 − y2)/2. Putting this back
gives a = xy. Since 2 | c, hence 4 | x2 + y2 which is only possible when x, y are even. Write
x = 2m, y = 2n, and you find c = m2 + n2, b = m2 − n2, and thus a = 2mn, as deisred.

You can convert some degree 2 equations into a Pythagorean equation. A prime example
is the following:

Example 4.5.2 (INMO 2018/1)

Let ABC be a non-equilateral triangle with integer sides. Let D and E be respectively
the mid-points of BC and CA ; let G be the centroid of ∆ABC. Suppose, D, C, E,
G are concyclic. Find the least possible perimeter of ∆ABC.

Using your geometry skills, obtain that the problem is asking you to find (a, b, c) ∈ N3

satisfying a2 + b2 = 2c2 with a+ b+ c minimum.

They key trick is that

(2c)2 = 2 · 2c2 = 2(a2 + b2) = (a+ b)2 + (a− b)2.

So, (a−b, a+b, 2c) forms a Pythagorean triplet. The smallest Pythagorean triplet is (3, 4, 5),
which doesn’t work (why?). The next one is (6, 8, 10), however note that we look only at
primitive Pythagorean triplets if we want them to be the smallest (why?). So we try (5, 7, 13),
and on scaling we find (a, b, c) = (17, 7, 13). Hence, 17 + 7 + 13 = 36 is our answer.

4.6 Infinite Descent

Example 4.6.1 (Fermat)

Show that the only solution to the equation

x3 + 2y3 + 4z3 = 0

in non-negative integers is (0, 0, 0).

The first observation is that 2 | x3, as x3 = −2(y3 + 2z3). Thus, 2 | x (as 2 is a prime)
so x = 2x∗. Then 8(x∗)3 + 2y3 + 4z3 = 0. Dividing by 2 yields y3 + 2z3 + 4(x∗)3 = 0. If you
have a close eye, you will observe that this is the same format as the equation before! What
I mean is, if we have the equation a3 + 2b3 + 4c3 = 0, then from the integer solution (x, y, z),
we went to the integer solution (y, z, x∗). Further, x∗ < x (unless x = 0) and so, using one
solution, we found a smaller solution.

Repeating this process, we can keep getting chains of solutions:

(x, y, z)→ (y, z, x∗)→ (z, x∗, y∗)→ (x∗, y∗, z∗)→ (y∗, z∗, (x∗)∗)→ . . .
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The interesting part is, for each solution we can go to a new solution, and the new solution
is ”smaller” than the previous one. For instance, if we start with (16, 4, 12), we go

(16.4, 12)→ (4, 12, 8)→ (12, 8, 2)→ (8, 2, 6)→ . . .

However, since each time we get a solution over non-negative integers, hence we can’t go
down forever! This is impossible, hence all the numbers originally must have been zero.

Here, we said each triple was getting smaller. However, we can’t exactly compare triples
(for example, which triple do you think is greater: (1, 2, 3) or (0, 3, 1)?), so we need a more
formal argument. We can do this by saying x+y+z is decreasing. However, since x+y+z ≥ 0
always (we always have non-negative integers), hence we cannot keep on decreasing it forever.

Comment 4.6.1: The above problem was solved over non-negative integers. However,
we can solve it more generally over integers. Note that if we allow negative integers,
our argument fails since we can keep getting smaller and smaller triples and we won’t
have any issues (earlier we had an issue since the numbers had to be ≥ 0. If we allow
negative numbers, we can go down to −∞ without any issue). So how do we solve
that problem?

We do this by thinking of S = |x|+ |y|+ |z|. Note that |x/2| < |x| even if x is negative,
meaning that S decreases. Clearly, however S ≥ 0, so it can’t go on decreasing forever.

Example 4.6.2 (APMO 2017/1)

We call a 5-tuple of integers arrangeable if its elements can be labeled a, b, c, d, e in
some order so that a − b + c − d + e = 29. Determine all 2017-tuples of integers
n1, n2, . . . , n2017 such that if we place them in a circle in clockwise order, then any
5-tuple of numbers in consecutive positions on the circle is arrangeable.

The first trick is to note that the given condition is the same as (a− 29)− (b− 29) + (c−
29)− (d− 29) + (e− 29) = 0. So replace each number ai on the circle by ai − 29.

The next key observation here is that for any i,

ai + ai+1 + ai+2 + ai+3 + ai+4 ≡ ai − ai+1 + ai+2 − ai+3 + ai+4 = 29 ≡ 0 (mod 2).

So, ai ≡ −(ai+1+ai+2+ai+3+ai+4) ≡ ai+5 (mod 2). Hence, for every i, ai, ai+5 have the same
parity. However, since gcd(5, 2017) = 1, this implies all ai have the same parity (why?). So,
ai is even for all i (why?). Also, if a−b+c−d+e = 0, then so is a/2−b/2+c/2−d/2+e/2 = 0.

So, if (a1, . . . , a2017) is a working pair of integers, then so is (a1/2, . . . , a2017/2). Hence we
can keep on decreasing forever, which is impossible (why?). Thus, ai = 0 for all i. Hence, in
the problem, all numbers in the circle must equal 29.

A very particular type of infinite descent is the infamous technique ”Vieta Jumping”.
We look at it in the next section.
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Problems for Practice

Problem 4.6.1. We solved Example 4.6.1 by showing if (x, y, z) works, then so does (x/2, y, z).
The power of 2 in x/2 is less than the power of 2 in x. Use this argument to find a second
solution to the problem. (take the example of (16, 4, 12) to get an idea)

4.7 Vieta Jumping

Vieta Jumping is a technique

Example 4.7.1 (IMO 1988/6)

Let a and b be positive integers such that ab+ 1 divides a2 + b2. Show that

a2 + b2

ab+ 1

is the square of an integer.

This is a fascinating result; it says that if k = a2+b2

ab+1
is an integer, then it is not just any

integer, rather a square number!

We could experiment here, maybe try and find explicit values for which ab+ 1 | a2 + b2.
However, we don’t find anything very interesting by these direct methods. Now we try our
strongest weapon, the method of contradiction.

Suppose

k =
a2 + b2

ab+ 1
∈ Z

is not a square number. Rearranging, we get an obvious quadratic in a

a2 − kb · a+ (b2 − k) = 0.

The interesting part now is if we define f(t) = t2− kbt+ (b2− k), then f has two roots, one
of which is a. Are the roots equal?

Question 4.7.1. Keeping in mind that a, b are positive integers, show that k is a positive
integer. Hence, show that the above quadratic cannot have equal roots.

So, if we let the other root be x 6= a, then

x2 + b2

xb+ 1
= k.

What do we know about x? By Vieta, we know that x = kb− a and x = b2−k
a
.

Question 4.7.2. Show that x is an integer.
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Hence, we went from the pair (a, b) to the pair (x, b). If we can show that (x, b) is ”smaller”
than (a, b), then we have something like an infinite descent. This is the key idea. We only
need to take care of some details now.

We saw that x is an integer. We now show that x is a positive integer.

Question 4.7.3. Use the equation k = (x2 + b2)/(xb + 1) and the fact that k > 0 to show
that x ≥ 0.

How do we eliminate the possibility that x = 0? Well, x = (b2 − k)/a, hence if x = 0,
then k = b2 is a perfect square, which contradicts our assumption!

So, from a positive pair (a, b), we went to a positive pair (x, b) (here a positive pair means
both elements are positive integers). In order for the new pair to be smaller, we would like
x < a. This is equivalent to

b2 − k
a

< a⇔ b2 − k < a2.

There is no clear reason why this must be true. In fact, this might not even be true!

Question 4.7.4. Suppose (a, b) = (8, 30). Show that this ab + 1 | a2 + b2 here. Now, show
that the process above gives

(8, 30)→ (112, 30).

Hence, we got a bigger pair in this case. Show that, however, if (a, b) = (30, 8), then we get

(30, 8)→ (2, 8)

which is indeed smaller.

Thus, we need the important assumption at the start: without loss of generality, a > b
(note that if a = b, then it is easy to get k = 1, which is a square. So suppose a 6= b). In
fact, then b2 − k < a2 becomes obvious. Hence x < a. So, from (a, b) we went to (x, b) with
x+ b < a+ b.

So, do we have a descent? If we repeat the process of (x, b), we would get a quadratic in
x, and we pick the second root. Do you see an issue?

Question 4.7.5. Revisiting our example, once we get (30, 8)→ (2, 8), what do we get after
(2, 8)?

The other root is a, the number we started with! So, if we want a new quadratic, we
work with (b, x) now instead of (x, b). This would give a quadratic in b and we get a new
pair. However, if we want a smaller pair, we would need b ≥ x. Is that true? Realizing this
is harder than proving it:

b ≥ b2

a
>
b2 − k
a

= x.

Thus, we have a descent. Hence, we go from positive pairs to smaller positive pairs, however
this process can’t go on forever, and so we are done!
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As an explicit example, if we start with (a, b) = (30, 8), then we go

(̇112, 30)→ (30, 8)→ (2, 8)→ (2, 0).

Comment 4.7.1 (Geometric Interpretation): Suppose k = (x2 + y2)/(xy + 1).
This is the same as x2 + y2− kxy− k = 0, which forms a hyperbola H. Assume x > y,
since if x = y then we can get that k must equal 1a (why?). Then, if we have a lattice
point (x, y) ∈ H, then by Vieta the point (qy − x, y) is also a lattice point on H.
Further, we can show that qy − x < x and so the x coordinate is lower. Repeating
this we get closer and closer the the origin, eventually ending at a point of the form
(x0, 0) or (0, y0), wherein we get k = x20 or y20 respectively.

aIn that case we get an ellipse.

(8, 2)

(0, 2)

(8, 30)

(112, 30)

Figure 4.1: Example with k = 4

If we retrospect, we realize that we can shorten some of our work. For instance, since
we show x < a, hence we don’t need to show that the quadratic does not have equal roots.
Further, there was no need of showing x < b, here’s why: We have the pair (a, b) with
a > b. Then we go to (x, b) with x < a. If at this point, we have x > b, then we repeat
everything we just did and get to (a, b) from (x, b), since a is the other roots of the quadratic
x forms. However, since everything in the proof would be identical, we can similarly prove
(a, b) is smaller than (x, b) meaning a < x, which contradicts the fact that x < a. So here’s
a summary of what we did:
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1. We assumed on the contrary the result is not true, i.e. k = (a2 + b2)/(ab+ 1) ∈ Z but
is not a square.

2. First we showed that if the quadratic in t

k = (t2 + b2)/(tb+ 1)

has one positive integer root a, then the second root of the quadratic is also a positive
number x. (this part does not require vieta jumping).

3. At this point, we assumed without loss of generality that a ≥ b.

4. We then showed x is also an integer. Hence x is a positive integer. So we can have a
valid descent.

5. Finally, we showed x < a. Hence (a, b) gives a smaller pair (x, b). Thus we have a
descent.

The best way to tackle all the details is to write down an explicit example. So here’s an
exercise for you: repeat the process on (3120, 125).

Comment 4.7.2: A neater way of phrasing the above is to use the extremal principle.
Fix k first, and pick non-negative integers (a, b) such that

a2 + b2

ab+ 1
= k

with a+ b minimum. For instance, for k = 4, both (2, 0) and (30, 8) are valid pairs.
So out of all these we pick the one with a+b minimum. Then, once we show x ≤ a is a
positive integer, so that (x, b) is also a valid pair, we say that x+b < a+b contradicting
the minimality. From here on, we will use wither descent or the extremal principle to
phrase our argument, depending on which one is easier.

Example 4.7.2

Let a and b be positive integers such that ab divides a2 + b2 + 1. Show that

a2 + b2 + 1

ab
= 3.

The idea is similar here, except that we don’t proceed by contradiction. Define k to be
the ratio (a2 + b2 + 1) : ab, so that we want to show k ∈ N =⇒ k = 3.

Firstly note that a = b implies k = 3 directly. Suppose without loss of generality a > b
now. Define the quadratic

f(t) = t2 − kbt+ b2 + 1.



120 CHAPTER 4. DIOPHANTINE EQUATIONS

One root is a, so say the other one is x. Then by Vieta, x = kb − a which means x is an
integer. Also by Vieta, x = b2+1

a
> 0, which shows that x is a positive integer. Now, if we

want (x, b) to be smaller than (a, b), then we want x < a. Since a > b, hence

x =
b2 + 1

a
< a

holds unless (a, b) = (2, 1) (why?). If (a, b) = (2, 1), then k = 6/2 = 3, as desired. So
suppose not. Hence (x, b) is a smaller pair, i.e. x < a. Now, the new x is less than b since

x =
b2 + 1

a
<
b2 + 1

b
= b+

1

b

and if b > 1, this means x ≤ bb+ 1/bc = b (why?). In that case, we obtained a smaller pair
and can now proceed descent on (b, x) as b ≥ x. Note again that if b = x, then k = 3. So we
may assume b > x.

Hence, the descent must end either when one number becomes 1. In that case if the other
number is z, then we have z | z2 + 2 which can only happen if z ∈ {1, 2}. In either case, we
obtain k = 3 so we are done.

Now that we have a grip on the basic technique, we can try our hands on some more
challenging problems.

Example 4.7.3 (IMO 2007/5)

Let a and b be positive integers. Show that if 4ab− 1 divides (4a2 − 1)2, then a = b.

First, we start by simplifying (4a2−1)2 as much as possible by subtracting suitable terms.
Since gcd(b, 4ab− 1) = 1, hence

4ab− 1 | (4a2 − 1)2 ⇔ 4ab− 1 | b2(4a2 − 1)2.

Now,

b2(4a2 − 1)2 = 16a4b2 − 8a2b2 + b2

≡ a2 − 2ab+ b2

= (a− b)2 (mod 4ab− 1).

We stop here, since (a− b)2 is symmetric in a, b and much simpler. The best part is that if
we want a = b, we want to prove (a− b)2 = 0. So let

k =
(a− b)2

4ab− 1
∈ Z.

We can now use Vieta Jumping! Suppose that (a, b) satisfies a+ b is minimum.

Assume a > b (if a = b we are done already) and define the quadratic f(t) = t2 − 2b(1 +
2k)t+ b2 + k. One root is a, let the other be x. So, we go

(a, b)→
(
b2 + k

a
, b

)
.
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Clearly, x is a positive integer (why?). Now, we can use descent if x < a. This follows since

b2 + k

a
=
b2

a
+
k

a

=
b2

a
+

(a− b)2

a(4ab− 1)

=
4ab3 − b2 + a2 − 2ab+ b2

a(4ab− 1)
.

We want this to be less than a. That is equivalent to

4ab3 + a2 − 2ab < 4a3b− a2 ⇔ 2a(a− b)(2b(b+ a)− 1) > 0.

This is true since assumed a > b. So, we have 0 < x < a is a positive integer, and (x, b) is a
valid pair. Then x+ b < a+ b contradicting minimality. So we are done.

Example 4.7.4

Let k be a positive integers not equal to 1 or 3. Prove that the only solution to

x2 + y2 + z2 = kxyz

over integers is (0, 0, 0).

Vieta jumping can’t work here directly, the reason being the fact that x, y, z can be
negative. So there is in fact no minimum value of x + y + z. So let’s try to see if we can
make terms positive somehow.

Question 4.7.6. Show that if one of x, y, z is 0, then so are the rest. Henceforth assume
xyz 6= 0.

Now observe that either all x, y, z are all positive, or two of them are negative (why?).
Suppose y, z are negative. Note that if we replace y 7→ −y, z 7→ −z, the equation still holds.
Hence, we can assume without loss of generality that x, y, z are all positive. Now we can use
Vieta Jumping.

For a given k, pick (x, y, z) ∈ N3 1. such that x+ y + z is minimum. The key claim now
is that all x, y, z are distinct.

To see this, observe that if y = z, the equation becomes x2 + 2y2 = kxy2. Hence, y | x.
Write x = y`. Then `2 − ky`+ 2 = 0. Since ` ∈ Z, we must have k2 − 8 = u2 for some u. So
(k − u)(k + u) = 8, and we get k = 3 as the only possibility, which we have excluded from
the problem.

So now assume without loss of generality x > y > z. Define f(t) = t2 − kyzt + y2 + z2.
One root is x, so say the other root is w. Then w = kyz − x implies w ∈ Z. To show w > 0,

1we write (a, b) ∈ N2 or N× N if a ∈ N and b ∈ N. In other words, N2 is the set of all pairs (a, b) where
both the elements are from N. Similarly we define N3,N4, . . . (we can even define R2,Z3,C4 . . . similarly).
So, in our case we mean x, y, z are all natural numbers.
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observe that w = (y2 + z2)/x. Hence, w is a positive integer. Now, we want to establish a
descent. Proving w < x is not easy (try it). The key trick is to compute f(y) :

f(y) = y2 − ky2z + y2 + z2 ≤ 3y2 − ky2z = y2(3− kz)

For now, say k 6= 2, so that k > 3. Hence we get f(y) ≤ 0.. Hence, y lies between the two
roots x,w (why?) and since x > y, hence y > w implying x > w. So, x+ y + z has reduced,
and we have our contradiction.

So now we just have to deal with the case k = 2. This is Problem 4.7.1.

Problems for Practice

Problem 4.7.1 (Korean Mathematical Olympiad). Prove that x2 +y2 +z2 = 2xyz has
no solutions in integers x, y, z except (0, 0, 0).

Problem 4.7.2 (Stronger than IMO 1988/6). Show that if ab + 1 divides a2 + b2 for
positive integers a, b, then

a2 + b2

ab+ 1
= gcd(a, b)2.

Problem 4.7.3 (Generalization of IMO 1988/6). If a, b, c are positive integers such
that

0 < a2 + b2 − abc ≤ c,

show that a2 + b2 − abc is a perfect square.

Problem 4.7.4. Let x1, x2, . . . , xn be n integers. If k > n is an integer, prove that the only
solution to

x21 + x22 + · · ·+ x2n = kx1x2 . . . xn

is x1 = x= · · · = xn = 0.

4.8 Pell’s Equations

Definition 4.8.1. The equation x2 − dy2 = 1 where d is a positive integer which is not a
square is called Pell’s Equation.

Here, we need d to not be a square, otherwise if d = c2, then this becomes (x−cy)(x+cy) =
1. We have the following beautiful theorem:

Theorem 4.8.1. The Pell’s equation always has a solution (x, y).

In fact, there are infinitely many solutions to the equation! Given that there is 1 solution,
we can generate more from it. Let’s see how.

Firstly, we need to define something:
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Definition 4.8.2. Define a number z = x+ y
√
d. Then, the conjugate of z, denoted by z,

is given by z = x− y
√
d. Further, the Norm of z is given by

N(z) = zz = x2 − dy2.

Note the resemblance with complex numbers. In fact, in algebraic number theory we
study general conjugates and norms, which apply to all these numbers! However, let’s not
divert now.

One of the most useful property of the Norm is the following:

Theorem 4.8.2. The Norm is multiplicative, i.e.

N(z1z2) = N(z1) N(z2).

(This also holds for complex numbers). The proof of this isn’t very hard, just expand
and check:

N(z1) N(z2) = (a2 − db2)(x2 − dy2) = (ax+ dby)2 − d(ay + bx)2 = N(z1z2).

In fact, the conjugate is also multiplicative.

Now, we can see how this is useful: Saying x2−dy2 = 1 is the same as saying z = x+y
√
d

satisfies N(z) = 1. Now, note that

N(z2) = N(z) · N(z) = 1.

Hence, if z satisfies N(z) = 1, then so does z2. In fact, N(zk) = 1 for any natural number k.
So from one solution, we can generate infinitely many.

Example 4.8.1

Suppose d = 3. Then (x, y) = (2, 1) is a solution. So z = 2 +
√

3 works. Now,

z2 = (2 +
√

3)2 = 7 + 4
√

3.

Hence, we get another solution (x, y) = (7, 4). Further,

z3 = (2 +
√

3)3 = 26 + 15
√

3.

This gives the solution (x, y) = (26, 15). We can keep proceeding and generate infinitely
many solutions.

Whenever we start with a z, we can generate infinitely many solutions, however we can
guarantee that these would be all the solutions to the Pell’s equation. For instance in the
above example, if we had started with z = 7 + 4

√
3, then no power of z would have given us

the solution 26 + 15
√

3. So how do we find all the solutions to the Pell’s equation?

Turns out that there exists one solution z called the fundamental solution which
generates all the solution to the Pell’s equation.
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Theorem 4.8.3. Let d be a positive integer which is not a perfect square. Then there exists
ε = x0+y0

√
d with x0, y0 ∈ N such that every solution (x, y) to the Pell’s equation x2−dy2 = 1

is found by
x+ y

√
d = εn = (x0 + y0

√
d)n

for some integer n.

Note that x0, y0 are both positive. The proof is not very hard. They idea is that the
fundamental solution (x0, y0) is the ”smallest”.

Proof. Consider α to be the smallest real of the form x + y
√
d which is greater than 1 and

has norm 1. Let β = a+ b
√
d be such that (a, b) is another solution to X2 − dY 2 = 1. Let k

be such that
αk ≤ β < αk+1.

(since α < β and αn → ∞ as n → ∞ (as α > 1) hence by continuity there must exist such
a k). Now since N(α) = 1, hence (x+ y

√
d)−1 = x− y

√
d. So

γ =
β

αk
= (a+ b

√
d)(x− y

√
d)k.

Now, N(γ) = 1, and on expanding γ comes to be something of the form r + s
√
d. Note

that 1 ≤ γ means γ ≤ 1 (as N(γ) = 1). Hence r − s
√
d ≤ 1 ≤ r + s

√
d, showing r, s

are nonnegative. Since γ < α, the minimality of α is contradicted unless γ = 1, which
corresponds to β = αk, as desired.

Example 4.8.2 (Kürsák Competition)

Prove that if m = 2 + 2
√

28n2 + 1 is an integer for some n ∈ N, then m is a perfect
square.

For m to be an integer, we must have 28n2 + 1 = x2 for some x. This is Pell’s equation
with d = 28. If we try to find the fundamental solution, we have a really hard time doing so.
Hence we adopt a trick: write the equation as x2 − 7(2n)2 = 1.

The fundamental solution to X2− 7Y 2 = 1 is not hard to find, and it is (8, 3). Here, 3 is
odd. We generate more solutions from this till we find the second number even (why do we
need this?). (

8 + 3
√

7
)2

= 127 + 48
√

7.

So the second solution is (127, 48). Thus (127, 24) is the fundamental solution to x2−28n2 = 1
(couldn’t have guessed this, could we?). Hence,

x+ y
√

28 = (127 + 24
√

28)k

for some k. To find x from above, we use another trick: let z = x+y
√

28 and z0 = 127+24
√

28.
Observe that x = 1

2
(z + z) and hence

x =
1

2

(
(127 + 24

√
28)k + (127− 24

√
28)k

)
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since (127 + 24
√

28)k =
(

127 + 24
√

28
)k

as conjugation is multiplicative. Now,

2 + 2x = (127 + 24
√

28)k + (127− 24
√

28)k + 1 =
(

(8 + 3
√

7)k + (8− 3
√

7)k
)2

and we are done.

Question 4.8.1. Why is the part inside the square an integer? That is, why is

(8 + 3
√

7)k + (8− 3
√

7)k

an integer?

The trick we used before can be generalized to give all solutions of the Pell’s equation:

Theorem 4.8.4 (General Solution of Pell’s Equation). Let x2−dy2 = 1 be a Pell’s equation
with fundamental solution (x0, y0). Let (xn−1, yn−1) be the nth solution. Then

xn−1 =
1

2

(
(x0 + y0

√
d)n + (x0 − y0

√
d)n
)
, yn−1 =

1

2
√
d

(
(x0 + y0

√
d)n − (x0 − y0

√
d)n
)
.

For instance, x0 = 1
2

(
(x0 + y0

√
d) + (x0 − y0

√
d)
)

= x0 and x1 = x20 + dy20.

You might recognize the above formulas as the solutions of a linear recurrence equation.
This is indeed true, and we can find these recurrences:

Theorem 4.8.5 (Recursive Solutions of Pell’s Equations). Let x2 − dy2 = 1 be a Pell’s
equation with fundamental solution (x0, y0). Let (xn−1, yn−1) be the nth solution. Then

xn = 2x0xn−1 − xn−2, yn = 2x0yn−1 − yn−2.

This is true because xn = Aαn +Bβn satisfies xn = (α + β)xn−1 − (αβ)xn−2.

There are some variants of the Pell’s equation, the most common being the negative
Pell’s equation:

Definition 4.8.3. Let d be a positive integer that is not a perfect square. Then the equation
x2 − dy2 = −1 is a negative Pell’s equation.

Unlike the standard one, this equation need not have solutions at all. However, if there
exists one solution, then there exist infinitely many. This is done by taking a fundamental
solution z0, and considering the solutions zk0 where k is odd, and these form all the solutions
(as before). In fact, z20 gives the fundamental solution to x2 − dy2 = 1.

If we consider equations of the form x2 − ny2 = r for |r| 6= 1, then we can just consider
powers of a fundamental solution. Here, we take one solution and multiply it by solutions
of x2− ny2 = 1. However, in this case this does not generate all the solutions, unlike before.
Luckily, these don’t show up a lot in Olympiads.

Here’s a great example:
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Example 4.8.3 (Vietnam 2016)

Find all n such that √
7n + 1

2

is a prime.

Suppose this equals p. Squaring and rearranging, we find 7n−2p2 = −1. This is not Pell’s
equation if n is odd. We can easily see that n = 1 works. So when n > 1 small cases suggest
that n odd doesn’t seem to work. This observation is correct; modulo 8, the equation implies
n is even. So we have the negative Pell’s equation:

(7m)2 − 2p2 = −1

where m = n/2. So consider the general Pell’s equation x2 − 2y2 = −1. Since (1, 1) is a
solution, hence the solutions are generated by (1 +

√
2)2k+1 for all k ≥ 0. Hence, the general

solution for xn is

xn−1 =
1

2

(
(1 +

√
2)2k+1 + (1−

√
2)2k+1

)
=

1 +
√

2

2

(
3 + 2

√
2
)k

+
1−
√

2

2

(
3− 2

√
2
)k
.

So we obtain the recurrence xn = 6xn−1 − xn−2 with (x0, x1) = (1, 7). Similarly we get
yn = 6yn−1 − yn−2 with (y0, y1) = (1, 5). Then

xn ≡ −(xn−1 + xn−2) (mod 7), yn ≡ yn−1 − yn−2 (mod 5).

Hence, 7 | xn if and only if n ≡ 1 (mod 3), which also corresponds to 5 | yn. Hence, we must
have p = 5 and so the only other solution we get is n = 2.

Problems for Practice

Problem 4.8.1. Show that zw = zw, i.e conjugation is multiplicative.

Problem 4.8.2. Prove Theorem 4.8.4.

Problem 4.8.3. Using the binomial theorem, show that xn, yn are integers in Theorem 4.8.4.
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4.9 Practice Problems

Problem 4.9.1. Solve in positive integers the equation

x2y + yz2 + zx2 = 3xyz.

Hints: 128

Problem 4.9.2. Find all triples of positive integers (x, y, z) such that

x3 + y3 + z3 − 3xyz = p,

Hints: 52

Problem 4.9.3 (USAMTS 2017-18 Round 3 P2). Let q be a real number. Suppose
there are three distinct positive integers a, b, c such that q + a, q + b, q + c is a geometric
progression. Show that q is rational. Hints: 7

Problem 4.9.4 (IMO 2006/4). Determine all pairs (x, y) of integers such that

1 + 2x + 22x+1 = y2.

Hints: 206 411 358

Problem 4.9.5 (INMO 2017/6). Let n ≥ 1 be an integer and consider the sum

x =
∑
k≥0

(
n

2k

)
2n−2k3k =

(
n

0

)
2n +

(
n

2

)
2n−2 · 3 +

(
n

4

)
2n−k · 32 + · · · .

Show that 2x − 1, 2x, 2x + 1 form the sides of a triangle whose area and inradius are also
integers. Hints: 302 440

Problem 4.9.6 (Indian Mathematical Olympiad 1988). Find all (x, y, n) ∈ N3 such
that gcd(x, n+ 1) = 1 and xn + 1 = yn+1. Hints: 81 46 270 199

Problem 4.9.7 (USAMO 1987). Solve the following equation in nonzero integers x, y :

(x2 + y)(x+ y2) = (x− y)3.

Hints: 391 215

Problem 4.9.8. Find all positive integers m and n for which

1! + 2! + 3! + · · ·+ n! = m2.

Hints: 229 380
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Problem 4.9.9 (EGMO 2013/4). Find all positive integers a and b for which there are
three consecutive integers at which the polynomial

P (n) =
n5 + a

b

takes integer values. Hints: 6 216 126 Sol: pg. 286

Problem 4.9.10 (Leo Moser). Show that the Diophantine equation

1

x1
+

1

x2
+ · · ·+ 1

xn
+

1

x1x2 · · ·xn
= 1

has at least one solution for every positive integers n. Hints: 430

Problem 4.9.11 (IMO 2013 Problem 1). Assume that k and n are two positive integers.
Prove that there exist positive integers m1, . . . ,mk such that

1 +
2k − 1

n
=

(
1 +

1

m1

)
· · ·
(

1 +
1

mk

)
.

Hints: 402 195

Problem 4.9.12. Show that the equation

a2 + b2 + c2 + d2 = abcd

has infinitely many solutions in positive integers a, b, c, d. Hints: 287 129 484 Sol: pg. 287

Problem 4.9.13 (USAMO 2015/1). Solve in integers the equation

x2 + xy + y2 =

(
x+ y

3
+ 1

)3

.

Hints: 38 369 346 445

Problem 4.9.14 (IMO Shortlist 2012 N2). Find all triples (x, y, z) of positive integers
such that x ≤ y ≤ z and

x3(y3 + z3) = 2012(xyz + 2).

Hints: 363 93 3 124

Problem 4.9.15 (Vietnam 2002). Find all positive integers n for which the equation

a+ b+ c+ d = n
√
abcd

has a solution in positive integers a, b, c and d. Hints: 19 453
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Problem 4.9.16 (HMMT 2017 A8). Suppose a and b are positive integers such that

c =
(a+ b)(a+ b+ 1)

ab

is an integer. Find all possible values of c. Hints: 296 167 32

Problem 4.9.17 (IMO 2008 N1). Let n be a positive integer and let p be a prime number.
Prove that if a, b, c are integers (not necessarily positive) satisfying the equations

an + pb = bn + pc = cn + pa

then a = b = c. Hints: 14 131 385 99 Sol: pg. 287

Problem 4.9.18 (IMO Shortlist 2017 N6). Find the smallest positive integer n or show
no such n exists, with the following property: there are infinitely many distinct n-tuples of
positive rational numbers (a1, a2, . . . , an) such that both

a1 + a2 + · · ·+ an and
1

a1
+

1

a2
+ · · ·+ 1

an

are integers. Hints: 210 332 61 374 Sol: pg. 288

Problem 4.9.19 (IMO Shortlist 2019 N8). Let a and b be two positive integers. Prove
that the integer

a2 +

⌈
4a2

b

⌉
is not a square. Hints: 29 404 251 182 Sol: pg. 289

Problem 4.9.20 (China TST 3 2018 Day 3/2). Find all pairs of positive integers (x, y)
such that (xy + 1)(xy + x+ 2) be a perfect square. Hints: 279 69 429 2 Sol: pg. 290
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Part II

Advanced Topics
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Chapter 5

Modular Arithmetic Advanced

Now that we have a grip on the basics of modular arithmetic, we will discuss some more
interesting ideas in this chapter.

5.1 Solving Equations

At the end of the day, solving some sort of equation is one of the key goals of mathematicians.
That is what lead them to discover Z,Q,R and C. This is what we have done in the last
chapter too. For instance, in solving the equation ax− b ≡ 0 (mod p), we were lead to the
concept of inverses. We now talk about some other equations.

5.2 Quadratic Residues

One of the equations that lead humanity to discover irrationals was x2 = 2. In general, it
was x2 = a for a > 0. So we ask when does the equation

x2 ≡ a (mod p)

have a solution. Turns out not all a lead to a solution x. So we have 2 terms defined for this
purpose:

Definition 5.2.1. Let p be a prime. A number a is called a quadratic residue mod p if
there exists an integer x such that x2 ≡ a (mod p). It is called a quadratic non-residue
otherwise.

For instance, if p = 7, then 2 is a quadratic residue since 32 ≡ 2 (mod 7). However, 3 is
not a quadratic residue (you can check this by listing all 02, 12, 22, . . . , 62 and observing that
3 never appears.)

Quadratic residues are very interesting. Hence, I have dedicated a different chapter to
them and so won’t talk about them anymore for now.

133



134 CHAPTER 5. MODULAR ARITHMETIC ADVANCED

5.3 Square root of -1?

Now let’s consider the equation that lead to humans discovering the complex numbers:
x2 = −1. However, this time it’s modulo p :

x2 ≡ −1 (mod p),

where p is a prime. So, we basically consider the set of numbers {a2 + 1} where a ∈
{0, 1, . . . , p− 1}, and if any element here is 0, we are done. Let’s investigate:

1. For p = 2, clearly 12 ≡ −1 (mod 2), so we ignore this case. Further, we assume p > 2
for the rest of the chapter.

2. For p = 3,
{a2 + 1}2a=0 = {1, 2, 5} ≡ {1, 2, 2} (mod 3).

So, x2 ≡ −1 (mod 3) has no solution.

3. For p = 5,
{a2 + 1}4a=0 = {1, 2, 5, 10, 17} ≡ {1, 2, 0, 0, 2} (mod 5).

So, x2 ≡ −1 (mod 5) has the solution x ≡ 3, 4. These are also the only solutions.

For cases after this, we can ease our work. Firstly, we don’t need to consider a = 0, since
02 + 1 6≡ 0 (mod p) for an prime p. Next, since a2 + 1 ≡ (−a)2 + 1 (mod p), hence we only
need to consider the first half residues mod p.

1. For p = 7,
{a2 + 1}3a=1 = {2, 5, 10} ≡ {2, 5, 3} (mod 7).

So, x2 ≡ −1 (mod 7) has no solution.

2. For p = 11,

{a2 + 1}5a=1 = {2, 5, 10, 16, 26} ≡ {2, 5, 10, 5, 4} (mod 11).

So, x2 ≡ −1 (mod 11) has no solution.

3. For p = 13,

{a2 + 1}6a=1 = {2, 5, 10, 16, 26, 37} ≡ {2, 5, 10, 3, 0, 11} (mod 13).

So, x2 ≡ −1 (mod 13) has the solutions x ≡ 5, 8. These are also the only solutions
(why?).

So we observe that x2 ≡ −1 (mod p) has solutions for some primes p, but not for the rest.

Question 5.3.1. Prove that when it has a solution, it has exactly 2.

Question 5.3.2. Check that x2 ≡ −1 (mod p) has a solution when p = 17, 29 also. Check
that there is no solution when p = 19, 23.
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Do you see a pattern? Can you now guess for which primes would it have a solution?

If you guessed it has a solution when p ≡ 1 (mod 4) but does not have a solution when
p ≡ 3 (mod 4), then well done. In order to prove our conjecture, we would have to show
two things: (1) there is no solution when p ≡ 3 (mod 4), and (2) there is always a solution
when p ≡ 1 (mod 4).

Now, also note that any odd prime is either 1 (mod 4), or it is 3 (mod 4). Thus our
conjecture is that x2 ≡ −1 (mod p) is equivalent to p ≡ 1 (mod 4). I will spoil it for you,
and tell you that this is true. This is often called Fermat’s Christmas Theorem1:

Theorem 5.3.1 (Fermat’s Christmas Theorem). Let p be a prime. Then there exists an x
such that

p | x2 + 1

if and only if p = 2 or p ≡ 1 (mod 4).

Let’s first prove that p | x2 + 1 =⇒ p ≡ 1 (mod 4), which isn’t very hard.

Suppose there exists an x such that p | x2 + 1, where p > 2. Then

x2 ≡ −1 (mod p)

⇐⇒(x2)
p−1
2 ≡ (−1)

p−1
2 (mod p)

⇐⇒ xp−1︸︷︷︸
≡1

≡ (−1)
p−1
2 (mod p)

where we wrote xp−1 ≡ 1 (mod p) using Fermat’s Little Theorem (note that x 6≡ 0 (mod p),
as we already rejected that case). This implies p−1

2
is even, which is the same as saying p ≡ 1

(mod 4), as needed. So this part has been proven.

Question 5.3.3. Where did we use p > 2?

Now we just have to show that for any prime p ≡ 1 (mod 4), there exists an x such that
p | x2 + 1. For this, we take the following x :

x =

(
p− 1

2

)
!.

This works, since

x2 =

(
p− 1

2
· p− 3

2
. . . 1

)
·
(
p− 1

2
· p− 3

2
. . . 1

)
≡
(
p− 1

2
· p− 3

2
. . . 1

)
·
((
−p+ 1

2

)
·
(
−p+ 3

2

)
. . . (−(p− 1))

)
= (−1)

p−1
2 (p− 1)! ≡ −1 (mod p)

by Wilson’s Theorem. So, this is a valid construction.

1Actually this is not Fermat’s Christmas Theorem, the real christmas theorem is Theorem 9.3.1. However
in this book, we will use ”The Christmas Theorem” for this theorem and ”The Two Square Theorem” for
Theorem 9.3.1.

Historical note: The proof to that result (two square theorem) was announced by Fermat in a letter to
Marin Mersenne dated December 25, 1640, a Christmas Day. Hence the name.
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Question 5.3.4. Where did we use the fact that p ≡ 1 (mod 4)?

Yes, I agree this is a magical construction. But if you keep Wilson’s theorem in mind,
it’s not too hard to come up with. But now, we introduce some theory which would help us
prove Theorem 5.3.1 much more naturally.

5.4 Orders

Consider a prime p. We know by Fermat’s Little Theorem that ap−1 ≡ 1 (mod p) for every
a 6≡ 0 (mod p). Also, ak(p−1) ≡ 1 for any k, i.e. a multiple of (p − 1) works too. However,
does the converse hold? That is, should aX ≡ 1 (mod p) imply X = (p− 1) or a multiple of
it?

The answer is no. For instance, when p = 5, we have 12 ≡ 1, 42 ≡ −1 (mod 5). However
these are trivial examples, since 12, (−1)2 = 1 is always true (not just modulo p). Let me
give you some better examples

23 ≡ 1 (mod 7), 35 ≡ 1 (mod 11), 54 ≡ 1 (mod 13).

So we define something known as the order:

Definition 5.4.1. Let p be a prime and a 6≡ 0 (mod p). Then the order of a modulo p
is defined to be the smallest positive integer n such that an ≡ 1 (mod p).

We will denote it by ordp(a). Note that we take the order to be positive. It cannot be 0
(because that gives nothing useful).

Question 5.4.1. Why does the order always exist for every a? That is, why can’t we have
an a with no finite number n with an ≡ 1?

Let me give you a list of orders of a modulo 13 :

a ord

1 1
2 12
3 3
4 6
5 4
6 12
7 12
8 4
9 3
10 6
11 12
12 2

One thing we can observe is that the order always divides 12.

We can clearly see that if ordp(a) | n for some n, then an ≡ 1 (mod p). However, the
converse is also true, which makes the order a very useful concept:
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Theorem 5.4.1 (Fundamental Theorem of Orders). For a prime p and any integer a 6≡ 0
(mod p), we have

an ≡ 1 (mod p)⇐⇒ ordp(a) | n.

Proof. One direction is simple. If ordp(a) | n, then n = k · ordp(a) for some k, so an =(
aordp(a)

)k ≡ 1k ≡ 1 (mod p). The interesting part is the other direction.

Assume that an ≡ 1 (mod p), however ordp(a) - n. Write n = ordp(a)k + r, where
0 < r < ordp(a) (why not 0 ≤ r?). So

1 ≡ an ≡ ak·ordp(a)+r =
(
aordp(a)

)k · ar ≡ ar (mod p).

So, ar ≡ 1 (mod p). However, since 0 < r < ordp(a), we have a contradiction to the fact
that ordp(a) is the smallest positive integer satisfying aX ≡ 1 (mod p).

Comment 5.4.1: The above proof is elegant, no doubt (and the same idea which
occurred frequently in the first chapter). However another proof which is perhaps
easier to come up with is:

an ≡ 1 (mod p) and aordp(a) ≡ 1 (mod p).

So, by Example 2.12.1, we find agcd(n,ordp(a)) ≡ 1 (mod p). But if ordp(a) - n, we will
have gcd(n, ordp(a)) < ordp(a) (why?), contradicting minimality. Hence, ordp(a) | n.

This gives us a characterization of ALL numbers n such that an ≡ 1 (mod p)! In partic-
ular, we have the following:

Corollary 5.4.1 (Order divides (p− 1)). We have ordp(a) | p− 1.

Question 5.4.2. Prove the above using Fermat’s Little Theorem.

Now let’s see the power of this. We have a direct proof of one direction of Theorem 5.3.1:

Proof. Suppose that x2 ≡ −1 (mod p). Then squaring gives x4 ≡ 1 (mod p).Hence, ordp(x) |
4 =⇒ ordp(x) ∈ {1, 2, 4}. Since x2 ≡ −1 (mod p), hence the first two aren’t possible
(why?). So ordp(x) = 4.

Hence, we find that 4 | p− 1 by Corollary 5.4.1, which is what we wanted.

Example 5.4.1 (Classic)

Find all n such that n | 2n − 1.

Pick a prime p of n, so that p | 2n − 1. Then 2n ≡ 1 (mod p), so that ordp(2) | n. But
also, ordp(2) | p − 1, hence ordp(2) divides gcd(p − 1, n) (why?). So if we can select p such
that we can control gcd(p− 1, n), then we are good to go.
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The idea is this: gcd(p− 1, n) is less than p− 1, and a divisor of n. So any prime factor
of this must be less than p. Hence, if we pick p to be the smallest prime factor of n, then
gcd(p − 1, n) = 1 and so ordp(2) must equal 1 (why?). Hence, p | 21 − 1 = 1, which is
impossible as p is a prime.

So is the answer no value of n? If we try n = 1, 2, 3, . . . , then we observe n = 1 works.

Question 5.4.3. Where did we miss the possibility of n = 1?

So, n = 1 is the only solution to this equation.

Example 5.4.2

Prove that every prime divisor of 2p − 1 is greater than p.

Pick a prime divisor q of 2p−1 (like in the previous problem, why must this have a prime
divisor?). Then 2p ≡ 1 (mod q) and so ordq(2) | p. What do you notice here?

Yes, since p is a prime, hence ordq(2) ∈ {1, p}. If ordq(2) = 1, then q | 21 − 1 = 1,
impossible. So ordq(2) = p. So p | q − 1, which shows p ≤ q − 1 < q. Hence we are done!

Example 5.4.3

Prove that any prime factor of 22n + 1 is congruent to 1 modulo 2n+1.

Suppose p | 22n + 1. Then 22n ≡ −1 (mod p), which show 22n+1 ≡ 1 (mod p). Hence,
ordp(2) | 2n+1. What more can we say about the order?

Suppose ordp(2) = 2k with k ≤ n, Then 22k ≡ 1 (mod p), but since k < n, hence this
shows 22n ≡ 1 (mod p), which shows p = 2 (why?), which is impossible. Hence ordp(2) is in
fact exactly equal to 2n+1 ! Hence, 2n+1 | p− 1, which is what we wanted to prove.

5.5 Primitive Roots

Clearly we have seen examples for which the order is less than p − 1. The interesting case
is when the order is p − 1. Suppose g has order (p − 1) modulo p. This means that none
of {g1, g2, g3 . . . gp−2} is 1. Further, this means that all these are distinct modulo p, since
gi ≡ gj ⇔ gi−j ≡ 1 (mod p). However, 0 < i 6= j < p − 1 implies 0 < i − j < p − 1,
which contradicts the fact that the order of g is p− 1. Thus, the powers of g generate all the
(non-zero) remainders modulo p. Hence we call g a generator. Another common name is a
primitive root. Before saying anything else, let’s state the definition and our observation
formally:

Definition 5.5.1. Let p be a prime. Then a residue g 6= 1 is called a primitive root mod
p if g has order (p− 1) modulo p.

Lemma 5.5.1 (Primitive Roots Generate all Non-zero Residues). Let g be a primitive root
modulo p. Then

{g1, g2, g3, . . . , gp−1} ≡ {1, 2, 3, . . . , p− 1} (mod p).
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Note that gx ≡ 1 (mod p) does imply (p − 1) | x, unlike what we saw in the previous
section.

Before we all fall in the flow of these and blindly start using them, here’s a question we
did not address: Does a primitive root always exist modulo p? Look at Table 5.4 and see if
there exists a primitive root modulo 13.

Question 5.5.1. List the orders of residues modulo 7, 11, 17 and see if primitive roots exist
in each case.

As you may have guessed by solving the above question, there always does exist a prim-
itive root modulo p. This is true, and it’s a very strong result in itself:

Theorem 5.5.1 (Primitive Roots Always Exists modulo p). Let p > 2 be a prime. Then
there always exists a primitive root modulo p.

We omit the proof for now. This is not very easy to prove, however you can just state
this on a contest without proof.

Primitive roots ”generate” all the residue and give us a better control over the residues
in many scenarios. Let’s see it in action now.

Example 5.5.1 (Sum of Powers mod p)

Let p > 2 be a prime. Then for any integer x,

1x + 2x + · · ·+ (p− 1)x ≡

{
−1 if p− 1 | x
0 otherwise

(mod p).

If x = 1, then the left side is p(p− 1)/2. Since 2 | (p− 1), hence this is p× some integer
and so 0 (mod p). Use the formula for sum of squares and sum of cubes to confirm the result
for x ∈ {2, 3}.

But in general, we don’t have a (nice) formula for sum of xth powers. So we try something
else. We can use Lemma 5.5.1 to get

1x + 2x + · · ·+ (p− 1)x ≡ gx + g2x + · · ·+ g(p−1)x

= gx · g
(p−1)x − 1

gx − 1
(mod p).

This is true unless the denominator is 0 (mod p). That happens when gx ≡ 1 (mod p),
which is the same as saying (p − 1) | x. So excluding that possibility, (gx − 1)−1 exists and
so the sum evaluates to

gx · g
(p−1)x − 1

gx − 1
=

gx

gx − 1
·
((
gp−1

)x − 1
)
≡ 0 (mod p).

What about the case when (p− 1) | x? Well, in that case Fermat’s Little Theorem gives us
ax ≡ 1 (mod p) so every term in the sum is 1, so the sum becomes 1+1+· · ·+1 = (p−1) ≡ −1
(mod p). So done!



140 CHAPTER 5. MODULAR ARITHMETIC ADVANCED

This problem was very easy to do using primitive roots, however challenging to do oth-
erwise. Further, this is a very very important result. Always keep this in mind when dealing
with sums of powers. Also, this is an important result so remember this.

Problems for Practice

Problem 5.5.1. Let g be a primitive root modulo an odd prime p. If p = 2m+ 1, then show
that

gm ≡ −1 (mod p).

Problem 5.5.2. Prove that if r is a primitive root modulo m, then so is the inverse of r
modulo m.

Problem 5.5.3. Show that there are exactly ϕ(p− 1) primitive roots modulo p.

Problem 5.5.4. Show that for any prime p, the quadratic residues mod p are exactly the
numbers g0, g2, g4, . . . for a primitive roots g mod p.

5.6 Some more applications

Now let’s see the power of this in proving the other direction of Theorem 5.3.1:

Proof. We want an x such that x2 ≡ −1 (mod p), if p ≡ 1 (mod 4) is a prime. Instead of
finding x, we look for a y such that (gy)2 ≡ −1 (mod p).

We can now guess a value of y; simply take y = p−1
4
, since then g2y = g(p−1)/2 ≡ −1

(mod p) by Problem 5.5.1, and we are home free!

Question 5.6.1. Where was the fact that 4 | p− 1 used?

Primitive roots are thus very useful in construction type problems too. Also, here’s a
lemma that you should keep an eye out since it helps to use Fermat’s Christmas Theorem:

Lemma 5.6.1. Let x ≡ 3 (mod 4). Then x has at least one prime divisor p ≡ 3 (mod 4)
which has an odd exponent.

Proof. Assume not. Then

x = pα1
1 . . . pαk ≡ 1 (mod 4)

since 1u ≡ 1 and 3even ≡ 1 (mod 4).

Example 5.6.1

Prove Wilson’s Theorem.
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Firstly, the case p = 2 is obvious. Now assume p is odd. Clearly we can use Lemma 5.5.1
to get:

(p− 1)! = (p− 1) · (p− 2) . . . 1

≡ g1 · g2 . . . gp−1

= gp(p−1)/2

= (gp−1/2)p

≡ (−1)p = −1 (mod p).

Where g(p−1)/2 ≡ −1 follows by Problem 5.5.1.

Problems for Practice

Problem 5.6.1 (Generating numbers with orders). Let p be a prime and d be any
divisor of p− 1. Show that there exists an integer a such that ordp(a) = d.

5.7 General Orders and Primitive Roots

We have defined orders modulo a prime. However, they can easily be generalised to orders
modulo any number.

Definition 5.7.1. Let a,m be coprime integers. Then the order of a modulo m is the smallest
integer x > 0 such that ax ≡ 1 (mod m).

The theorem that aN ≡ 1 (mod m) implies ordm(a) | N also holds here, and the proof
is analogous. In particular, we find that ordm(a) | ϕ(m).

Time for a very famous example

Example 5.7.1 (Saint Petersburg Mathematical Olympiad)

Prove that for all positive integers a > 1 and n we have n | ϕ(an − 1)

The ϕ function is not easy to deal with, especially ϕ(an − 1). However, since we want
n | ϕ(an − 1), we could try to find a number which has order n modulo an − 1. The most
logical guess is a. So if we can show ordan−1(a) = n, we are done.

However, this is not too hard. It is easy to see that the smallest integer d > 0 such that
ad ≡ 1 (mod an − 1) is n (why?), and so we are done! What an amazing application of
orders.

Similarly, we can define primitive roots in general:

Definition 5.7.2. A residue g is called a primitive root modulo m is the order of g
modulo m is ϕ(m).

However, there is some restriction:
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Theorem 5.7.1. A primitive root modulo m exists if and only if m ∈ {2, 4, pk, 2pk} for some
integer k and some prime p.

This means that if, for instance m = 57, then there does exist a primitive root modulo
m. If m = 2 · 3 · 5, then there won’t exist a primitive root modulo m. We again, omit the
proof of this theorem.

The other properties are analogous. For instance, {g1, g2, . . . , gϕ(m)} is the set of residues
that are coprime to m (this is the same set S we had in Theorem 2.9.1.)

Here’s a simple problem:

Example 5.7.2

Suppose that m does not have a primitive root. Show that

a
ϕ(m)

2 ≡ 1 (mod m)

for every a relatively prime to m.

The condition is weird, however, looking at the φ(m) we are obviously reminded of Euler’s
Totient Function. We have aϕ(m) ≡ 1 (mod m). Hence, if aϕ(m)/2 = x (mod m), then x2 ≡ 1
(mod m), i.e.

m |
(
a
φ(m)

2 − 1
)(

a
φ(m)

2 + 1
)

= (x+ 1)(x− 1).

At this point, we can now make more sense of the weird condition in the problem. Clearly
if p were a prime, then the above would imply m | (x− 1) or m | (x + 1), the former being
the one we would want.

Now if m = xy with x, y coprime and x, y > 2, then

a
ϕ(m)

2 = aϕ(x)·
ϕ(y)
2 ≡ 1 (mod x).

Similarly it is ≡ 1 (mod y). Combining, we get a
ϕ(m)

2 ≡ 1 (mod xy). The case m = 2k with
k > 2 is left to reader.

Problems for Practice

Problem 5.7.1. Complete the proof above.

Problem 5.7.2. Show that there are ϕ(ϕ(n)) primitive roots.



5.8. EXAMPLE PROBLEMS 143

5.8 Example Problems

Our first example is a long one, although there aren’t a lot of clever steps involved. It’s
straightforward in the sense that each step gives a conclusion, and that conclusion gives the
next step, eventually leading us to a solution. However, this is an instructive problem and
an excellent practice for using orders.

Example 5.8.1 (USA TST 2003)

Find all ordered prime triples (p, q, r) such that p | qr + 1, q | rp + 1, and r | pq + 1.

First of all, let’s analyze only the condition p | qr + 1 (since the others are symmetric).
Now, this gives qr ≡ −1 (mod p). Hence, q2r ≡ 1 (mod p) and so ordp(q) | 2r. Since r is a
prime, hence ordp(q) ∈ {1, 2, r, 2r}. Not too shabby. Let’s deal with each case properly:

1. Suppose ordp(q) = 1. Then p | q − 1. However, then qr ≡ 1 (mod p) combined with
p | qr + 1 implies 1 ≡ −1 (mod p), i.e. p = 2.

2. Suppose ordp(q) = 2. Then p | q2− 1 = (q− 1)(q+ 1). As before p | q− 1 is impossible
(unless p = 2). So p | q + 1.

3. Suppose ordp(q) = r. Then qr ≡ 1 (mod p). This as before implies p = 2 (why?)

4. Suppose ordp(q) = 2r. Then 2r | p− 1. In particular, p is an odd prime and r | p− 1.

The rest of the problem is smart casework now. For now, suppose all p, q, r are odd. So, we
have obtained the following result:

Lemma 5.8.1. For odd primes x, y, z,

x | yz − 1 =⇒

{
ordx(y) = 2 =⇒ x | y + 1

ordx(y) = 2z =⇒ 2z | x− 1

Suppose ordp(q) = 2r, which gives r | p − 1. This means r | pq − 1 (why?). However,
then r | pq + 1 is impossible, since r is odd. Similarly, ordq(r) = 2p of ordr(p) = 2q are not
possible.

So ordp(q), ordq(r), ordr(p) = 2 implying p | q+1, q | r+1, r | p+1. However, this doesn’t
feel to be possible for primes, because the chain seems to be ”too close”. This intuition is
formalized by using inequalities, since these three give p ≤ q+ 1, q ≤ r+ 1, r ≤ p+ 1 and we
can’t find such primes.

At the end of all this discussion, we can conclude that our assumption that p, q, r are
all odd gives no solution. So, one of p, q, r is even, say p = 2. Then 2 | qr + 1 implies q
is odd (and nothing more, so this condition is useless now, i.e. we can’t extract anymore
information from here). Also, q | r2 +1 implies ordq(r) = 4 (why?) implying 4 | q−1. Lastly
r | 2q + 1 implies r is odd. So using the lemma we obtain either r | 2 + 1 = 3, or 2q | r + 1.
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If r = 3, then q | 32 + 1 = 10 and so q = 5 (since we obtained q is odd). If 2q |
r + 1, then we try to combine it with q | r2 + 1. We get q | r + 1, r2 + 1 which implies
q | r2 + 1− (r + 1)(r − 1) = 2, which is again impossible since q was odd. So if p = 2, then
(r, q) = (3, 5). Similarly we have two more solutions for the cases when q = 2 or r = 2. Hence
the solutions are:

(p, q, r) = (2, 5, 3), (3, 2, 5), (5, 3, 2).

Example 5.8.2 (Schinzel)

Find all integers n ≥ 1 such that n divides 2n−1 + 1

This has a very short solution, however is hard to come up with. Assume on the contrary
that for some n > 1 we have n|2n−1 + 1. Let p1 < p2 < · · · < pk be the prime divisors of n.
Write pi = 2rimi + 1 with mi odd for all 1 ≤ i ≤ k. Let t = rj be the minimum of all ri. The
advantage of doing this is

n =
∏
i

(2rimi + 1) ≡ 1 (mod 2t).

So we can write n = 2tm+ 1 with m odd. Since pj = 2tmj + 1, hence

−1 ≡ (−1)mj ≡
(
2n−1

)mj = 2(2tm)mj ≡
(

22tmj
)m
≡
(
2pj−1

)m ≡ 1 (mod pj).

Hence pj = 2, which is clearly impossible.

Example 5.8.3 (Chinese TST 2005)

Prove that for any n > 2, the greatest prime factor of 22n + 1 is greater than or equal
to n · 2n+2 + 1.

This problem, just like the previous one, is tricky despite having a simple solutions. In
fact our solution will prove a stronger bound (try to point out how and where). Suppose
22n + 1 = pα1

1 . . . pαkk . Now a standard order argument shows pi ≡ 1 (mod 2n+1) (we saw this
in Example 5.4.3).

Hence write pi = 2n+1xi + 1 for each i. Now firstly since pi ≥ 2n+1 + 1, hence

22n + 1 ≥ (2n+1 + 1)α1+···+αk > 2(n+1)(α1+···+αk).

Hence, α1 + · · ·+ αk <
2n

n+1
.

Now if we can show xi ≥ 2(n+ 1) for some i, then we are done. For this, it is enough to
show that xi(α1 + · · · + αk) ≥ 2n+1. How do we get terms of the form xiαi? The answer is
binomial theorem. We get the following:

pαii = (2n+1xi + 1)αi ≡ 2n+1αixi + 1 (mod 22n+2).
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(since 2n ≥ 2n+ 2 for n ≥ 3. The cases n ≤ 2 can be checked manually). Thus

22n =
∏

pαii ≡ (2n+1αixi + 1) (mod 22n+2)

and so 2n+1(x1α1 + · · ·+ xkαk) ≡ 0 (mod 22n+2). So if xr is the largest from all of xi, then

xr(α1 + · · ·+ αk) ≥ x1α1 + · · ·+ xkαk ≥ 2n+1

which gives the desired bound.

Lastly, we (again) conclude with a problem which is intertwined between Number Theory
and Combinatorics:

Example 5.8.4 (ELMO 2010/5)

2010 MOPpers are assigned numbers 1 through 2010. Each one is given a red slip and
a blue slip of paper. Two positive integers, A and B, each less than or equal to 2010
are chosen. On the red slip of paper, each MOPper writes the remainder when the
product of A and his or her number is divided by 2011. On the blue slip of paper, he
or she writes the remainder when the product of B and his or her number is divided
by 2011. The MOPpers may then perform either of the following two operations:

1. Each MOPper gives his or her red slip to the MOPper whose number is written
on his or her blue slip.

2. Each MOPper gives his or her blue slip to the MOPper whose number is written
on his or her red slip.

Show that it is always possible to perform some number of these operations such that
each MOPper is holding a red slip with his or her number written on it.

We generalize the result by replacing 2011 by p for any odd prime p. It is best done by
experimenting yourself, so do that before reading the solution. Firstly, we define a few terms
for convenience:

1. Let M denote the ordered set {1, 2, · · · p− 1}. For any real constant 0 < c < p, define
cM := {c, 2c, · · · c(p − 1)}. Note that cM is a complete residue class modulo p. But
for any two 0 < a 6= b < p, the sequences aM, bM are different permutations of M .

2. Call a permutation π of M good if there exists a constant C such that π(M) = CM .
(Note that not every permutation of M is good.)

3. Next, if we perform the first move (Each MOPper gives his or her red slip to the
MOPper whose number is written on his or her blue slip), then say that we fix blue
and move red. Similar terms exist for the second move.

We have the following claim:

Claim. At any moment, if we have two good permutations, then fixing any one of them and
moving the other will also result in a good permutation.



146 CHAPTER 5. MODULAR ARITHMETIC ADVANCED

Proof. Let’s suppose the permutations are xM, yM . Suppose we fix yM and move xM .
Then, by definition, the number k at the ith spot in xM will move to jth spot, where j is
the number written at the ith spot in yM .

But clearly j ≡ i · y (mod p) and k = i · x (mod p). Hence the new number at the jth
spot is k = x · i = x · (jy−1) = j · (xy−1). Hence if set t = xy−1, then k = tj is the new
number at the jth spot.

Hence, the new sequence obtained is tM , which is clearly good.

Also, as proved above, if we have the sequences xM, yM , then we can get to (x · y−1)M
in the next move by fixing yM .

Claim. Let g be a primitive root modulo p. Then from the original sequences AM,BM , we
can get to BM, gM .

Proof. Set A = gk and B = g`. Let gcd(k − 1, `) = d and write ` = d`′ and p− 1 = dz.

Then consider the following moves by fixing BM :

A = gk 7→ gk · g−l 7→ gk · g−2` · · · gk · g−dz`′

Here, since g−dz`
′
= (gp−1)

`′ ≡ g`
′
, hence we have obtained the sequence (gk · g`′)M .

By repeating this process, we can further reduce `′ to `′

gcd(p−1,`′) and so on until we get

reach a number L such that gcd(L, p− 1) = 1.

Then again by fixing BM , we can get to gk · g−L, · · · gk · g−Ln ≡ g, where k − Ln ≡ 1
modulo p−1 (note that this number n exists since gcd(L, p−1) = 1). Hence we have reached
gM without disturbing B and we are done.

To finish it, we have the two sequences BM, gM . Now fix BM and perform moves to get
these p− 1 sequences: BM, (Bg−1)M, (Bg−2)M · · · (Bg−(p−1))M .

Note that {B,Bg−1, Bg−2, · · ·Bg−(p−1)} forms a complete residue class modulo p, hence
there will exist the sequence 1M in the sequences listed above, and we are done.
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5.9 Practice Problems

Problem 5.9.1. Find all n such that 3n + 1 is divisibly by n2.

Problem 5.9.2. Show than any prime factor q of pp − 1 is ≡ 1 (mod p).

Problem 5.9.3 (Fermat). Let p > 3 be a prime. Prove that any positive divisor of 2p+1
3

is
of the form 2kp+ 1.

Problem 5.9.4 (IMO Shortlist 2006 N2). For x ∈ (0, 1) let y ∈ (0, 1) be the number
whose n-th digit after the decimal point is the 2n-th digit after the decimal point of x. Show
that if x is rational then so is y.

Problem 5.9.5. Suppose that k ≥ 2 and n1, n2, · · · , nk ≥ 1 be natural numbers having the
property

n2 | 2n1 − 1, n3 | 2n2 − 1, · · · , nk | 2nk−1 − 1, n1 | 2nk − 1.

Show that n1 = n2 = · · · = nk = 1. Hints: 408 16

Problem 5.9.6 (Iran 3rd round 2017 Numbers theory final exam P1). Let x and y
be integers and let p be a prime number. Suppose that there exist relatively prime positive
integers m and n such that

xm ≡ yn (mod p)

Prove that there exists an unique integer z modulo p such that

x ≡ zn (mod p) and y ≡ zm (mod p).

Hints: 193

Problem 5.9.7 (China TST 2006). Find all positive integers a and n such that

(a+ 1)n − an

n

is an integer. Hints: 415

Problem 5.9.8. Let g be a Fibonacci primitive root (mod p). i.e. g is a primitive root
(mod p) satisfying g2 ≡ g + 1 (mod p). Prove that

1. g − 1 is also a primitive root (mod p).

2. Show that if p ≡ 3 (mod 4), then g − 2 is also a primitive root (mod p).

Hints: 219 354

Problem 5.9.9 (PUTNAM 1976 B6). Prove that if n is an integer such that σ(n) =
2n+ 1, then n is the square of an odd integer. Hints: 106 86 388 278
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Problem 5.9.10 (China 2009). Find all prime numbers p, q such that pq | 5p + 5q. Hints:

163 476 176 88

Problem 5.9.11. Suppose that p > 3 is prime. Prove that the products of the primitive
roots of p between 1 and p− 1 is congruent to 1 modulo p. Hints: 50 461

Problem 5.9.12 (Bulgaria National Olympiad). Find all positive integers m and n such
that (

22m + 1
) (

22n + 1
)

is divisible by mn. Hints: 322

Problem 5.9.13. Determine all the pairs (p, n) of a prime number p and a positive integer
n for which

np + 1

pn + 1
∈ Z.

Hints: 141 396

Problem 5.9.14 (Iran MO 3rd round 2016 finals Number Theory P1). Let p and q
be prime numbers (q is odd). Prove that there exists an integer x such that

q | (x+ 1)p − xp

if and only if
q ≡ 1 (mod p).

Hints: 331 320 56 Sol: pg. 290

Problem 5.9.15 (China TST 4 2018 Day 2 Q4). Let p be a prime and k be a positive
integer. Set S contains all positive integers a satisfying 1 ≤ a ≤ p − 1, and there exists
positive integer x such that xk ≡ a (mod p).

Suppose that 3 ≤ |S| ≤ p− 2. Prove that the elements of S, when arranged in increasing
order, does not form an arithmetic progression. Hints: 257 179

Problem 5.9.16 (IMO Shortlist 1998 N5). Determine all positive integers n for which
there exists an integer m such that 2n − 1 is a divisor of m2 + 9. Hints: 102 368 143 183

Problem 5.9.17 (USA TST for EGMO 2019, Problem 3). Let n be a positive integer
such that the number

1k + 2k + · · ·+ nk

n

is an integer for any k ∈ {1, 2, . . . , 99}. Prove that n has no divisors between 2 and 100,
inclusive. Hints: 28 338 376 387 335 Sol: pg. 291

Problem 5.9.18 (IMO Shortlist 2014 N6). Let a1 < a2 < · · · < an be pairwise coprime
positive integers with a1 being prime and a1 ≥ n+ 2. On the segment I = [0, a1a2 · · · an] of
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the real line, mark all integers that are divisible by at least one of the numbers a1, . . . , an .
These points split I into a number of smaller segments. Prove that the sum of the squares
of the lengths of these segments is divisible by a1. Hints: 375 170 256 26 4 242 222 62 Sol: pg.

291
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z Identical Polynomials in Fp[X ]

By Fp[X], we denote the set of polynomials with coefficients modulo p. The key idea here
is that X has no meaning of its own, i.e. it is just a way to write the polynomial. The
coefficients are the ones that interest us (just like in generating functions). We say that X
is just a ”formal variable” here.

So, if we are given two polynomials f, g, then we could have f = g in Fp, or we could
have f = g in Fp[X], and these are two different things. For example, f = g in Fp means
f(x) ≡ g(x) (mod p) for all values of x ∈ Fp. For instance, xp ≡ x (mod p) is true by
Fermat’s little Theorem, and so xp, x are the same in Fp.

In Fp[X], we need to look at the coefficients only. So x2+5x+2, x2+2x+2 and x2−x−1
are all the same in F3[X]. Also, xp 6= x in Fp[X] (since one has degree p and the other has
degree 1). So, f = g in Fp means they are equal value-wise (modulo p), but f = g in Fp[X]
means they are the same polynomials (coefficients modulo p).

Problem 5.9.19. Show that if f = g in Fp[X], then f = g in Fp holds too.

Comment 5.9.1: We often use f ≡ g to denote they are identical polynomials. So if
f, g are polynomials in Fp[X], then f ≡ g would mean the coefficients are same modulo
p.

Now that you have understood this, we can discuss the following:

Freshman’s Dream

We stated and proved Freshman’s dream in Example 2.12.3, where we said (a+ b)p ≡ ap+ bp

(mod p). There’s a more useful way of writing this:

(X + 1)p ≡ Xp + 1 (mod p)

for any X (I think you can see where I am going with this). So we know that the polynomials
(X + 1)p and Xp + 1 are equal in Fp. However, this is stupid, since Fermat’s Little Theorem
gives (X + 1)p ≡ X + 1 ≡ Xp + 1 (mod p) anyway. So why is this any useful?

Here’s the reason. Go back and take a look at the proof we had given while discussing
this originally in Example 2.12.3. If we write the proof here again, then it’s

(X + 1)p = Xp +

(
p

1

)
Xp−1 +

(
p

2

)
Xp−1 + · · ·+

(
p

p− 1

)
X + 1 ≡ Xp + 1 (mod p).

The fact used here in the proof treats X as a formal variable and doesn’t need it’s value, and
we only worked with coefficients! What this means is the stronger fact that (X + 1)p and
Xp + 1 are equal polynomials in Fp[X] (why is this stronger?). So, we have the following:
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Theorem 5.9.1 (Freshman’s Dream). For any prime p, we have

(X + 1)p ≡ Xp + 1

in Fp[X]. We can generalize this to

(X + 1)p
i ≡ Xpi + 1

in Fp[X].

This is very useful, much more useful than the earlier Freshman’s dream (which followed
from Fermat’s Little Theorem directly). Let’s see an application, which we had promised
earlier:

Proof of Lucas’s Theorem

Before we skip to the general proof, it is better to work with an example first. Suppose
n = 66 and m = 13. Also, let p = 5. Write n = 231(3) and m = 23(3). The key idea again is
to use generating functions since it covers all the coefficients at once. So

(X + 1)66 = (X + 1)2·5
2+3·51+1·50

=
(

(X + 1)5
2
)2 (

(X + 1)5
1
)3 (

(X + 1)5
0
)1

≡
(
X52 + 1

)2 (
X51 + 1

)3 (
X50 + 1

)1
,

where the last equality is in F5[X]. Further, this equals

=

((
2

0

)
X2·52 +

(
2

1

)
X1·52 +

(
2

2

)
X0·52

)((
3

0

)
X3·51 +

(
3

1

)
X2·51 +

(
3

2

)
X1·51 +

(
3

3

)
X0·51

)((
1

0

)
X1·50 +

(
1

1

)
X0·50

)
.

We want the coefficient of X13 here (why?). Note that each exponent is of the form Xa·5b .
So, on multiplying out all the brackets, the power of X would be something of the form
a15

b1 + a25
b2 + . . . , so a base 5 number. Since 13 = 0 · 52 + 2 · 51 + 3 · 50, hence we have to

choose the right terms from each bracket. Doing this, we would get(
66

13

)
≡
(

2

2

)(
3

1

)(
1

3

)
(mod 5)

(note that we chose
(
1
3

)
from the third bracket since there weren’t enough terms). So, we

proved Lucas’s theorem for this case. Let’s look at the general case now.

Write
n = nkp

k + nk−1p
k−1 + · · ·+ n1p+ n0

and
m = mkp

k +mk−1p
k−1 + · · ·+m1p+m0
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as the base p expansions of m and n respectively. Then (we work in Fp[X])

∑
0≤m≤n

(
n

m

)
Xm = (X + 1)n

= (X + 1)nkp
k+nk−1p

k−1+···+n0

=
k∏
i=0

(
(X + 1)p

i
)ni

Now, we use Freshman’s dream on each bracket to get

≡
k∏
i=0

(
Xpi + 1

)ni
=

k∏
i=0

ni∑
mi=0

(
ni
mi

)
Xpimi .

At this point, note that we can change the upper index of the sum to (p− 1) since
(
x
y

)
= 0 if

y > x (why must we do this? Look back at our proof for the n = 66 example and point out
where we did this). Then, to obtain the coefficient of Xm, we collect the right terms from
each sum to multiply so that we get m = mkp

k +mk−1p
k−1 + · · ·+m1p+m0 (we can do this

since the base p representation of m is unique). So we write

=
k∏
i=0

p−1∑
mi=0

(
ni
mi

)
Xpimi .

=
n∑

m=1

k∏
i=0

(
ni
mi

)
Xm.

And so, by comparing the coefficients of Xm on both the sides, we are done!

We can nicely summarize this as:

∑
0≤m≤n

(
n

m

)
Xm = (X + 1)n = (X + 1)nkp

k+nk−1p
k−1+···+n0

=
k∏
i=0

(
(X + 1)p

i
)ni
≡

k∏
i=0

(
Xpi + 1

)ni
=

k∏
i=0

ni∑
mi=0

(
ni
mi

)
Xpimi =

k∏
i=0

p−1∑
mi=0

(
ni
mi

)
Xpimi .

=
n∑

m=1

k∏
i=0

(
ni
mi

)
Xm.
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Lagrange’s Theorem

Define the polynomials f, g ∈ Fp[X] by

f(x) = xp − x, g(x) = x(x− 1)(x− 2) . . . (x− (p− 1)).

We saw in Example 2.12.4 that f(x) and g(x) are equal in Fp, i.e. always give the same
value modulo p. The question we promised to answer was if they are equal as polynomials
too, i.e., equal in Fp[X].

Turns out the answer is yes, and it goes by the name Lagrange’s Theorem.

Theorem 5.9.2 (Lagrange’s Theorem). Let p be a prime. Then the polynomials

xp − x ≡ x(x− 1) . . . (x− (p− 1))

holds in Fp[X].

The sharp-eyed reader might say that this follows by the factor theorem; i.e., f(x) has
the roots 0, 1, 2, . . . , p− 1 in Fp and is monic, so f(x) = x(x− 1) . . . (x− (p− 1)) in Fp[X].
This is a perfect argument, however as a technical issue: we know that the factor theorem
holds in C[X]. Does it also hold in Fp[X]?

The answer is yes, and it depends on two key properties of Fp[X] which distinguishes it
from other sets that don’t have factor theorem:

1. If fg = 0 for two polynomials f, g ∈ Fp[X], then one of f, g must be 0.

2. Euclid’s Division Algorithm holds in Fp[X] (see Comment 7.1.3.)

A number a is called a zero divisor if there is a non-zero number x such that ax = 0.
Hence, the first property says that Fp[X] has no zero divisors. In fact, for this to hold, the
hypothesis that p is a prime is essential. For instance, 2 · 5 ≡ 0 (mod 10) even though both
are non-zero in Z/10Z.

The second property says that if f, g ∈ Fp[X] are two polynomials, then there exist
polynomials q, r ∈ Fp[X] such that

f(x) = g(x)q(x) + r(x), deg r < deg q.

We need to take some care with deg here. For instance, deg(5x2 + 2x+ 1) = 1 in F5[X] since
5x2 is just 0 in F5[X]. However, deg(5x2 + 2x+ 1) = 2 in F2[X].

Question 5.9.1. Convince yourself that Euclid’s algorithm holds in Fp[X]. Take a few ex-
amples, if needed (hint: polynomial division, see Comment 7.1.3.)

Now, we can prove the factor theorem:

Theorem 5.9.3 (Factor Theorem). Let f ∈ Fp[X] have n distinct roots x1, . . . , xm, where
deg f = n. Then there exists a polynomial g(x) such that deg g = n−m and

f(x) = (x− x1) . . . (x− xm)g(x)

holds identically in Fp[X].
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Proof. Say f is non-constant (else there is nothing to prove). Write

f(x) = (x− x1)q(x) + r(x).

Since deg r < deg(x − x1), hence r must be a constant. Further, f(x1) = 0 implies r = 0
in Fp. If n = 1, then we are done. Otherwise there is a second root x2. Then f(x2) = 0
implies (x2−x1)q(x2) = 0 in Fp[X]. We have seen earlier that this means either x2−x1 = 0,
or q(x2) = 0. The first one is not possible (since we assume roots to be distinct.) Hence
q(x2) = 0. Now since deg q < deg f, hence we can finish by induction now.

Question 5.9.2. In Z/6Z[X], consider x2 − 5x. It has the roots x = 0, 2, 3, 5. However,
x2 − 5x 6= (x− 0)(x− 2)(x− 3)(x− 5) for degree reasons. Why do we face this issue here?

Hence, we have the following corollary (by looking at the degree)

Corollary 5.9.1. Let f ∈ Fp[X] have n distinct roots x1, . . . , xn, where deg f = n. Let c 6= 0
be the leading coefficient of f. Then

f(x) = c(x− x1) . . . (x− xn)

holds identically in Fp[X].

This corollary proves Lagrange’s theorem. Lagrange’s theorem has many amazing appli-
cations. For instance:

Problem 5.9.20. Prove Wilson’s Theorem by comparing coefficients.

Problem 5.9.21. Using Newton’s sum identities, prove the result in Example 5.5.1.

Roots of Polynomials in Fp[X]

Now that we are discussing polynomials and their roots, let’s talk about them properly. A
natural question is how many roots does a polynomial have mod m? If deg f = d, then does
it have d roots (like polynomials in C[X])? Turns out the answer isn’t very simple. Consider
the following two polynomials:

f(x) = xp − x+ 1 ∈ Fp[X], g(x) = x2 − 5x ∈ Z/6Z[X], h(x) = 5x2 + 10x ∈ F5[X].

In the first example, we see that modulo p, the polynomial has 0 roots (why?) despite
having degree p. In the second example (which we have seen before), we find 4 roots modulo
6, which is more than the degree. In the last example, we see that every number is a root of
the polynomial. So is there any good result?

The answer is yes, but only when m is a prime. We have the following analogue of
the Fundamental Theorem of Algebra (before presenting it, recall that if deg f = n for a
polynomial f ∈ Fp[X], then the coefficient of xn is not 0 in Fp, i.e. not divisible by p. So the
degree of h(x) above is not defined).
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Theorem 5.9.4 (Lagrange’s Theorem). Let f ∈ Fp[X] be a polynomial with deg f = n.
Then, f has at most n distinct roots in Fp.

One proof directly follows from the factor theorem above. We present a second proof:

Proof. We prove this by induction on deg f. The base case is clear, so suppose we have the
result till some deg f = k − 1. Now consider a polynomial f of degree k, and suppose it has
more than k roots mod p, say x1, . . . , x` with ` > k. Let c 6= 0 be the leading coefficient of
f. Then define

g(x) = f(x)− c(x− x1) . . . (x− xk).

Now if deg g is not identically 0 in Fp[X], then deg g < k and hence it has at most deg g < k
roots by the induction hypothesis. However, x1, . . . , xk are all its roots, and we have a
contradiction.

So it must be identically zero in Fp[X]. However, this is impossible as deg f > k =
deg (c(x− x1) . . . (x− xk)) , and so we are done.

This gives the following important corollary:

Corollary 5.9.2. Let f ∈ Fp[X] be a polynomial with more than deg f roots. Then f is
identically zero in Fp[X].

When does a polynomial have exactly deg f roots? The answer to this question is in the
following theorem:

Theorem 5.9.5. Let f ∈ Fp[X] be a polynomial. Then f has exactly deg f roots if and only
if f(x) divides xp − x.

Proof. Suppose f has deg f roots. Write xp − x = f(x)q(x) + r(x) with deg r < deg f. Now
since each root of f is also a root of xp− x, we find that r(x) = 0 for deg f values. However,
since deg f > deg r, hence by Corollary 5.9.2 we find r ≡ 0, and so f(x) | xp − x.

Conversely, suppose f(x) divides xp− x. Write xp− x = f(x)q(x) + pr(x) in Z[X]. Here,
deg f = n and deg g = p− n, and so by Theorem 5.9.4, f has at most n roots, and g has at
most p − n roots, implying that f(x)g(x) has at most n + (p − n) = p roots. However, we
see that for all p numbers in Fp, xp − x vanishes. Hence, f(x)g(x) = 0 for all x ∈ Fp. Thus,
equality holds above, showing that f has n roots.
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Chapter 6

Largest Exponent

This chapter is based on the whole idea of looking at prime factors to think of a number, an
idea we hinted to in the first chapter.

Definition 6.0.1. Let p be a prime and n be an integer. Then the p-adic valuation or
p-adic order of n is defined to be the largest integer t such that pt | n.

The are two1 common notations for this. The one we will use is νp(n).

So, ν2(48) = 4 and ν5(10) = 1. We can also have νp = 0, for instance ν2(3) = 0. By
convention, we set νp(0) = +∞. Thus, if we let 2 = p1 < p2 < p3 < . . . be all the primes,
then we can write any integer n as

n =
∏
i≥0

p
νpi (n)

i = p
νp1 (n)
1 p

νp1 (n)
1 . . . .

For instance 36 = 22 · 32 · 50 · 70 . . . . Let’s now present one property which is going to be
most important result related to νp :

Lemma 6.0.1 (Divisibility). Let x, y be integers. Then

x | y ⇐⇒ νp(x) ≤ νp(y) for all primes p.

As a corollary, x = y if and only if νp(x) = νp(y) for all primes p.

The key part here is that we must have νp(x) ≤ νp(y) for all primes p. Can you see why
this lemma is true?

This lemma can be used to interchange divisibility with νp, which is very useful at times.
For instance, here is a classic example which is hard to do otherwise but easy using this
lemma. We give a walkthrough to it

Example 6.0.1

Let a, b be integers such that a | b2 | a3 | b4 | a5 . . . . Show that a = b.

The idea is to use νp to remove the divisibility. Also, to show a = b, we must show
νp(a) = νp(b) for all primes p. So take any prime p.

1The other is ordp(n). However, that clashes with the notation we used for order. So we don’t use that.

157
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(a) Use a | b2 to get νp(a) ≤ 2νp(b). Use b2 | a3 to get 2νp(b) ≤ 3νp(a). Continue the
pattern to get

nνp(a) ≤ (n+ 1)νp(b) ≤ (n+ 2)νp(a) for all n ∈ N.

(b) Choose n large to conclude that νp(b)/νp(a) = 1 (In other words, take n → ∞).
Conclude.

6.1 Arithmetic properties

Consider two integers x, y. Suppose νp(x) = m, νp(y) = n. So x = pma, y = pnb where a, b
are coprime to p. Then

xy = (pma)(pnb) = pm+nab.

Since gcd(ab, p) = 1, hence we find νp(xy) = m+n. We can similarly get νp(x÷ y) = m−n.
So,

Lemma 6.1.1 (Product). Let x, y be integers and p be a prime. Then

νp(xy) = νp(x) + νp(y).

Thus, νp is an additive function. As a corollary, we find:

Corollary 6.1.1 (Exponentation). Let x be an integer and n ∈ N. Let p be a prime. Then

νp(x
n) = nνp(x).

You might observe the resemblance of this property with logarithms; we have log(xy) =
log(x) + log y and log(xn) = n log x.

Just like log(x/y) = log x− log y, we can similarly get that

νp

(
x

y

)
= νp(x)− νp(y) if y | x.

However note that we must have y | x for the division property (otherwise x
y

won’t be an

integer). This is kind of annoying. To overcome this, we generalize p-adic numbers:

Definition 6.1.1. Let q = m/n be a rational number, where m,n ∈ Z. Let p be a prime.
We define the p-adic valuation of q as

νp(q) = νp(m)− νp(n).

So now νp can take rational inputs too. For instance, ν7(49/10) = 2, ν5(20/15) = 0 and
ν2(3/4) = −2. Note that νp can be positive, 0 or even negative. We can now ignore the y | x
condition to get:
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Lemma 6.1.2 (Quotient). Let x, y be integers and p be a prime. Then

νp

(
x

y

)
= νp(x)− νp(y).

We can also replace x, y integers to x, y rational in Lemma 6.1.1 and n to any integer in
Corollary 6.1.1.

Now consider x+ y. As before, we have x = pma, y = pnb with a, b coprime to p. Suppose
m > n. Then

x+ y = pma+ pnb = pn(pm−na+ b) (6.1)

Since m−n > 0, hence p | pm−na. So the bracket term is coprime to p. Hence νp(x+ y) = n.
In general νp(m+ n) = min{νp(m), νp(n)}.

For instance, if m = 30 and n = 162, then ν3(30 + 162) = ν3(192) = 1 = ν3(30).

Question 6.1.1. Take m = 30 and n = 6. What is ν3(m + n)? Does it match with the
formula we got?

If you did the above question, you would realize something is fishy. Can you find the
mistake in our proof?

If you noticed that we did not deal with the case m = n, then well done. When m = n,
we find pm−n = 1, and so the bracket term in Equation 6.1 is (a + b). Now gcd(a, p) =
1 = gcd(b, p) does not guarantee gcd(a + b, p) = 1. So it is possible the (a + b) term also
contributes a power of p, and so νp(x + y) > min{νp(x), νp(y)}. So in general we have the
following lemma:

Lemma 6.1.3 (Sum). Let x, y be integers and p a prime. Then

νp(x+ y) ≥ min{νp(x), νp(y)},

and equality holds if νp(x) 6= νp(y).

Note a subtle detail here. We have said ”equality holds if” not if and only if. Can you
reason out why?

Let’s try an example problem now:

Example 6.1.1 (IMO Shortlist 2007 N2)

Let b, n > 1 be integers. Suppose that for each k > 1 there exists an integer ak such
that b− ank is divisible by k. Prove that b = An for some integer A.

Clearly, if b = An, then the constant sequence ak = A works. So this is one of those
problems where the obvious solution is the only one.

Now, we can write the divisibility as νp(b − ank) ≥ νp(k) for all k and primes p. Now,
νp(b−ank) ≥ min{νp(b), nνp(ak)}. If we can strategically choose k such that νp(b) 6= νp(a

n
k) =

nνp(ak), then we will know for sure that νp(b− ank) = min{νp(b), nνp(ak)}. So this is our key
idea.
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At this point, note that νp(b) = nνp(ak) =⇒ n | νp(b). So if we suppose a prime p exists
such that n - νp(b), then we can pick that prime p and we would get

νp(k) ≤ νp(b− ank) = min{νp(b), nνp(ak)} ≤ νp(b) ∀ k > 1.

However, the right side is a constant (since b is fixed) but we can pick νp(k) on the left side
to be as large as we want, meaning that the above is a contradiction.

This means that for every prime p we have n | νp(b). This precisely means b = An for
some A (since b becomes a product of nth power primes) which is what we wanted!

The motivation I gave might seem slightly hard to some of you. So here’s a nicely written
solution which is different (even though the idea is exactly the same).

Proof. Assume on the contrary that b is not a perfect nth power, which is the same as saying
there is a prime p with n - νp(b). Then write

b = pxn+y`, 1 ≤ y ≤ x− 1.

Now pick k = p(x+1)n. Then xn+ y = νp(b− ank) ≥ νp(k) = (x+ 1)n, a contradiction.

Comment 6.1.1: Note that we could have chosen k to be any very large power of p so
that xn+ y > νp(k). The key part in the problem is that n - νp(b) =⇒ νp(a

n
k) 6= νp(b)

and so νp(b− ank) = νp(b).

Problems for Practice

Problem 6.1.1. Show that a rational number q is an integer if and only if νp(q) ≥ 0 for
every prime p.

6.2 Legendre’s Formula

Apart from Wilson’s theorem, we haven’t talked much about factorials. One of the most
useful properties is the following, which is surprisingly ubiquitous:

Theorem 6.2.1 (Legendre’s Formula). Let n be an integer and p a prime. Then

νp(n!) =
∑
i≥1

⌊
n

pi

⌋
=

⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ . . . .

Question 6.2.1. The right side is an infinite sum. The left side, however is finite obviously.
How is this possible?

For instance,

ν2(6!) =

⌊
6

2

⌋
+

⌊
6

22

⌋
+

⌊
6

23

⌋
+

⌊
6

24

⌋
+ · · · = 3 + 1 + 0 + 0 + · · · = 4.

Also, 6! = 720 = 24 × 45. So our formula works well.
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Question 6.2.2. Use the formula to show ν3(8!) = ν3(7!) = ν3(6!). Then explain why is this
true (without using the formula).

Let’s try and see why this is true. Write

n! = n(n− 1)(n− 2)(n− 3) . . . 1.

First let’s see how many terms are divisible by p. It’s clearly bn/pc since there are these
many multiples of p atmost n.

Now any term which is divisible by p2 has more contribution than just one factor of p.
There are bn/p2c terms divisible by p2 that are atmost n. These have a contribution of 2.
However, we counted them once before so we only need to count them once now. So we add
bn/p2c .

Similarly we account for terms divisible by p3 by adding bn/p3c and so on. A diagram
representation of this proof for n = 12 and p = 2 is shown:

1 2 3 4 5 6 7 8 9 10 11 12
ν2 ≥ 1 1 1 1 1 1 1 b12/2c
ν2 ≥ 2 1 1 1 b12/4c
ν2 ≥ 3 1 b12/8c
ν2 ≥ 4 b12/16c

...
...

...
...

...
...

...
...

...
...

...
...

...
...

νp(9!) = 1 + 2 + 1 + 3 + 1 + 2 = b12/2c+ b12/4c+ b12/8c+ b12/16c+ . . .

Let’s try a simple problem now:

Example 6.2.1

Show that for any positive integer n,(
2n

n

)
| lcm{1, 2, . . . , 2n}.

Pick a prime p. Then we have to prove νp
((

2n
n

))
≤ νp (lcm{1, 2, . . . , 2n}) . The right side

is max{νp(1), νp(2), . . . , νp(2n)} (why?). We can write the left side as (2n)!/(n!)2 and use
Legendre to evaluate its νp. So we just have to prove

max{νp(1), νp(2), . . . , νp(2n)} ≥ νp((2n)!)− 2νp(n!) =
∑
i≥1

⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋
.

At this point, note that each term in the summand on the right is of the from b2xc − 2 bxc .
We would like to bound this. We do this by writing x = bxc + {x} to get b2xc − 2 bxc =
b2{x}c ∈ {0, 1}. Also, note that the right side becomes 0 for i >

⌊
logp(2n)

⌋
. So, we find∑

i≥1

⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋
≤
⌊
logp(2n)

⌋
.
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At this point we are done, since
⌊
logp(2n)

⌋
is the maximum power of p that occurs in a

number ≤ 2n, which is precisely the same as max{νp(1), νp(2), . . . , νp(2n)}. So we are done.

Turns out there’s another formula for νp(n!), which is useful for simple bounding:

Theorem 6.2.2. For any prime p and integer n, if sp(n) denotes the sum of digits of n
when written in base p, then

νp(n!) =
n− sp(n)

p− 1
.

This is not very hard to prove, and is left as an exercise. For p = 2, this gives ν2(n!) =
n− s2(n), which is quite useful. For instance, it trivializes the following problem:

Problem 6.2.1 (Canada). Find all n such that 2n−1 divides n!.

For a much more interesting example using this ν2(n!) formula, see Example 6.6.1. For
now, here’s a nice and challenging example:

Example 6.2.2

Prove that for all positive integers n, n! divides

P =
n−1∏
k=0

(2n − 2k).

Firstly, take out 2k from every bracket (2n−2k). Thus ν2(P ) = 0+1+· · ·+(n−1) = n(n−1)
2

.
This is clearly larger than ν2(n!) = n− s2(n) ≤ n− 1. Now, write

Q = (2n − 1)(2n−1 − 1)(2n−2 − 1) . . . (2− 1).

We need to show that νp(n!) ≤ νp(Q) for all odd primes p (why?). We first estimate νp(Q).
For that, we need to look at how many terms of the form 2x − 1 are divisible by p. Now,
p | 2p−1 − 1 by Fermat’s Little Theorem, so p | 2k(p−1) − 1 for all k. So the weakest estimate
on νp(Q) is the number of k for which k(p− 1) ≤ n, i.e. the number of multiples of (p− 1)

that are less than n. This is clearly
⌊

n
p−1

⌋
. So,

νp(Q) ≥
⌊

n

p− 1

⌋
.

This is a weak and naive estimate (since even if p | 2k(p−1) − 1, the power of p in 2k(p−1) − 1
might be more than 1) and so we have no guarantee if it would work. However, there is no
harm in trying.

Let’s try to see if we can show νp(n!) ≤
⌊

n
p−1

⌋
. Looking at the p − 1, we are motivated

to try Theorem 6.2.2. So,

νp(n!) =
n− sp(n)

p− 1
<

n

p− 1
.
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However, since νp(n!) is an integer, hence this gives

νp(n!) ≤
⌊

n

p− 1

⌋
≤ νp(Q),

and we are done.

Problems for Practice

Problem 6.2.2. Prove Theorem 6.2.2 by writing the base p representation of n as n =
nkp

k + nk−1p
k−1 + · · ·+ n0.

6.3 Revisiting GCD and LCM

This notation provides us with a very convenient way of writing the GCD and LCM formula
given as Lemma 1.6.3:

Lemma 6.3.1. Let m,n be integers. Then for every prime p, we have

νp(gcd(m,n)) = min{νp(m), νp(n)}
νp(lcm(m,n)) = max{νp(m), νp(n)}.

This lemma makes problems related to GCD and LCM both easier to manage, especially
easier to write (and explain).

Example 6.3.1

Prove that lcm(a, b, c)2 | lcm(a, b) lcm(b, c) lcm(c, a) for any positive integers a, b, c.

Pick any prime p and let x = νp(a), y = νp(b), z = νp(c). The problem is equivalent to
showing

2νp(lcm(a, b, c)) ≤ νp(lcm(a, b)) + νp(lcm(b, c)) + νp(lcm(c, a)),

which is equivalent to 2 max{x, y, z} ≤ max{x, y}+ max{y, z}+ max{z, x}. But this is clear
(for instance, assume without loss of generality that x ≥ y ≥ z).

6.4 Lifting The Exponent (LTE)

Multiplication is fine, when we want to think of the valuation of the product. However, sum
of two quantities can get weird, especially in the case when νp(a) = νp(b). In this section we
look at a particular type of sums whose νp we can calculate. Suppose, for instance, we want
to find

ν3
(
43n − 1

)
.
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We try and guess the answer for various values of n :

ν3
(
41 − 1

)
= ν3(3) = 1

ν3
(
43 − 1

)
= ν3(63) = ν2(3

2 × 7) = 2

ν3
(
49 − 1

)
= ν3(262143) = ν3(3

3 × 9709) = 3

We do see a pattern, and conjecture that ν3
(
43n − 1

)
= n + 1. It’s better if we take more

examples and confirm this. Instead of actually calculating the value of 43n − 1, let’s act
smart and factorize in terms of previous expressions:

427 − 1 = (49 − 1)(418 + 49 + 1).

If we can show that the second bracket has ν3 = 1, we will have ν3(4
27 − 1) = 4, which is

what we would like. To show it’s divisible by 3 is easy:

418 + 49 + 1 ≡ 1 + 1 + 1 ≡ 0 (mod 3).

This shows its ν3 ≥ 1. But, how to show it’s equal to 1? Here’s the idea; we show it’s not
divisible by 9. So let’s find it modulo 9. Calculate (in any way you like) to get:

418 + 49 + 1 ≡ 1 + 1 + 1 = 3 6≡ 0 (mod 9).

Boom! Exactly what we wanted.

How do we show ν3
(
43n − 1

)
= n + 1 in general though? The idea is exactly what we

did above. Just iterate that (or you can say use induction). It would look something like

43n+1 − 1 =
(
43n − 1

) (
42·3n + 43n + 1

)
, 42·3n + 43n + 1 ≡ 1 + 1 + 1 6≡ 0 (mod 3n+1).

Here, we used 43n ≡ 1 (mod 3n+1) by the induction hypothesis.

I won’t trouble you anymore and give you the statement of LTE:

Lemma 6.4.1 (Lifting The Exponent (LTE)2). Let p > 2 be a prime and a, b ∈ Z be coprime
to p such that p | a− b. Suppose n is a positive integer.

νp(a
n − bn) = νp(a− b) + νp(n).

Using this, can you get a one line proof of the result we derived above?

2Note that I used ”Lemma” instead of ”Theorem”. Whenever you use LTE on an Olympiad, it is highly
advisable that you first state the result, then give a short sketch of the proof. Don’t assume this to be a
famous formula that you can use just by stating it.
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Comment 6.4.1: Before we move on, I would like to lay stress on three particular
conditions in the lemma that are very easy to miss:

1. p must be odd, i.e. p = 2 is not allowed.

2. gcd(p, a) = gcd(p, b) = 1. In other words, p - a, b.

3. p divides a − b. So in the formula if you see that the νp(a − b) term is 0, you
probably need to take a step back and rethink your plan.

Everyone forgets one or the other condition sometime in their life. So learn from their
mistakes, and please don’t repeat them, because there’s nothing worse than feeling
proud about a wrong solution.

This is a very useful result! Let’s prove it. The idea is to use induction. However, just
like the example we did, instead of the case when n = 1 (which is obvious), we first establish
the case n = p. So we want νp(a

p − bp) = νp(a− b) + 1. Write

ap − bp

a− b
= ap−1 + ap−2b+ · · ·+ bp−1.

It suffices to show the right side has νp = 1. Firstly, p | a − b by the hypothesis so a ≡ b
(mod p). So

ap−1 + ap−2b+ · · ·+ bp−1 ≡ ap−1 + ap−1 + · · ·+ ap−1 = pap−1 ≡ 0 (mod p).

Next, as before, we show this quantity isn’t divisible by p2. For this, write b = a+ pk for an
integer k (why?). For any ` ≥ 1, we have

b` = (a+ pk)` = a` + `a`−1pk +

(
`

2

)
a`−2(pk)2 + · · ·+ (pk)` ≡ a` + a`−1`pk (mod p2).

Then

ap−1 + ap−2b+ · · ·+ bp−1 ≡ ap−1 + ap−2(a+ pk) + ap−3(a2 + 2apk) + · · ·+ ap−2(a+ (p− 1)pk)

= pap−1 + pap−2k(1 + 2 + · · ·+ (p− 1))

≡ pap−1 6≡ 0 (mod p2),

where the last step follows since pap−2k(1 + 2 + · · ·+ (p− 1)) = p2ap−2k · p−1
2
≡ 0 (mod p2)

since p−1
2
∈ Z (why?). Hence, we have proven this result and derive as corollary the following

lemma:

Lemma 6.4.2 (Case n = p of LTE). Let a, b ∈ Z and p > 2 a prime so that p - a, b and
p | a− b. Then

νp(a
p − bp) = νp(a− b) + 1.
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Comment 6.4.2: Point out in the proof where we used the three important conditions:
p > 2, p - a, b and p | a− b.

Now, for the general result, we induct on νp(n) = k (kind of like what we did in the
problem). The case n = 0 is not hard (left as an exercise). Assume the result till some k,
and we want to prove it for k + 1.

We simply use the lemma to get (first verify the three conditions)

νp(a
n − bn) = νp

((
an/p

)p − (bn/p)p)
= νp(a

n/p − bn/p) + 1

= νp(a− b) + νp(n/p) + 1 = νp(a− b) + νp(n).

So we are done (point out where we used the induction hypothesis.).

Let’s take a look at some examples:

Example 6.4.1

Prove that for any natural n,
ν3(2

3n + 1) = n.

This is similar to LTE, with a plus instead of a minus. If n is odd, we can change b to
−b to obtain the following form of LTE:

Lemma 6.4.3. LTE for addition Let p > 2 be a prime and a, b ∈ Z be coprime to p such
that p | a− b. Suppose n is an odd positive integer.

νp(a
n + bn) = νp(a+ b) + νp(n).

Now let’s look at some real examples:

Example 6.4.2 (Iran 2008 Round 2 Day 2/1)

Let a be a natural number. Suppose that 4(an + 1) is a perfect cube for every natural
number n. Prove that a = 1

If an odd prime p divides an + 1 for some n, then νp(a
n + 1) must be divisible by 3, since

gcd(p, 4) = 1. This is the key insight.

Now, we are clearly motivated to try LTE by looking at νp(a
n + 1). So, we want the 3

conditions. By assumption, p > 2. Also, p - a (why?). We just want p | a+ 1 and n odd. So
let’s start by this assumption. Pick an odd prime p divisor of a + 1, if it exists (when does
it not exist?). Then by Fermat’s Little Theorem, p | a+ 1 | apk + 1 for all k. So, by LTE

νp(a
pk + 1) = νp(a+ 1) + νp(k) + 1 ∀ odd k.
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We know this is divisible by 3 for all odd k (why do we need odd k?). However, since
νp(a + 1) + 1 is fixed, hence we can choose (odd) k such that νp(a + 1) + νp(k) + 1 6≡ 0
(mod 3), which is a contradiction. Hence, our assumption that a+1 has an odd prime factor
was false. So a+ 1 can’t have an odd prime factor.

Write a+ 1 = 2k. Here’s the clever trick now: since gcd(a2 + 1, a+ 1) = gcd(a+ 1, 2) = 2,
hence a2 + 1 will have an odd prime factor p if k > 1 (why?). So, you can repeat the process
above with a2 instead of a and still get a contradiction (convince yourself that this argument
works). Hence, k = 1, meaning a+ 1 = 2, i.e. a = 1, as needed.

Comment 6.4.3: In problems like these (involving find all solutions, or prove this is
the solution), when we write a proper proof, we must show two things: the solution
works, and second this is the only solution. Most people often miss the first, thinking
it’s trivial, and lose marks on an actual Olympiad. So, the starting line of our solution
to this problem would be: ”Clearly, a = 1 works since then 4(1n + 1) = 8 for all n,
which is a cube. Now, we will show this is the only possibility.” The proof we gave
follows after this. Don’t miss this ”obvious” statement and lose marks!

Example 6.4.3 (AMM)

Let a, b, c be positive integers such that c | ac − bc. Prove that c | ac−bc
a−b .

This problem calls for LTE. So we first establish the 3 conditions. Suppose c ≥ 3. Pick
an odd prime p | c (that’s why we need c ≥ 3). If p - a − b, the result is obviously true. So
suppose p | a− b.

If p divides one of a or b, then p must divide the other (why?). Write νp(a) = x, νp(b) =
y, νp(c) = z. Suppose x > y. Then we just need z ≤ y(c− 1). However, since c ≥ pz > z + 1
(why?) hence z ≤ yz ≤ y(c − 1) holds true. If x = y, then take pcx out and ignore it.
We prove the result for the leftover part only, in which case p - a∗, b∗, where a∗, b∗ are the
leftovers from a, b respectively. So now assume p - a, b.

Upto this point we have just established the conditions for LTE. Now, using LTE,

νp(a
c − bc) = νp(a− b) + νp(c) =⇒ νp(c) ≤ νp

(
ac − bc

a− b

)
.

This is what we needed. Now, we just need the result for p = 2. For this case, we can’t apply
LTE. So we need something new:

6.5 The sad case when p = 2

We particularly asked you to remember that the formula does not work with p = 2. But
what if we want ν2? We have the following result in this case:
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Lemma 6.5.1 (LTE for p = 2). Let x, y be odd integers such that 2 | x−y. Let n be an even
integer. Then

ν2(x
n − yn) = ν2(x

2 − y2) + ν2(n/2) = ν2(x− y) + ν2(x+ y) + ν2(n)− 1.

Note here that n must be even, We have another result for p = 2, wherein we don’t need
2 | n (however we need 4 | x− y) :

Lemma 6.5.2. Let x, y be odd integers such that 4 | x− y. Then

ν2(x
n − yn) = ν2(x− y) + ν2(n).

The proof for these 2 are not very different, just some care is needed with the base case.
The full proof is left to the interested readers.
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6.6 Example Problems

Example 6.6.1 (Paul Erdos)

Prove that there exists a constant c such that for any positve integers a, b and n > 1
satisfying a! · b! | n!, we have a+ b < n+ c log n.

This is an analytic kind of problem. A common theme in many of these is to make use
of simple number theoretic facts and estimates. Often the simplest estimates give very good
(at times, optimal) bounds.

In this problem, the given condition gives νp(a!) + νp(b!) ≤ νp(n!) for any prime p. The
key trick at this point is to consider p = 2, to get a − s2(a) + b − s2(b) ≤ n − s2(n) (since
the problem wants us to prove something involving a, b, n not a!, b!, n!, hence making use of
ν2(x!) = x− s2(x) is slightly motivated). So, we get

a+ b− n ≤ s2(a) + s2(b)− s2(n).

If we can show the right side is at most c log n for some constant c, we are done. At this point,
we need upper bounds on s2(a), s2(b). The simplest upper bound is obtained by considering
the case when all of the digits of a, b in base 2 are 1. Thus, s2(a) ≤ blog2(a)c+ 1 (why?) and
so

a+ b− n ≤ log2(a) + log2(b) + 2− s2(n) ≤ log2(ab) + 2 ≤ 2 log2(n) + 2,

where, we used ab < n× n = n2 and s2(n) > 0. The result is now immediate, since the right

side is 2 log2(n) + 2 ≤ 4 log2(n) =
(

4
log 2

)
log n. (these are just rough estimates. The key

point is that log2(n) + 2 = O(log n)).

The next is a great example showing how simple uses of νp can be really powerful.

Example 6.6.2 (APMO 2017/4)

Call a rational number r powerful if r can be expressed in the form pk/q for some
relatively prime positive integers p, q and some integer k > 1. Let a, b, c be positive
rational numbers such that abc = 1. Suppose there exist positive integers x, y, z such
that ax + by + cz is an integer. Prove that a, b, c are all powerful.

We need to consider a prime p and show that if νp(a) > 0, then it is divisible by some
fixed k > 1, which is independent of p (why?). Firstly, the condition abc = 1 translates to

νp(a) + νp(b) + νp(c) = 0.

Assume that νp(a) > 0. By the above, at least one is negative. If νp(b) > 0 while νp(c) < 0,
then νp(a

x + by + cz) < 0, which is impossible since it’s an integer.
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Comment 6.6.1: Before we move on, here’s a tip on how to think about νp in such
problems. If νp(x) = y, think of y as px, not as cpx, This makes it easier to think about
operations. So, for instance the above argument can be thought of as

ax + by + cz = p• + p• +
1

p•
=
p• + p• + 1

p•
.

Of course, there would be a constant in place of 1s, but the idea is that it won’t be
divisible by p. So the numerator above isn’t divisible by p while the denominator is,
giving νp(a

x + by + cz) < 0.

Even when we think about νp(a + b) ≥ min{νp(a), νp(b)}, it is easiest to think of
a = px, b = py. So if x > y, then a+ b = py(px−y + 1) and so the bracket is coprime to
p implying νp(a+ b) = y. However, if x = y, the bracket becomes 1 + 1, which means
some constant+constant which might be divisible by p.

Hence, we obtain νp(b), νp(c) < 0. In this case, if νp(a
x + by + cz) ≥ 0, we must have that

νp(b
x) = νp(c

z) (confirm this both by giving a formula argument (by writing νp(a) = u, . . . ),
and by convincing yourself by the way described in the comments above).

Hence, xνp(b) = yνp(c). If gcd(x, y) = d and x = x∗d, y = y∗d, then we must have
νp(b) = kx∗ and νp(c) = ky∗ for some k. Hence,

νp(a) = −(νp(b) + νp(c)) = −k(x∗ + y∗).

Hence νp(a) is always divisible by x∗ + y∗ which is independent of p. So we are done.

Comment 6.6.2: The most reasonable way to motivate the last step is to take an
example. If 4νp(b) = 6νp(c), then (νp(b), νp(c)) can be (3, 2), (6, 4), (9, 6), . . . . It is now
easy to see that νp(b) must be of the form 3k = 6k

gcd(4,6)
and νp(c) must be of the form

2k = 4k
gcd(4,6)

.

The next problem is again analytic in nature, and again shows how simple ideas work
when used properly.

Example 6.6.3 (China TST 2009 Quiz 6/1)

Let a > b > 1 be positive integers and b be an odd number, let n be a positive integer.
If bn | an − 1, prove that ab > 3n

n
.

Since b is odd, it has a prime factor p. So an ≡ 1 (mod p) implying d = ordp(a) | n.
Further, νp(a

n − 1) ≥ nνp(b). We can use LTE as

n ≤ nνp(b) ≤ νp((a
d)n/d − 1) = νp(a

d − 1) + νp

(n
d

)
= νp(a

d − 1) + νp(n).
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Here, we used νp(d) = 0 since 1 < d ≤ p− 1. This gives

pn ≤ pνp(a
d−1)pνp(n) ≤ (ad − 1)n ≤ abn =⇒ ab >

pn

n
≥ 3n

n
. �



172 CHAPTER 6. LARGEST EXPONENT

6.7 Practice Problems

Problem 6.7.1. Show that if n ≥ 6 is composite, then n divides (n− 1)!.

Problem 6.7.2. Let p be an odd prime. For any t ≥ 1, define

St =

p−1∑
k=1

kp
t

.

Then prove that νp(St) ≥ t+ 1. In particular,

p2 | 1p + 2p + · · ·+ pp.

Hints: 419 412

Problem 6.7.3. Show that
(
2n
n

)
| lcm(1, 2, . . . , 2n) for all positive integers n. Hints: 295 217

Problem 6.7.4 (USAMO 1975/1). Prove that

b5xc+ b5yc ≥ b3x+ yc+ b3y + xc ,

where x, y ≥ 0. Using this or otherwise, prove that

(5m)!(5n)!

m!n!(3m+ n)!(3n+m)!

is integral for all positive integral m and n. Hints: 325 187

Problem 6.7.5. Prove that for all integers n ≥ 1,

Cn =
1

n+ 1

(
2n

n

)
∈ Z.

(The number Cn is called the nth Catalan Number. It is an interesting object of study
in enumerative combinatorics)

Problem 6.7.6. Find all positive integers n such that 3n − 1 is divisible by 2n. Hints: 434

Problem 6.7.7 (Austria National Competition Final Round). Let a, b, and c be
integers such that

ab

c
+
ac

b
+
bc

a

is an integer. Prove that each of the numbers

ab

c
,
ac

b
, and

bc

a

is an integer. Hints: 399 334 185
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Problem 6.7.8. Prove that if the odd prime p divides ab − 1, where a and b are positive
integers, then p appears to the same power in the prime factorization of b(ad − 1), where
d = gcd(b, p− 1). Hints: 355 244

Problem 6.7.9 (PUTNAM). Show that for each positive integer n,

n! =
n∏
i=1

lcm
{

1, 2, . . . ,
⌊n
i

⌋}
.

Hints: 121

Problem 6.7.10. Let n be a positive integer with n > 1.

1. Prove that the nth Harmonic number defined by

Hn = 1 +
1

2
+ · · ·+ 1

n

is not an integer. Hints: 318 55 315

2. Prove that

1 +
1

3
+ · · ·+ 1

2n− 1

is not an integer. Hints: 161 107

Problem 6.7.11 (IMO 1990/3). Find all natural n such that 2n+1
n2 is an integer. Hints:

452 214 300

Problem 6.7.12 (IMO 1999/4). Find all pairs of positive integers (x, p) such that p is
prime, x ≤ 2p, and xp−1 | (p− 1)x + 1. Hints: 238 470 474 373

Problem 6.7.13 (Taiwan TST 2018 Round 2 Quiz 3/1). Given a square-free positive
integer n. Show that there do not exist coprime positive integers x, y such that xn + yn is a
multiple of (x+ y)3. Hints: 98 169 189

Problem 6.7.14 (China TST 1 2019/4). Call a sequence of positive integers {an} good
if for any distinct positive integers m,n, one has

gcd(m,n) | a2m + a2n and gcd(am, an) | m2 + n2.

Call a positive integer a to be k-good if there exists a good sequence such that ak = a. Does
there exists a k such that there are exactly 2019 k-good positive integers? Hints: 432 348 74

Problem 6.7.15 (Indian TST 2018 Day 2/1). For a natural number k > 1, define Sk
to be the set of all triplets (n, a, b) of natural numbers, with n odd and gcd(a, b) = 1, such
that a + b = k and n divides an + bn. Find all values of k for which Sk is finite. Hints: 298

151 361 290
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Problem 6.7.16 (Gabriel Dospinescu). Let a, b be two distinct positive rational numbers
such that for infinitely many integers n, an−bn is an integer. Prove that a, b are also integers.
Hints: 79 347 443

Problem 6.7.17 (Iran 3rd round 2017 Number theory first exam P1). Let n be a
positive integer. Consider prime numbers p1, . . . , pk. Let a1, . . . , am be all positive integers
less than n such that are not divisible by pi for all 1 ≤ i ≤ n. Prove that if m ≥ 2 then

1

a1
+ · · ·+ 1

am

is not an integer. Hints: 153 488 356 433 Sol: pg. 293

Problem 6.7.18 (China TST 2 2019/4). Set positive integer m = 2k · t, where k is a
non-negative integer, t is an odd number, and let f(m) = t1−k. Prove that for any positive
integer n and for any positive odd number a ≤ n, f(1)f(2) . . . f(m) is a multiple of a. Hints:

178 247 342 Sol: pg. 293

Problem 6.7.19 (IMO Shortlist 2014 N5). Find all primes p and positive integers (x, y)
such that xp−1 + y and yp−1 + x are powers of p. Hints: 134 60 31

Problem 6.7.20 (Tuymaada Olympiad). Prove that the equation

1

10n
=

1

n1!
+

1

n2!
+ · · ·+ 1

nk!

does not have integer solutions such that 1 ≤ n1 < · · · < nk. Hints: 117 441 473 92 274 Sol: pg.

294

Problem 6.7.21 (USAMO 2009/6). Let s1, s2, s3, . . . be an infinite, nonconstant sequence
of rational numbers, meaning it is not the case that s1 = s2 = s3 = . . . . Suppose that
t1, t2, t3, . . . is also an infinite, nonconstant sequence of rational numbers with the property
that (si − sj)(ti − tj) is an integer for all i and j. Prove that there exists a rational number
r such that (si − sj)r and (ti − tj)/r are integers for all i and j. Hints: 12 201 249 367

Problem 6.7.22 (India TST 2019 Day 1/2). Show that there do no exist natural num-
bers a1, a2, . . . a2018 such that all

(a1)
2018 + a2, (a2)

2018 + a3, . . . , (a2018)
2018 + a1

are powers of 5. Hints: 70 478 280 303

Problem 6.7.23 (USA TSTST 2014/6). Suppose we have distinct positive integers
a, b, c, d, and an odd prime p not dividing any of them, and an integer M such that if
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one considers the infinite sequence

ca− db
ca2 − db2

ca3 − db3

ca4 − db4
...

and looks at the highest power of p that divides each of them, these powers are not all zero,
and are all at most M . Prove that there exists some T (which may depend on a, b, c, d, p,M)
such that whenever p divides an element of this sequence, the maximum power of p that
divides that element is exactly pT . Hints: 313 146 267 317 Sol: pg. 294

Problem 6.7.24 (ELMO Shortlist 2017 N3). For each integer C > 1 decide whether
there exist pairwise distinct positive integers a1, a2, a3, . . . such that for every k ≥ 1, akk+1

divides Cka1a2, . . . , ak. Hints: 337 72 456 359 Sol: pg. 295

I know I promised no functional equations in this book. However this problem is one of
my all time favorites:

Problem 6.7.25 (USA TSTST 2019 Day 3/1). Let f : Z → {1, 2, . . . , 10100} be a
function satisfying

gcd(f(x), f(y)) = gcd(f(x), x− y)

for all integers x and y. Show that there exist positive integers m and n such that f(x) =
gcd(m+ x, n) for all integers x.
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z Zsigmondy’s Theorem

We have seen expressions of the form ak − bk occur a lot in many problems. There is one
theorem in particular that is very useful in such expressions:

Theorem 6.7.1 (Zsigmondy’s Theorem). Let a, b be coprime positive integers. Then for
any integer n > 1, an − bn has a prime factor that does not divide ak − bk for any k < n,
except in the following cases:

• 26 − 16

• n = 2 and a+ b is a power of 2.

Such a prime divisor is called a primitive prime divisor of an − bn.

So an− bn always (except a few cases) has a new prime factor. This theorem is very hard
to prove despite having an elementary proof (unlike say, Dirichlet’s Theorem). The proofs
dwells a lot upon many properties of Cyclotomic Polynomials, a topic we avoid in this book.

This theorem is delicate, and is not allowed to be used in all Olympiads. So be careful
before using it on an exam. For now, however, let’s nuke some problems using this!

Example 6.7.1 (Polish MO 2010 Round 1)

Let p and q be prime numbers with q > p > 2. Prove that 2pq − 1 has at least three
distinct prime factors.

Observe that 2p−1 and 2q−1 both divide 2pq−1. Now, since q, p > 2, hence by Zsigmondy,
both 2pq − 1 has a prime factor that does not divide 2p − 1, 2q − 1. Further, q > p > 2, so
2q − 1 has a prime factor that does not divide 2p − 1. So we are done.

Example 6.7.2 (1994 Romanian Team Selection Test)

Prove that the sequence an = 3n−2n contains no three terms in geometric progression

Say aiaj = a2k with i < k < j. However, aj has a prime factor that ak does not by
Zsigmondy’s theorem, hence we already have a contradiction.

Example 6.7.3

Let a be an integer. Prove that for any d, there exist infinitely many primes p such
that d | ordp(a).

Consider numbers of the form adn − 1. For any n (such that we avoid an exception), by
Zsigmondy, there would exist a primitive prime factor p of adn − 1. Then ordp(a) = dn. So
Zsigmondy trivialized a very hard problem.
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Example 6.7.4 (IMO Shortlist 2000 N4)

Find all triplets of positive integers (a,m, n) such that am + 1 | (a+ 1)n.

Over here, any prime divisor of am + 1 must divide a+ 1. We can’t use Zsigmondy here,
since it involves a − sign instead of a +. This need calls for a second version of the theorem:

Theorem 6.7.2 (Zsigmondy’s Variant). Let a, b be positive coprime integers. Then for any
integer n > 1, there exists a prime factor of an + bn that does not divide ak + bk for any
k < n, except for the case:

• 23 + 13.

Proof. Consider a primitive divisor of a2n− b2n (excluding the exceptions). Then p | an + bn

or p | an − bn, the latter being rejected since p is primitive. This p works.

As for the exceptions, the case 26 − 16 is reflected in 23 + 13. The second exception of
n = 2 and a+ b a power of 2 is ignored since we only consider n > 1 in the theorem.

As for our problem, if m > 1, then am + 1 has a prime factor that a + 1 doesn’t unless
(a,m) = (2, 3). Hence, the only solutions are (a,m, n) = (a, 1, n), (2, 3, n).

Example 6.7.5 (IMO Shortlist 2002 N3)

Let p1, p2, . . . , pn be distinct primes greater than 3. Show that 2p1p2···pn + 1 has at least
4n divisors.

Let e = p1p2 . . . pn. Then e has 2n divisors. Also, 3 - e, and so by Zsigmondy, 2e + 1 has
at least 2n prime factors. So, a total of 22n > 22n = 4n divisors.

Let’s try two challenging problems that aren’t directly trivialized by Zsigmondy’s Theo-
rem.

Example 6.7.6 (IMO Shortlist 2000/5)

Does there exist a positive integer n such that n has exactly 2000 prime divisors and
n divides 2n + 1?

The answer is yes, and we prove it for any k instead of just 2000. They key idea is to add
primes one by one. Suppose we have n such that n | 2n + 1 and n has k prime factors. We
want to find a prime p such that np | 2np + 1 and p - n.

To have p | 2np + 1, we would take a prime p | 2n + 1. Now we need to ensure p - n. Since
n | 2ϕ(n) − 1, hence we are done if we can ensure p - 2ϕ(n) − 1.

Here’s how we do this: By Zsigmondy, pick a primitive prime factor p of 22n − 1. Then
p - 2n − 1, so p - 2n + 1. Further, p - 2ϕ(n) − 1 as ϕ(n) < 2n, so p - n. Hence, np | 2np − 1 and
we are done.
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Example 6.7.7 (Iran third round 2018 NT/4 (weaker version))

Prove that for any natural numbers a, b there exist infinity many prime numbers p so
that ordp(a) ≥ ordp(b).

The proof I present is quite magical. Take a prime q and pick a primitive prime factor p
of aq − bq using Zsigmondy’s Theorem. It is not hard to check that ordp(ab

−1) = q. The key
claim is the following:

Claim. One of ordp(a), ordp(b) is divisible by q.

We first show how this claim finishes the problem: Suppose q | ordp(a), and write
ordp(a) = qx. Then 1 ≡ aqx ≡ bqx (mod p) implies ordp(b) | qx, which gives ordp(a) ≥ ordp(b)
as desired. Now we prove the claim:

Proof. Since ordp(ab
−1) = q, we get q | p− 1. Write p = qk + 1.

We also know that ordp(a), ordp(b) | p − 1 = kq. So if the claim isn’t true, then
ordp(a), ordp(b) | k. Then

ak ≡ 1 ≡ bk (mod p) =⇒
(
a · b−1

)k ≡ 1 (mod p).

Hence, q = ordp(ab
−1) | k. So write k = qk∗, so p = q2k∗ + 1.

Now, the finishing argument is that we can repeat the above process and show q | k∗,
and keep going on forever, which is a contradiction.

Some problems for you to try:

Problem 6.7.26 (IMO Shortlist 1997, Q14). Let b,m, n be positive integers such that
b > 1 and m 6= n. Prove that if bm − 1 and bn − 1 have the same prime divisors, then b + 1
is a power of 2.

Problem 6.7.27. Let a ∈ N prove that the set{
p− 1

ordp(a)
: gcd(p, a) = 1, p prime

}
is unbounded.

Problem 6.7.28 (USA TSTST 2018/8). For which positive integers b > 2 do there exist
infinitely many positive integers n such that n2 divides bn + 1?



Chapter 7

Integer Polynomials

This chapter is largely about discussion of integer polynomials, which are polynomials with
integer coefficients. Just like integers, these have a lot of interesting properties, and a lot of
analogous identities. However, this is a highly delicate topic too, and a good conceptual ap-
proach is needed to truly appreciate it. So I have included a section on basics of polynomials
which covers almost all these important topics you need to know to build your base.

After enough experience, you would start to see patterns in the arguments we give in
Olympiad problems, and develop a strong intuition. This would be the day you would start
to solve such problems with ease.

7.1 Basics of Polynomials

We would deal with single variable polynomials in the theory. I would expect some basic
knowledge from your side, but I would anyway give a brief discussion of some of the most
important properties of polynomials.

7.1.1 Definitions

Just for the sake of completeness, let me define some common terms related to polynomials:

Definition 7.1.1. A polynomial of degree n is an algebraic expression of the form

p(x) = anx
n + an−1x

n−1 + · · ·+ a0,

where x is a variable and an, an−1, . . . , a0 are numbers. It is called an integer polynomial
if the coefficients are integers. It is called monic if the leading coefficient, i.e. an, equals 1.

We know that Z,Q,R,C denote integers, rationals, reals and complex numbers respec-
tively. There are analogous expressions for polynomials: Z[X],Q[X],R[X],C[X].

Comment 7.1.1: Note that we did not define N[X]. For now just keep in mind that
N[X] is not correct. If you wanna know the reason really bad, then it’s because N
is not a ”commutative ring”(A ”structure” from abstract algebra. So ignore if you
haven’t heard this before.)

179
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So, if p is an integer polynomial, we write p ∈ Z[X]. If p has real coefficients, we would
write p ∈ R[X].

7.1.2 Fundamental Theorem of Algebra

This is a beautiful result which says:

Theorem 7.1.1 (Fundamental Theorem of Algebra). Let p ∈ C[X] be a non-zero polyno-
mial of degree n. Then p(x) has exactly n complex roots, not necessarily distinct.

Comment 7.1.2 (Degree of 0): You can notice that P (x) = 0 has infinitely many
roots (since it is always zero). However, the degree of the zero polynomial is not
defined. As we will soon see in the next section, in Euclid’s division lemma f(x) =
g(x)q(x) + r(x), we want deg r < deg g. So a convention often used is to set the degree
of the zero polynomial to be −∞, so that it’s consistent with Euclid’s division lemma.

This is not as easy to prove as you might think. It, however, is incredibly useful, and
finds applications outside maths For instance:

Problem 7.1.1. Consider an equilateral triangle and place three charges +q on the vertices.
Find the number of null points (of the electric field) in the plane.

The answer to this is 4. Firstly, you guess and find the 4 points. To show there are
no more, imagine setting up an equation for a general point. The equation would be a
polynomial of degree 4, so you will have atmost 4 points!

Another important and useful fact is that complex roots come in pairs; if z is a root, then
so is z. In particular odd degree polynomials always have a real root. Keep this in mind!

7.1.3 Euclidean Division Lemma and GCD

This section creates analogues of some normal divisibility properties of integers in Polyno-
mials. Firstly, we define division:

Definition 7.1.2. A polynomial F (x) is said to be divisible by a polynomial G(x) if there
exists a polynomial Q(x) such that

F (x) = G(x)Q(x).

For instance consider x2 + 2
3
x. This is divisible by x and x + 2

3
. This is also divisible by

every constant, for instance

5×
(

1

5
x2 +

2

15
x

)
= x2 +

2

3
x.
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More interesting is divisibility over Q. The only difference here is that we must have
Q ∈ Q[X]. 1 Similarly we can define division over Z, which is the most restrictive since
you want Q ∈ Z[X]. So this time a polynomial need not be divisible by every constant. For
instance f(x) = x2 + 4x+ 2 is not divisible by any constant, but f(x) = 2x2 + 4 is divisible
be 2.

Just like in the chapter on divisibility, once we discuss divisibility, it is almost natural to
talk about remainders and hence Euclid’s Division Lemma:

Theorem 7.1.2 (Polynomial Division). For every pair of polynomials F,G, there correspond
unique polynomials Q,R such that

F (x) = G(X)Q(X) +R(X),

where R is the zero polynomial or degR < degG.

The process of finding Q,R (called the quotient,remainder respectively) is by polyno-
mial long division. Now we are dealing with integer polynomials, so answer the following
question:

Question 7.1.1. If F,G are integer polynomials, do Q,R have to be integer polynomials
too?

While you might feel like the answer is yes, it actually is no:

X3 + 4X2 + 1 = (5X2 + 2)

(
1

5
X +

4

5

)
+

(
−2

5
X +

−3

5

)
.

This example makes it quite clear; we might need rational numbers to adjust the coefficients.
However it is always true that Q,R would have rational coefficients. Hence we get

Theorem 7.1.3 (Euclid’s Division Lemma for Polynomials). For every pair of polynomials
F,G ∈ Q[X] there correspond unique polynomials Q,R ∈ Q[X] such that

F (x) = G(X)Q(X) +R(X),

where R is the zero polynomial or degR < degG.

The proof of this is to look at the long division algorithm; when worse comes to worst
we would have to divide by rationals, which would still give rationals. Irrational numbers
don’t just randomly pop up.

Comment 7.1.3 (Euclid’s Division Lemma in Fp[X]): The only fact used in the
argument above is the fact that we can divide by non-zero rationals and still get
rationals. This is precisely the reason why Euclid’s division lemma doesn’t hold in
Z[X] : we can’t divide by a non-zero integer an always expect to get an integer.

This property of rationals is also seen in Fp; if we divide two non-zero elements of Fp
and still get an element in Fp. Thus, Euclid’s Division Lemma also holds true in Fp[X].
This was used in the special section of the chapter Modular Arithmetic.

At this point we must take a minute to define the GCD:

1We generally also want F,G ∈ Q[X], but well, we can say
√

2 divides 4
√

2 since the ratio is an integer.
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Definition 7.1.3. For two polynomials F,G ∈ Q[X], the GCD over Q of F,G is the
polynomial D ∈ Q[X] of largest degree satisfying D(x) | F (x) and D(x) | G(x).

Note that this is the GCD of polynomials, which has to be a polynomial dividing both.
So saying gcd(X2 + 1, X + 1) = gcd(2X,X + 1) = 2 when X is odd is wrong, since we want
a polynomial identity which is true for all X. So saying gcd(X2 + 1, X + 1) = 1 since they
have no common polynomial is correct.

What is the GCD of x2 + 2, x3 + 2x? It is x2 + 2. Well, we can also say it is 2(X2 + 2)
since each constant divides a polynomial in Q[X]. So the GCD is not unique. However, it
turns out that only constants cause any disturbance:

Lemma 7.1.1 (GCD of Polynomials is not unique). For two polynomial F,G ∈ Q[X], the
GCD of F is not unique. However, if D1, D2 are two GCDs, then D1 = qD2 for a non-zero
rational q.

So by convention if we treat all constants as 1, then we consider constant GCDs to be 1
as well. So 2(x + 1) and 2(x2 + 1) are actually considered coprime. For integers, the best
way to identify the GCD of two polynomials is by looking at their prime factors. What are
prime factors for polynomials? We discuss this in the section on irreducibility.

Now we have the two theorems carried over directly from the first chapter:

Lemma 7.1.2 (Euclid’s Lemma for Polynomials). Let F,G ∈ Q[X]. Write F = GQ + R
with degR < degF. then

gcd(F (x), G(x)) = gcd(R(X), G(X)).

Lemma 7.1.3 (Bézout’s Lemma for Polynomials). Let F,G ∈ Q[X] be two polynomials with
gcd = D. Then there exist polynomials A,B ∈ Q[X] such that

F (x)A(x) +G(x)B(x) = D(x).

The second theorem is particularly useful when we have two coprime polynomials. In that
case, we have A,B ∈ Q[X] such that F (x)A(x) + G(x)B(x) = 1. The best part is that by
multiplying throughout by the denominators, we can convert A,B into integer polynomials
and then the above becomes F (x)A(x) + G(x)B(x) = c for some constant c. The benefit
here is that A,B ∈ Z[X]. This is a very effecting way of dealing with coprime polynomials
that we will soon see in problems.

7.1.4 Remainder and Factor Theorem

Suppose you have a polynomial p(x) that you want to factor. Then we have the following
theorem:

Theorem 7.1.4 (Factor Theorem). Let p(x) be a polynomial. If p(a) = 0 for some a, then
(x− a) is a factor of p(x).
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Proof. Use Euclid’s division lemma: Write p(x) = (x − a)q(x) + r(x) for polynomials
q(x), r(x). We must have deg r < deg(x − a) which means r is a constant, say c. Now,
p(a) = (a−a)q(a)+c = c. But we are given that p(a) = 0. Hence c = 0, which means (x−a)
divides p(x).

Suppose we want to factor p(x) = x3 + x2− x− 1. We can guess that p(1) = 0 so (x− 1)
is a factor. So divide p(x) by (x− 1) (using long division or in whichever way you prefer) to
get

p(x) = (x− 1)(x2 + 2x+ 1).

The bracket part factors to (x + 1)2 so p(x) = (x − 1)(x + 1)2. In general, there’s another
theorem you would find useful in guessing which value to try:

Theorem 7.1.5 (Rational Root Theorem). For a monic polynomial p(x) with integer coef-
ficients, p(a) = 0 implies a divides the constant term of p(x).

So suppose you had p(x) = x3 − 7x2 + 16x − 12. This is monic. Now, to find an a such
that p(a) = 0, we try factors of −12, which are {±1,±2,±3,±4,±6,±12}. We find that
p(2) = 0, so (x− 2) is a factor. On long division, we then get:

p(x) = (x− 2)(x2 − 5x+ 6).

The second bracket is easy to factorize. However, you can also factorize it using the factor
theorem. Since (2)2− 5(2) + 6 = 0, hence (x− 2) divides it. So p(x) = (x− 2)(x− 2)(x− 3).

It’s also useful to point out the remainder theorem:

Theorem 7.1.6 (Remainder Theorem). Let p(x) be a polynomial. The remainder on divid-
ing p(x) by (x− a) is p(a).

The proof is exactly the same as the one for Factor Theorem.

Probably the most used implication of the Factor Theorem that we would use a lot is
that if α1, . . . , αn are the roots of the polynomial P, then we can write

P (x) = c(x− α1)(x− α2) . . . (x− αn),

where c is the leading coefficient of P.

7.1.5 Vieta’s Theorem

Suppose that p(x) has roots α1, . . . , αn, then∑
i

αi = −an−1
an∑

i<j

αiαj =
an−2
an∑

i<j<k

αiαjαk = −an−3
an

...

α1 . . . αn = (−1)n
a0
an
.



184 CHAPTER 7. INTEGER POLYNOMIALS

I hope you have seen applications of this in algebra and are comfortable with these. You
may also read them from some other algebra sources.

Let’s look at a simple example:

Example 7.1.1 (PUTNAM)

Find all polynomials P (x) = xn + an−1x
n−1 + · · · + a0 such that an ∈ {±1} for all

0 ≤ i ≤ n− 1 satisfying the condition that all roots of P (x) are real.

Let α1, . . . , αn be the roots. Then by Vieta,∑
i

αi = −an−1,
∑
i<j

αiαj = an−2.

This means

0 ≤
∑
i

α2
i =

(∑
i

αi

)2

− 2

(∑
i<j

αiαj

)
= a2n−1 − 2an−2 ≤ 3.

This shows 0 ≤ a2n−1 − 2an−2 ≤ 3, hence an−2 = −1. Vieta also gives α1 . . . αn = ±1. Thus,
by the AM-GM inequality, 3 ≥ α2

1 + · · ·+α2
n ≥ n. Now we can directly find the polynomials

to be x± 1, x2 ± x− 1 and x3 − x± (x2 − 1).

7.1.6 Irreducibility

Irreducibility is a very natural concept; it is an analogue of prime numbers. For instance,
the number 10 reduces to 2 × 5. The number 7, however is ”irreducible” and cannot be
broken into the product of two numbers, unless one of them is 1. In a similar way we define
irreducible polynomials. However, first I must define something known as a unit:

Definition 7.1.4. Let R denote any one of Z,Q,R,C. Then an element in R is called a
unit if it has an inverse in R. i.e. an element y ∈ R such that xy = 1.

Here, R can also be Z[X],Q[X],R[X] or C[X]. The units of Z are ±1. Every element of
Q,R,C, however, are units (why?). Now an element of R is called irreducible if it cannot
be expressed as a product of two non-units. So 2x+ 2 = 2(x+ 1) is reducible in Z[X] since
2 is not a unit. However, in Q[X] it is irreducible since 2 is a unit.

Definition 7.1.5. Let R denote any one of Z,Q,R,C. Then a non-constant polynomial
p ∈ R[X] is called irreducible over R if it cannot be expressed as a product of two non-
units in R.

For instance, x2+5x+6 = (x+2)(x+3) is reducible. However, f(x) = x2−2 is irreducible
over Z[X]. On the other hand, x2 − 2 = (x−

√
2)(x+

√
2), and since x±

√
2 ∈ R[X], hence

this polynomial is reducible over R. Also note the non-constant part. So 5x2−10 = 5(x2−2)
is still considered irreducible.
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An interesting idea is that if a polynomial has a root α ∈ R, then it is reducible over R,
since (x − α) ∈ R[X] becomes a factor. However, being reducible need not mean it has a
root. For instance,

x4 − x2 − 2 = (x2 − 2)(x2 + 1).

Hence the polynomial is reducible over Z[X], however does not have any root in Z.

Let’s talk about the simplest case; irreducibility over C[X]. This follows from the funda-
mental theorem of Algebra:

Theorem 7.1.7 (Fundamental Theorem of Algebra). Every polynomial of degree at least 2
in C[X] is reducible into linear factors over C[X].

Note the above says reducible into linear factors. This is much stronger than just re-
ducible, since this tell us that it has complex roots. So

Lemma 7.1.4 (GCD of real polynomials). Let f(x) = c(x − α1) . . . (x − αk) and g(x) =
C(x− β1) . . . (x− β`). Then the GCD of f, g over C[X] is the set of common factors of the
form (x− γ) that are common in both.

This is because terms of the form (x− γ) are irreducible factors themselves and behave
as primes. Now do you see an analogy with the gcd of integers?

What about R[X] now? We know that complex roots come in pairs, i.e. if P (z) = 0,
then P (z̄) = 0 too. Also, (x−z)(x− z̄) = x2− (z+ z̄)+zz̄ = x2−<(z)x+ |z| ∈ R[X]. Hence

Theorem 7.1.8 (Fundamental Theorem of Algebra). Every polynomial of degree at least 2
in C[X] is reducible into linear and quadratic factors in R[X].

The most interesting case is irreducibility over rational or integer polynomials. There is
no general answer for this, only certain criterion that work at times. Irreducibility of integer
polynomials form very hard questions at times and need ingenious approaches. We won’t
discuss these criterion in this book, and you may read about them from some other source,
for instance [16]. We will, however, discuss one of them which is important:

Theorem 7.1.9 (Gauss’s Irreducibility Lemma). Suppose f ∈ Z[X] be a monic polynomial
that is reducible into g(x)h(x) where g, h ∈ Q[X] are monic polynomials. Then g, h have
integer coefficients.

So if we say f is reducible (which we generally say over Q), we can assume this is over Z.

Proof. Assume on the contrary that f(x) = g(x)h(x) with g, h ∈ Q[X], such that at least
one of them is not in Z[X]. Take c1 to be the least integer such that c1g(x) has integer
coefficients. Clearly then the coefficients of c1g are coprime (why?). Similarly take c2 so that
c2h ∈ Z[X]. Then

(c1c2)f = (c1g)(c2h).

Now write c1g(x) = anx
n+ · · ·+a0 and c2h(x) = bmx

m+ · · ·+b0 and c1c2f(x) = kn+mx
n+m+

· · · + k0. Now since at least one of c1, c2 is greater than 1 (why?), hence there is a prime p
dividing c1C2. So p divides ki for all i.
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Now p does not divide all the coefficients of c1g and c2h (why?). So pick the smallest
0 ≤ i ≤ n and 0 ≤ j ≤ m such that p - ai, bj. Thus p | ak for all k > i and p | bk for all k > j.
Then compare the coefficients of xi+j on both the sides.

ki+j = anbm−i−j + · · ·+ aibj + · · ·+ an−i−jbm.

Here if the index of a or b is negative, set it to be 0 (why?). Now it is easy to check that
the only term not divisible by p on the right is aibj. But the left side is divisible by p, hence
p | aibj, but this is a contradiction.

There’s another way to state this result. Firstly, we define something known as a primitive
polynomial:

Definition 7.1.6. A polynomial f ∈ Z[X] is called primitive if the coefficients of f are
coprime.

Then the alternative way of stating Gauss’s lemma is:

Theorem 7.1.10 (Gauss’s Lemma (primitivity)). The product of two primitive polynomials
is primitive.

Why are these two the same? I will let you answer this question.

7.1.7 Identical Polynomials

Definition 7.1.7. Two polynomials P,Q are called identical if they have the same coef-
ficient for same degree terms. That is, degP = degQ and coefficient of xi is the same in
P,Q for any 0 ≤ i ≤ degP = degQ. When two polynomials are identical, we write P ≡ Q.

So, identical polynomials means ”exactly the same”, i.e. carbon copies. The important
point in the definition is that it says the coefficients are same, and says nothing about the
values. We say that are ”formally” equal (”formal” in context of polynomial is used for
coefficients)

Being equal in values is different. Having P (1) = Q(1), P (2) = Q(2), . . . means that
have the same values. However, this doesn’t mean they have the same coefficients. Being
identical is conceptually different.

Now clearly, if two polynomials are identical, then they are always equal value wise. The
interesting (and non-trivial part is the following):

Theorem 7.1.11. If two polynomials f, g are equal value-wise for more than max{deg f, deg g}
times, then they are identical.

Please note that this is not obvious. For instance, this isn’t true for polynomials in Fp[X]
(see the special section of Modular Arithmetic Advanced). A non-zero polynomial P has
at most degP roots. This is more useful and fundamental than you think. The proof of the
above lemma completely depends on this fact:
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Proof. Define the polynomial p(x) := f(x)−g(x). It has degree at most d = max{deg f, deg g}.
Now, by the hypothesis, it is zero for more than d values, that is has more than d roots.
Hence, it must be the zero polynomial. So f ≡ g.

Here’s a simple corollary:

Corollary 7.1.1. Let f be a polynomial such that f(x) = 0 for infinitely many x. Then
f ≡ 0. Alternatively if f(x) = g(x) for infinitely many x, then f ≡ g.

This is very useful. For instance:

Example 7.1.2

Find all polynomials P with real coefficients such that P (x2 +x) = (x+ 1)P (x) for all
x and P (1) = 1.

Here, if we put x = 1, we get P (2) = 2P (1) = 2. Put x = 2 to get P (6) = 3P (2) = 6.
Similarly proceeding we find P (n) = n for any integer n of the form x2 + x. So we guess
P (x) ≡ x, but we only have this for integers, and that too only a small subset of them.

Here’s the key argument: since the polynomials P (x) and x are equal for infinitely many
values, hence they are identically equal. So P (x) ≡ x is true!

7.2 Lagrange Interpolation

Consider the following classic example:

Example 7.2.1

Let P be a degree 3 polynomial such that P (1) = 2, P (2) = 3, P (3) = 4, P (4) = 5.
Find P (5).

Firstly, note that we can write P (x) = c(x−α)(x−β)(x−γ) since it has degree 3. Using
the given data, we can set up the equations and find 4 equations for the 4 variables c, α, β, γ.
So, P (x) is unique.

The idea now is to forcefully create a polynomial of degree 3 which gives these values.
We start by writing the following:

P (x) = (x−2)(x−3)(x−4)+(x−3)(x−4)(x−1)+(x−4)(x−1)(x−2)+(x−1)(x−2)(x−3).

Each term serves as an ”indicator term”. For instance, when we put x = 1, all except the
first term vanish. The first term gives (1 − 2)(1 − 3)(1 − 4) = −6. However, since we want
P (1) = 2, hence we multiply this by 2/(−6). We do the same thing and refine our polynomial
to the following:

P (x) = 3 · (x− 2)(x− 3)(x− 4)

(1− 2)(1− 3)(1− 4)
+ 4 · (x− 3)(x− 4)(x− 1)

(2− 3)(2− 4)(2− 1)
+ 5 · (x− 4)(x− 1)(x− 2)

(3− 4)(3− 1)(3− 2)
+ 2 · (x− 1)(x− 2)(x− 3)

(4− 1)(4− 2)(4− 3)
.
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Do you see how clever this construction is? It is degree 3 clearly. It satisfies the given
conditions. For instance, when we put x = 2, only the second term remains (the other
vanish) and we get

P (2) = 0 + 0 + 4 · (2− 3)(2− 4)(2− 1)

(2− 3)(2− 4)(2− 1)
+ 0 = 4.

This is the idea behind Lagrange Interpolation:

Theorem 7.2.1 (Lagrange Interpolation). A polynomial of degree n is uniquely determined
by n+ 1 values. Further, if P (xi) = yi for i = 0, 2, . . . , n, then

P (x) =
n∑
i=0

yi
∏

0≤j 6=i≤n

x− xj
xi − xj

.

This theorem is the analogue of the Chinese Remainder Theorem in Algebra. It can be
viewed as a generalization of the facts that two points uniquely determine a straight line,
three points uniquely determine a plane, and so on. More important than the formula is the
idea, the one we used to solve Example 7.2.1. Here’s a nice application:

Example 7.2.2 (IMO Shortlist 1997)

Let p be a prime number and f an integer polynomial such that f(0) = 0, f(1) = 1
and f(n) is congruent to 0 or 1 modulo p for every integer n. Prove that deg f ≥ p−1.

Firstly rule out p = 2, and so say p > 2 now. Assume on the contrary that deg f ≤ p−2.
Now we have information of f at 0, 1, 2, . . . , p − 1, so it is only natural to use Lagrange
Interpolation. We get

f(x) =

p−1∑
j=0

f(j)
∏
i 6=j

x− i
j − i

.

The above polynomial is obviously a degree p − 1 polynomial, which is impossible. So the
leading coefficient must be 0. This gives:

0 =

p−1∑
j=0

f(j)
∏
i 6=j

1

j − i
=

p−1∑
j=0

f(j) · (−1)p−1−j

j!(p− j − 1)!
.

However, this shows (why?)
p−1∑
j=0

(−1)j
(
p− 1

j

)
f(j) = 0.

Now we consider this modulo p. Firstly,(
p− 1

j

)
=

(p− 1)(p− 2) . . . (p− j)
j(j − 1) . . . 1

≡ (−1)(−2) . . . (−j)
j!

≡ (−1)j (mod p).
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(This result was Problem 2.14.2). So we find

f(0) + f(1) + · · ·+ f(p− 1) ≡ 0 (mod p).

However since f(i) ∈ {0, 1} (mod p), this is impossible unless all f(i) are 0, which is false
since f(1) = 1. Hence we are done.

Question 7.2.1. Why did we treat p = 2 individually?

Example 7.2.3 (ELMO 2014 Shortlist N3)

Let t and n be fixed integers each at least 2. Find the largest positive integer m for
which there exists a polynomial P , of degree n and with rational coefficients, such that
the following property holds: exactly one of

P (k)

tk
and

P (k)

tk+1

is an integer for each k = 0, 1, . . . ,m.

We want P ∈ Q[X], and want to work with the values of P rather than the polynomial (i.e.
coefficients) itself (and hence want to treat it like an arbitrary function). Hence, Lagrange
Interpolation is useful here; we can do whatever we want with P (0), P (1), . . . , P (m), but we
would still be able to ensure such a polynomial with rational coefficients exist.

In this spirit, clearly m = n works: just set P (k) = tk for all k = 0, 1, . . . , n. Now suppose
m > n exists. Write P (k) = akt

k with gcd(ak, t) = 1 and k = 0, 1, . . . ,m. If degP = n, then
the formula of P we get by Lagrange Interpolation should have the coefficient of xm to be
zero. But this is

0 =
m∑
j=0

P (j)
∏
i 6=j

1

j − i
=

m∑
j=0

tjaj
(−1)m−j

j!(m− j)!
.

Hence,
m∑
j=0

(−1)m−j
(
m

j

)
tjaj = 0.

But modulo t this evaluates to (−1)ma0, hence t | a0, a contradiction.

We now do a simple problem, which is surprisingly useful in a lot of scenarios:

Example 7.2.4

Prove that if for a polynomial p, we have p(Q) ⊂ Q (i.e. a rational input always gives
a rational output), then p has rational coefficients.

The proof is simple. Just take any degP + 1 rational points. Then look at the interpola-
tion formula which everywhere involves only rational numbers, showing the coefficients are
rational.
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A natural extension of this result is the following problem:

Example 7.2.5

Find all polynomials f(x) with real coefficients such that x ∈ Q ⇐⇒ f(x) ∈ Q

In other words rational inputs give rational values, whereas irrational ones give irrational
values. Firstly by our result above, we get that f ∈ Q[X]. Now clearly if f satisfies the
conditions, then so does cf for any integer c. Hence we can multiply by a suitable constant
and so assume without loss of generality that f ∈ Z[X]. Further multiply by −1 if needed
to make the leading coefficient positive.

Our intuition tells us that deg f = 1 should be the only possibility. So let’s assume that
deg f > 1 and try to see if we can find a contradiction. The key difference in polynomials of
degree greater than 1 from linear ones is the following

Lemma 7.2.1. Let ε be fixed. Then for any polynomial f : R → R with deg f > 1 and
leading coefficient positive, the difference f(x+ ε)− f(x) grows arbitrarily large.

So we would like to create an interval I of length ε such that for any rational x ∈ I,
f(x) is not an integer. But f(x+ ε)− f(x) grows very large, hence some x ∈ I must satisfy
f(x) ∈ Z (since polynomials are continuous. Just visualize the graph), which would be our
desired contradiction. This is our plan of action.

This is however easy. Suppose f has leading coefficient a. Then if f(q) is an integer, then
the denominator of q must be divisible by a (why?) So take an interval I of length less than
1
a

so that I does not contain any multiple of 1
a
. This works.

Problems for Practice

Problem 7.2.1. Using Lagrange Interpolation, prove that if a polynomial p(x) has roots
x1, . . . , xn and has leading coefficient c, then

p(x) = c(x− x1) . . . (x− xn).

Problem 7.2.2. Prove Lemma 7.2.1.

7.3 A Periodicity lemma

One of the, if not the most useful lemma related to integer polynomials is the following:

Lemma 7.3.1. Let P ∈ Z[X] be an integer polynomial. Then for any integers a, b,

a− b | P (a)− P (b).

Proving this is not too hard if we know the key lemma: For any integers a, b we have
a− b | an − bn for any positive integer n.
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Now write P (x) = cnx
n + cn−1x

n−1 + · · ·+ c0. Then

P (a)− P (b) = cn(an − bn) + cn−1(a
n−1 − bn−1) + · · ·+ c1(a− b) + c0 − c0

Each bracket here is of the form ak − bk, which is divisible by (a − b). Hence, the entire
expression on the right side becomes divisible by (a− b), hence we are done.

Comment 7.3.1: Alternatively, since a ≡ b (mod (a− b)), hence

P (a)−P (b) = cn(an−bn)+cn−1(a
n−1−bn−1)+· · ·+c1(a−b)+c0−c0 ≡ 0 (mod (a−b)).

So, even if you forgot the a− b | ak− bk result, modular arithmetic is here to save you!

One special form in which this lemma can be represented is the following:

Lemma 7.3.2 (Periodicity). Let P ∈ Z[X] be an integer polynomial. If m ≡ n (mod a),
then

P (m) ≡ P (m) (mod a).

What this means is that {P (0), P (1), P (2), . . . , P (a−1)} are the only values we honestly
care about modulo a, just like in normal modular arithmetic of integers. A natural question
now is, when is {P (0), P (1), . . . , P (a−1)} a complete residue class? Example 7.4.2 is inspired
from this.

Let’s look at some simple applications first.

Example 7.3.1 (USAMO 1974)

Let a, b, c be three distinct integers, and let P be a polynomial with integer coefficients.
Show that in this case the conditions P (a) = b, P (b) = c, P (c) = a cannot be satisfied
simultaneously

We simply use the lemma which gives a − b | P (a) − P (b) = b − c. We similarly get
b − c | c − a and c − a | a − b. However then |a − b| ≤ |b − c| ≤ |c − a| ≤ |a − b|, so
equality hold everywhere. So if we assume without loss of generality that a = max{a, b, c}
(note that we can’t assume an ordering here since this is cyclic not symmetric). But then
a− b = |a− b| = |c−a| = a− c implies b = c, contradicting the fact that a, b, c were distinct.

Let’s look at another interesting example.

Example 7.3.2

Find all integer polynomials f such that for all n ∈ N, we have f(n) and f(2n) are
relatively prime.

On some simple guess work you can conjecture that no polynomial works, non-constant
ones at least. It’s useful to keep the solution set in mind while solving such problems.
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Take a prime p | f(2t) for some t. What we do is let n = 2t for simplicity. Then, p | f(n)
implies p | f(n+ kp). So, p - f(2n+kp). However, if we can get n+ kp ≡ t (mod p− 1), then
f(2n+kp) ≡ f(2t) ≡ 0 (mod p). And luckily this is possible, by choosing k ≡ (t − n) · p−1
(mod p− 1). So, we have a contradiction.

What does this mean? Does it mean no polynomial exists? No, it basically means f(2r)
can’t have a prime factor, i.e. it will always be ±1. Hence, f must be identically ±1 (why?).
So, f(x) = 1 for all x or f(x) = −1 for all x works.

Comment 7.3.2: Once we took a prime p | f(t), we had p - f(t) and p - f(22t).
However, our lemma tell us that we can reduce things inside f(•) modulo p. So, if 22t

reduces to 2t modulo p, we would have a contradiction. However, this is not always
true.

Now that we have our goal in mind, we try to add in a variable that we can adjust so
that f(•) does reduce to f(2t). So, what we did was use p | f(n+ kp), where k was a
variable. We basically used the periodic property to add a ”degree of freedom”, which
is always very helpful. While this might sound weird, it is a common albeit very useful
trick. You will see this often in many problems, so keep it in mind. Try to point it
out wherever you see it.

7.4 Some Arithmetic Properties

We first define two terms for notational ease:

Definition 7.4.1. For any polynomial p ∈ Z[X], we denote by F(P ) the set {p(n) : n ∈ Z},
and call this the value set of p.

Then we have the following interesting result we present as a problem:

Example 7.4.1 (Value Sets miss an AP)

Let p ∈ Z[X] be such that deg p > 1. Then there exists an infinite arithmetic sequence
none of who terms can be expressed as p(x) for some x ∈ Z.

Proof. Assume on the contrary, and then for any n and d > 2, we can find an x such that
p(x) ≡ n (mod d). Thus, p(n), p(n+1), . . . , p(n+d−1) form a residue class modulo d for all n.
However, since deg p > 1 and hence we can choose an N such that D = p(N+1)−p(N) > 2.
Then taking (n, d) = (N,D) gives a contradiction.

Before we introduce the next theorem, consider the following term:

Definition 7.4.2. For any polynomial p ∈ Z[X], the set of primes dividing any element of
F(p) is denoted by P(p) and call it the prime set of p.
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Theorem 7.4.1 (Schur’s Theorem). The prime set of any non-constant polynomial is infi-
nite.

Proof. Roughly the idea is the same as Euclid’s proof for the infinitude of primes. Let f be
the polynomial.

• Suppose f(0) = 0. Then n | f(n) and so the result is obvious here.

• Suppose f(0) 6= 0. We would like f(0) = 1. But direct scaling doesn’t work because we

want integer coefficients. So we force this by defining g(x) := f(xf(0))
f(0)

, so that g ∈ Z[X]

and g(0) = 1.

Now, for large n, g(n) is non zero always. Then g(n) ≡ 1 (mod n) for all n ∈ N. So
if P(g) = {p1, . . . , p`}, then pick n = p1 · · · p` and so g(n) = kn + 1 for some k, hence
has a new prime factor, the desired contradiction

Hence, P(f) is infinite.

Let’s look at a few applications:

Example 7.4.2

For which polynomials f ∈ Z[X] do {f(0), f(1), . . . , f(p− 1)} form a complete residue
class modulo p for all sufficiently large primes p?

Proof. In other words, which polynomials are surjective modulo large primes. Clearly linear
polynomials work. We show that these are the only ones. The idea in this problem is too
look at common differences (which if often useful if you wanna show a polynomial is linear).
So define Q(x) := P (x+ 1)− P (x). Then for large enough primes, Q(x) is non-zero modulo
p by the problem statement. This means P(Q) is finite, which by Schur’s Theorem means
degQ = 0. Hence P (x) must be linear, and we are done.

Example 7.4.3 (Taiwan 2014 TST 1, Problem 2)

For a fixed integer k, determine all polynomials f(x) with integer coefficients such that
f(n) divides (n!)k for every positive integer n

Proof. The idea here is that any prime divisor of n! is ≤ n. So if we pick p such that p | f(n),
then clearly we can assume 1 ≤ n ≤ p (by the periodicity lemma). However then p | n!
implies p ≤ n. Hence, p | f(p) implying p | a0, the constant coefficient.

However by Schur’s Theorem, if f is non-constant there exist infinitely many such primes
p. Hence a0 must be 0. So define the polynomial g(x) = f(x)

x
∈ Z[X]. Now deg g < deg f so

we can keep on reducing the degree till we get a constant polynomial (why do we end here?).
In other words, f(x) was originally of the form cxw for some w. Putting back we see that we
must have f(x) = ±xa with 0 ≤ a ≤ k, which indeed works.
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For a generalization of Schur’s theorem, see Problem 9.6.11. For now, we discuss another
lemma which is extremely useful:

Lemma 7.4.1. Let f ∈ Z[X] be a polynomial. Then for any n, k ∈ Z,

f(n) | f(n+ kf(n)).

In particular, f(n) | f(n+ f(n)).

The proof is a fun application that I leave as an exercise. Let’s look at some examples:

Example 7.4.4 (Polish)

Find all polynomials with integer coefficients such that for all positive integers n,
f(n) | 2n − 1.

We can guess that deg f > 0 doesn’t seem possible, and the only constant polynomials
that work are ±1. Let’s try to see if we can prove there is no other solution.

Note that if f is a solution, then so is −f. So assume without loss of generality that the
leading coefficient of f is positive. So we can assume f(n) > 0 for n large.

So f(n) | f(n+ f(n)) | 2n+f(n) − 1. Hence, f(n) | 2f(n) − 1 (why?). Now, does x | 2x − 1
remind you of something?

Comment 7.4.1: For a nice generalization of this, see Problem 7.7.10. Also, here’s a
much more challenging problem which is stronger than this Polish problem too:

Find all polynomials with integer coefficients such that for all primes p, f(p) | 2p − 2.

I suggest you do it after doing the Constructions chapter, as tools like Dirichlet’s
theorem are likely to be helpful.

Example 7.4.5 (Problems from The Book)

Find all polynomials f ∈ Z[X] such that for any relatively prime positive integers a, b
the sequence (f(an + b))n≥0 contains an infinite number of terms, any two of which
are relatively prime.

Firstly, observe that the f is non-constant. Since f,−f both work, hence assume the
leading term is positive in f. Now, pick N such that f(n) > 2 for all n > N.

Thus by the identity f(n) | f(n + kf(n)) for all k ∈ Z, we find gcd(n, f(n)) 6= 1 for
n > N (why?). In particular when n = p > N is a prime, we must have p | f(p) (why?).
Thus, p | f(0) for all primes > N, and hence f(0) = 0. Write f(x) = xg(x) with g ∈ Z[X].

Now deg g < deg f and g also satisfies the problem’s property. Hence we can keep on
going down till a constant polynomial, and so f(n) = cxn with c > 0 (recall that the leading
coefficient was assumed to be positive). But then c = +1 otherwise c always becomes an
obvious common factor. Hence f(X) = ±Xn, which indeed all work for any n.
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Problems for Practice

Problem 7.4.1. Prove Lemma 7.4.1.

7.5 Gauss’s Lemma

In this final section, I would like to point out an interesting result:

Theorem 7.5.1 (Gauss’s Lemma). Let P ∈ Z[X] be a monic polynomial with integer coef-
ficients. Suppose that P (q) = 0 for a rational number q. Then q must be an integer.

The important thing to keep in mind is that the polynomial must be monic. Proving this
is not too hard, and I suggest you try it yourself before seeing it below.

Proof. Let q = u/v, where gcd(u, v) = 1. We want to show v = 1. Suppose P (x) = xn +
an−1x

n−1 + · · ·+ a0. Then(u
v

)n
+ an−1

(u
v

)n−1
+ · · ·+ a0 = 0⇔ −un = v(an−1u

n−1 + · · ·+ a0v
n−1).

Hence, v | un. However, we know that gcd(u, v) = 1, so this implies v = 1, as desired.

Question 7.5.1. Where did we use the fact that P (x) is monic? What goes wrong if it
isn’t monic? Give an example of a non-monic polynomial with a rational root that is not an
integer.

This lemma basically follows from the Rational Root Theorem too. It has many equiv-
alent forms, for instance it says that any real root of a monic integer polynomial is either
an integer, or an irrational number. Another equivalent form is that any rational algebraic
integer must be an integer (see the special section of this chapter).

Question 7.5.2. Is there any relation between this Gauss’s Lemma and the Gauss’s irre-
ducibility lemma we did earlier?

Example 7.5.1

Let a, b, c be integers such that a
b

+ b
c

+ c
a

and b
a

+ c
b

+ a
c

are both integers. Prove that
|a| = |b| = |c|.

Clearly, if |a| = |b| = |c|, then the two expressions are integers. The interesting part is
that if these two are integers, then this is the only possibility. This is an example of the
situation when the obvious guess is the only solution.

To prove this, the first trick is to let u = a/b, v = b/c, w = c/a. Then u, v, w are rational
numbers. We basically want to show that these are integers, and then we would be done
(why?). Does this ring a bell? Attempting to show a rational number is an integer should
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always remind you of Gauss’s lemma. So keep this at the back of your mind while attempting
this problem. Now the given condition is

u+ v + w,
1

u
+

1

v
+

1

w
∈ Z.

Clearly uvw = 1 (why?), hence the second term implies vw + wu + uv ∈ Z. Now we have
two term u+ v + w and vw + wu+ uv. Do these remind you of something?

If you said Vieta, then your thought is spot on. We create the polynomial with roots
u, v, w :

P (x) = x3 − (u+ v + w)x2 + (vw + wu+ uv)x− uvw.

Everything comes together now! We needed a polynomial for Gauss’s lemma, and this
polynomial seems good, since it has the roots u, v, w! So if we can show P has integer
coefficients (it is already monic), then the roots u, v, w which are currenty rational numbers
must be integers, which is what we want to prove. However, u + v + w, vw + wu + uv ∈ Z
is given, and uvw = 1 ∈ Z. So we are done! Here’s a properly written proof:

Proof. Let u = a/b, v = b/c, w = c/a. Clearly u, v, w ∈ Q. Define the polynomial

P (x) = (x− u)(x− v)(x− w) = x3 − (u+ v + w)x2 + (vw + wu+ uv)x− uvw.

We claim that this has integer coefficients. Indeed, u+ v+w ∈ Z is given, uvw = a
b
· b
c
· c
a

=
1 ∈ Z, and finally

vw + wu+ uv = uvw( 1
u

+ 1
v

+ 1
w

) = ( 1
u

+ 1
v

+ 1
w

) ∈ Z

is given. Thus, P is a monic polynomial with integer coefficients such that the three rational
numbers u, v, w are its roots. By Gauss’s Lemma, u, v, w ∈ Z. Hence a | b, b | c, c | a, which
respectively imply |a| ≤ |b|, |b| ≤ |c|, |c| ≤ |a|. Hence |a| = |b| = |c|, which is what we wanted
to prove.
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7.6 Example Problems

We start of by an easy problem and give a fascinating proof to it:

Example 7.6.1 (Israel November TST 2 P1)

Find all polynomials P (x) ∈ Z[x] such that for all x ∈ Z and n ∈ N

n | P n(x)− x.

Here, P n is the composition of P n times.

Suppose f(x) = P (x)−x is non-constant. Hence P(f) is infinite, so pick a prime p | f(n)
for some n. So now we know P p is identity in Fp. If we view P has a function in Fp, then the
cycle length is either 1 or p as p is a prime. However, since it has one fixed point n, hence
it must be identity in Fp. This is true for infinitely many primes and hence P (x) ≡ x.

If however f is constant, then P (x) = x+ c, which also works. �

Example 7.6.2 (Indian TST 2019 Day 4 P1)

Determine all non-constant monic polynomials f(x) with integer coefficients for which
there exists a natural number M such that for all n ≥M , f(n) divides f(2n)− 2f(n)

Proof. Firstly, pick a prime p ∈ P(f). Then (note again how we add a degree of freedom k)
pick k large enough so that n+ pk > M. Then

p | f(n+ pk) | f(2n+pk)− 2f(n+pk) ≡ f(2n+k)− 2f(n+k) (mod p)

where we used Fermat’s Little Theorem and Lemma 7.3.2. Now pick a k such that n+k ≡ r
(mod p) for any r. Thus p | f(2r)− 2f(r). Now fix r and pick a large prime p (since P(f) is
infinite) so that p > f(2r)− 2f(r). This shows f(2r) = 2f(r) for any r.

Now 2f(n) = f(2n) ≡ f(0) (mod 2k) for any k < n. Now we can assume without loss of
generality that the leading coefficient of f is positive. Then we can pick a large n such that
f(n) > k for a fixed k. Hence, 2k | 2f(n) and so 2k | f(0). Since this is true for all k, hence
we must have f(0) = 0.

Finally, f(2n) = 2f(n) by putting n = 0 gives f(1) = 1. Putting n = 1 thus gives f(2) = 2.
Putting n = 2 would give f(4) = 4. Similarly we get f(2k) = 2k for all k. Hence f(x) = x
holds for infinitely many x, which shows f(x) = x for all x. Considering we assume the leading
coefficient of f was positive, we now get that f(x) = ±x are the only possibilities.

The next problem will test your concepts of general polynomials (the basics we did at
the start)!
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Example 7.6.3 (Romania TST 6 2009, Problem 2)

Let n and k be positive integers. Find all monic polynomials f ∈ Z[X], of degree n,
such that f(a) divides f(2ak) for a ∈ Z with f(a) 6= 0.

(In this solution, just to avoid confusion, you should note that f(a) is talking about an
integer only, whereas f(x) is talking about a polynomial and hence all values of x at once).

Proof. Since f is monic, hence f ≡ 0 is rejected. Now clearly f(2xk) is a polynomial in
x with integer coefficients. Hence, using Euclid’s Division Lemma, we can write f(2xk) =
f(x)q(x) + r(x) where q, r ∈ Q[X] with deg r < deg f. We would like to work with integer
polynomials instead of rational ones. What do we do?

We can find an integer N such that Ng,Nr both are in Z[X]. Now since f(x) = 0 only

for finitely many x, hence f(a) | Nr(a) for all large a. However, this is impossible since Nr(x)
f(x)

tends to 0 as x tends to infinity (why?) so it can’t always be an integer.

Thus, we find f(x) | Nf(2xk) holds as a polynomial identity in Z[X]. Let α be a root of
f(x). Then this shows that Nf(2αk) = 0, so that 2αk is another root. So for every root α,
we can find a new root 2αk. If |α| ≥ 2, then |2αk| > |α|, and so f has infinitely many roots,
which is impossible unless f ≡ 0 (which is not possible as said before). However why must
such a root with absolute values at least 1 always exist?

Question 7.6.1. Consider f(x) = 2x − 1, 2x2 − 1, 5x3 − 1. All these have no roots with
absolute values at least 1. Which hypothesis in the problem prevents these situations?

The key hypothesis now is that f is monic. So if the constant term of f is c, then product
of roots has magnitude |c| ≥ |1| (unless c = 0). Hence there exists at least one root with
absolute value at least 1, which gives us a contradiction.

So we must have c = 0, so that x | f(x).

Now replace f(x) by g(x) = f(x)
x
∈ Z[X] and repeat the process (repeat the steps to check

each step is still valid ). We can keep on doing this and we find that the only factor of f(x)
is x, so that f(x) = xn. Clearly this and f ≡ 0 work, and hence are the only solutions.

We conclude this chapter with two amazing and very challenging problems.

Example 7.6.4 (APMO 2018/5)

Find all polynomials P (x) with integer coefficients such that for all real numbers s and
t, if P (s) and P (t) are both integers, then P (st) is also an integer.

Proof. Our first step should be guessing the answer. Clearly, P (x) = ±xd + b works. Let’s
try the problem now:

Call a number x good if P (x) ∈ Z. So we are given that if s, t are good, then so is their
product. We make a few observations first. Suppose x is good.
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• For any n ∈ Z, nx is good.

• For any n ∈ N, xn is good.

Now suppose x is rational, then say P (x) = r. Suppose the denominator of x is q. Then
multiplying both sides by qdegP shows qdegP | a0, where a0 is the leading coefficient of P. In
fact, we can do the same with xk (which is also rational) to find qk degP | a0 for all k, which
shows q = 1 or a0 = 0, the latter being impossible. Hence, q = 1 so that x ∈ Z. Hence we
have shown the following:

Claim. Any good rational number is an integer.

Now suppose r is good. Then P (kr) = ak ∈ Z for all k. Hence we can use these to
determine P (x) using Lagrange Interpolation (we set degP = d):

P (x) =
d∑

k=0

ak
∏
i 6=k

x− ir
kr − ir

.

Hence, the leading coefficient of P is 1
rd
q ∈ Z for some q ∈ Q. So rd ∈ Q. But since r was

good, hence so is rd. So by our claim we find rd ∈ Z. Hence we have proved the following:

Claim. For any good r, we have rd−1 ∈ Z for all n.

The finish is not very hard now. Define f(x) = P (x) − Axd where A is the leading
coefficient of A. It is easy to see that this satisfies the problem conditions too. Hence,

Example 7.6.5 (Iranian 2015 Round 3 number theory P4)

a, b, c, d, k, ` are positive integers such that for every natural number n the set of prime
factors of nk + an + c, n` + bn + d are same. prove that k = l, a = b, c = d.

Proof. We first choose which n to work with (which make our job easier). Suppose we fix
constants α. Let n satisfy n ≡ α (mod p− 1), i.e. n = (p− 1)t+α for any t. The advantage
of this is that nk + an + c ≡ nk + aα + c (mod p), and so the exponent of a is fixed now.

Now since p divides both nk + aα + c, n` + bα + d, hence

(−aα − c)` ≡
(
nk
)`

=
(
n`
)k ≡ (−bα − d)k (mod p).

Hence p | (−aα− c)`− (−bα− d)k. So unless this quantity is 0, this shows p is bounded. But
since p divides nk + aα + c = ((p − 1)t + α)k + aα + c = P (t), i.e. a polynomial in t, hence
by Schur’s theorem this is a contradiction.

Hence (−aα − c)` = (−bα − d)k. The best part is that the identity is true for all α. The
problem is not too hard now. This shows (aα+c)` = (bα+d)k. Let gcd(k, `) = g. Then aα+c
becomes a perfect k/gth power. So pick α = kx/g for some x. Then aα is a perfect power
k/gth power, and so is aα + c. However, two perfect k/gth powers cannot always differ by c,
and we have a contradiction.
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7.7 Practice Problems

Problem 7.7.1 (USAMO 1975/3). If P (x) denotes a polynomial of degree n such that
P (k) = k

k+1
for k = 0, 1, 2, . . . , n, determine P (n+ 1).

Problem 7.7.2 (AoPS). Let a1, a2, ..., an be n distinct positive integers. Let pi = P ′(ai),
where

P (x) =
n∏
i=1

(x− ai)

Prove that
∑n

i=1
Q(ai)
pi

is a integer for all positive integer k and polynomials Q with integer
coefficients.

Problem 7.7.3 (AoPS). Find all polynomials P with integer coefficients such that for any
reals a, b such that P (a+ b) is integer if and only if P (a) + P (b) if an integer. Hints: 112

Problem 7.7.4 (IMO Shortlist 2005 N3). Let a, b, c, d, e and f be positive integers.
Suppose that the sum S = a+ b+ c+ d+ e+ f divides both abc+ def and ab+ bc+ ca−
de− ef − fd. Prove that S is composite. Hints: 370 43

Problem 7.7.5 (IMO 2006/5). Let P (x) be a polynomial of degree n > 1 with integer coef-
ficients and let k be a positive integer. Consider the polynomialQ(x) = P (P (. . . P (P (x)) . . .)),
where P occurs k times. Prove that there are at most n integers t such that Q(t) = t. Hints:

41 123 311

Problem 7.7.6. Find all polynomials P ∈ R[X] such that if P (a)+P (b) is rational whenever
a+ b is rational for any a, b ∈ R. Hints: 164 272 166

Problem 7.7.7 (ELMO 2016/4). Big Bird has a polynomial P with integer coefficients
such that n divides P (2n) for every positive integer n. Prove that Big Bird’s polynomial
must be the zero polynomial. Hints: 383 285

Problem 7.7.8 (ELMO 2019/1). Let P (x) be a polynomial with integer coefficients such
that P (0) = 1, and let c > 1 be an integer. Define x0 = 0 and xi+1 = P (xi) for all integers
i ≥ 0. Show that there are infinitely many positive integers n such that gcd(xn, n + c) = 1.
Hints: 459 8 36

Problem 7.7.9 (USAMO 1995/4). Suppose q0, q1, q2, . . . is an infinite sequence of integers
satisfying the following two conditions:

1. m− n divides qm − qn, for m > n ≥ 0,

2. there is a polynomial P, such that |qn| < P (n) for all n.

Prove that there is a polynomial Q such that qn = Q(n) for all n. Hints: 292 51 422 460
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Problem 7.7.10 (Iran MO 3rd round 2016 finals Number Theory P2). We call a
function g special if g(x) = af(x) (for all x) where a is a positive integer and f is polynomial
with integer coefficients such that f(n) > 0 for all positive integers n.

A function is called an exponential polynomial if it is obtained from the product or sum
of special functions. For instance, 2x3x

2+x−1 + 52x is an exponential polynomial.

Prove that there does not exist a non-zero exponential polynomial f(x) and a non-
constant polynomial P (x) with integer coefficients such that

P (n)|f(n)

for all positive integers n. Hints: 172 202 360 158 Sol: pg. 297

Problem 7.7.11 (USA TSTST 2018/1). Find all functions θ : Z[x] → Z such that for
any polynomials p, q ∈ Z[x],

1. θ(p+ 1) = θ(p) + 1, and

2. If θ(p) 6= 0 then θ(p) divides θ(p · q).

Hints: 125 157 82

Problem 7.7.12 (IMO Shortlist 2002 N6). Find all pairs of positive integers m,n ≥ 3
for which there exist infinitely many positive integers a such that

am + a− 1

an + a2 − 1

is itself an integer. Hints: 400 64 309 464

Problem 7.7.13 (Problems from The Book). Find all polynomials f with integer coef-
ficient such that f(n) | nn−1 − 1 for all sufficiently large n. Hints: 190 420 447 27 319 53

Problem 7.7.14 (USAMO 2006/3). For integral m, let p(m) be the greatest prime divisor
of m. By convention, we set p(±1) = 1 and p(0) = ∞. Find all polynomials f with integer
coefficients such that the sequence

{p
(
f
(
n2
))
− 2n}n≥0

is bounded above. (In particular, this requires f (n2) 6= 0 for n ≥ 0.) Hints: 145 395 405 253

246

Problem 7.7.15 (USA TST 2020/5). Find all integers n ≥ 2 for which there exists
an integer m and a polynomial P (x) with integer coefficients satisfying the following three
conditions:

1. m > 1 and gcd(m,n) = 1;

2. the numbers P (0), P 2(0), . . ., Pm−1(0) are not divisible by n; and
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3. Pm(0) is divisible by n.

Here P k means P applied k times, so P 1(0) = P (0), P 2(0) = P (P (0)), etc.

Problem 7.7.16 (IMO Shortlist 2011 N6). Let P (x) and Q(x) be two polynomials with
integer coefficients, such that no nonconstant polynomial with rational coefficients divides
both P (x) and Q(x). Suppose that for every positive integer n the integers P (n) and Q(n)
are positive, and 2Q(n)−1 divides 3P (n)−1. Prove that Q(x) is a constant polynomial. Hints:

413 205 451 271 13 258 Sol: pg. 297

Problem 7.7.17 (2020 Korean MO winter camp Test 1 P3). Find all integer coefficient
polynomials Q such that Q(n) ≥ 1 ∀n ∈ Z+. Q(mn) and Q(m)Q(n) have the same number
of prime divisors ∀m,n ∈ Z+. Hints: 120 245 384 22 148 Sol: pg. 298
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z Algebraic Numbers

At this point, we take a small dive into algebraic number theory and discuss algebraic
numbers and integers, which work as a bridge between olympiad number theory and algebraic
number theory.

Introduction

Number Theory is generally studied as being about Numbers, and at most Rational Numbers.
But what about real numbers, what about complex numbers? Do they have any connection
with integers? Where do these irrational numbers come up? Consider some special irrational
number like

√
2. Why was it invented? Why was i =

√
−1 invented?

Yes, solving equations.
√

2 is a number2 number which satisfies

x2 = 2.

i =
√
−1 is a number which satisfies

x2 = −1.

In fact, consider the polynomial

f(x) = X3 − 2.

This polynomial is used to define 3
√

2. But this polynomial has other roots. What are they?

They are 3
√

2ω, 3
√

2ω2 where ω is a cube root of unity.

So we see that the weird numbers too appear in such equations with coefficients only in
integers. Let us study them more.

Definition 7.7.1. A complex number α is called an algebraic integer if it is the root of
some monic polynomial f ∈ Z[X]. The set of algebraic integers is denoted by Z.

So, 5,
√

2, 5
√

5, e2πi/17 are all algebraic integers (why?).

Question 7.7.1. Is 1
2

an algebraic integer?

We saw in the previous problem that 1
2

is not an algebraic integer. However, seeing how
algebraic integers are so vast, it is annoying that such a simple rational number is not such
an algebraic integer. So here comes the general idea:

Definition 7.7.2. A complex number α is called an algebraic number if it is the root of
some polynomial f ∈ Q[X]. The set of algebraic integers is denoted by Q.

So now 1
2
, 3
17
, 1√

2
are all algebraic numbers. Yay.

Question 7.7.2. Show that the above numbers are actually algebraic numbers. In particular,
show that 1√

2
is an algebraic number but not an algebraic integer.

2not ”the number”
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Minimal Polynomials

Remember how we talked about the ”defining polynomial” of
√

2 as f(x) = x2 − 2? What’s
so special about it?

Consider the two polynomials

p1(x) = x3 + x2 − 2x− 2

p2(x) = x4 − 4x2 + 4.

Check that
√

2 is a root of both the polynomials. However, neither of p1(x) or p2(x) is the
defining polynomial of

√
2. No ancient mathematician thought of some number like

√
2 by

looking at something weird like p1(x) or p2(x). So f(x) = x2 − 2 is special for
√

2. How do
we make the idea of special rigorous?

Here’s the ingenius trick: For each algebraic integer α, we consider monic polynomial
f ∈ Z[X] with minimal degree such that f(α) = 0. Call this the minimal polynomial
of α.

What’s the advantage of the two words in bold? Consider p(x) = 20x2−40 = 20(x2−2).
It is almost same as x2 − 2 but still different. To avoid this dumb situation, we keep the
”defining” polynomial monic (another reason is that we want f(x) to be irreducible as we
will soon see). Yet another reason is that non-monic polynomials with integer coefficients
are actually disguised monic polynomials with rational coefficients (for instance 3x + 2 is
actually 3

(
x+ 2

3

)
). So seeing f(x) = 2x− 1 might trick you into thinking 1

2
is an algebraic

integer, which we know is false.

But why Minimal Degree? The answer to the question is explained by our intuition of
the ”smallest defining polynomial”3. So the reason is: consider f(x) = x−

√
2. This does not

have integer coefficient. So we add in another factor and hope that it has integer coefficients.

So, the golden factor here is x+
√

2, since then

(x−
√

2)(x+
√

2) = x2 − 2 ∈ Z[X].

For 3
√

2, we have to add in both (x− 3
√

2ω) and (x− 3
√

2ω2) to get

(x− 3
√

2)(x− 3
√

2ω)(x− 3
√

2ω2) = X3 − 2.

The idea is to add the least number of factors, and hence we choose minimal degree, which
leads us to the first time after adding some factors that we get a polynomial ∈ Z[X].

Again, we define minimal polynomials for algebraic numbers too.

Definition 7.7.3. The minimal polynomial of an algebraic number α is the monic
polynomial f ∈ Q[X] with the least degree which has α as a root.

Question 7.7.3. Convince yourself again why the monic part is useful.

3Recall that the polynomial analogue of Euclid’s Division lemma involves deg r < deg q, not r < q. Thus,
we use the degree of the polynomials to think of them being small or large.
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Question 7.7.4. Why is minimal polynomial never defined with real coefficients? What’s
wrong in that?

Some examples are:

1. The minimal polynomial of 1
2

is

f(x) = x− 1/2.

2. The minimal polynomial of ω = e2πi/3 is

f(x) = x2 + x+ 1 = x3−1
x−1 .

3. The minimal polynomial of ζp = e2πi/p for p prime is

f(x) = xp−1 + xp−2 + · · ·+ 1 = xp−1
x−1 .

4. The minimal polynomial of ζ6 = e2πi/6 is

f(x) = x2 − x+ 1.

Question 7.7.5. Why is the minimal polynomial of ω not x3 − 1? Why is the minimal
polynomial of ζp not xp − 1?

Question 7.7.6. Why is the minimal polynomial of ζ6 not x6−1
x−1 ?

Here’s a fun fact: The minimal polynomial of ζn equal to Φn(x), i.e. the nth cyclotomic
polynomial (if you know what they are).

You might have heard that π is transcedental. This means that there is no polynomial
with rational coefficients which has π as a root. So, sadly π is not an algebraic number.

Here’s a nice problem:

Problem 7.7.18. Let α be an algebraic number. Show that for large enough integer n, the
number nα is an algebraic integer.

Hence, the relation between algebraic numbers and algebraic integer is kind of similar to
the relation between rationals and integers. (why?)

Properties of Minimal Polynomials

Minimal polynomials have some exciting properties.

Theorem 7.7.1. The following are true for the minimal polynomial f of any algebraic
integer α :

• The polynomial is irreducible.
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• g(α) = 0 for some polynomial g ∈ Z[X] if and only if f | g.

This explains why x2 − 2 is irreducible, and why p(x) = x3 + x2 − 2x − 2 also has the
root

√
2; since p(x) = (x2 − 2)(x+ 1) and (x2 − 2) | p(x).

Proof. Suppose f is reducible, say f(x) = g(x)h(x), where g, h ∈ Q[X]. By Gauss’s Irre-
ducibility lemma, we find g, h ∈ Z[X]. Since f is monic, hence neither of g, h can be a
constant, and they both are monic (why?). Then f(α) = 0 implies g(α) = 0 or h(α) = 0.
However, since deg g, deg h < deg f, hence this contradicts the definition of minimal polyno-
mial.

Next, write g(x) = f(x)q(x) + r(x) with deg r < deg f and q, r ∈ Z[X]. But then x = α
implies r(α) = 0. However this again is a contradiction. (why?)

Question 7.7.7. Using Gauss’s irreducibility lemma, show that f is also irreducible in Q[X].

We have already seen an application of the second result here: the special section of the
first chapter which basically says that if f(ζp) = 0, then f(x) is divisible by xp−1 + · · ·+ x0.

Normal Polynomials vs Minimal Polynomials

At this point, I would like to point out something important. A number α is an algebraic
integer if it is the root of any monic integer polynomial. However, there is one special monic
integer polynomial called the minimal polynomial which has the lowest degree out of all
these.

So if you want to prove that α is an algebraic integer, you have to show it is the root
of some monic integer polynomial, not necessarily the minimal one. For instance ζ6 is an
algebraic integer because it is the root of X6−1, which is not actually its minimal polynomial,
but that doesn’t matter.

So suppose f(α) = 0 for some monic f ∈ Z[X]. How do we know if f is its minimal
polynomial?

Theorem 7.7.2. Any monic polynomial f ∈ Z[X] with root α is its minimal polynomial if
and only if f is irreducible.

You should get an intuitive feel for this if you understood everything till here, and hence
be able to prove it. Nevertheless here’s the proof:

Proof. If f is the minimal polynomial, then we have shown before that it is irreducible. Now
if f(α) = 0 and it is irreducible, then let g be the minimal polynomial. We have seen before
that g | f. But this contradicts the fact that f is irreducible.

Hence, irreducible is interchangeable with minimal.
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Properties of Algebraic Numbers

There are two main properties that make these very useful in Olympiads.

Theorem 7.7.3. If you add or multiply two algebraic integers, you get an algebraic integer.
Same for algebraic numbers. Further, you can divide in algebraic numbers too.

So
√

2 +
√

3 is also an algebraic integer! In fact, its minimal polynomial is

f(x) = (x2 − 5)2 − 4 · 62.

Now,
√

2 × i is also an algebraic integer! So just by this simple property, we can now tell

something like
√

2 +
√

2 + iζ15 is also the root of some nice integer polynomial!

Question 7.7.8. Why can’t we divide in algebraic integers? Give an example.

We don’t prove this property, but it is really helpful. The second property is

Theorem 7.7.4. Any algebraic integer which is a rational number must be a an integer, i.e.

Z ∩Q = Z.

What this means is that if you can show an algebraic integer is a rational number, then
it must in fact be an integer. This is precisely the Gauss’s lemma we have discussed before
(do you see how?). This lemma is very useful in problems.

Practice Examples

Example 7.7.1 (China TST 2005)

Prove that the number

√
10012 + 1 +

√
10022 + 1 + · · ·+

√
20002 + 1

is irrational.

This is a hard problem, especially because there’s no particular approach we could try
here. Let’s try our new machinery on this.

Clearly the number is an algebraic integer, since it is the sum of algebraic integers.
Assume on the contrary that it is rational. However, an algebraic integer is rational only if
it is an integer. So we just want to show this isn’t an integer! This is much simpler, we just
bound it between two consecutive integers. For this observe that

√
k2 + 1− k =

1√
k2 + 1 + k

<
1

2k
.

Thus,

0 <
(√

10012 + 1− 1001
)

+ · · ·+
(√

20002 + 1− 2000
)

<
1

2

(
1

1001
+ · · ·+ 1

2000

)
<

1

2
· 1000

1001
< 1.
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Hence the sum cannot be an integer.

Next we prove a very interesting result. Clearly cosx takes every rational number between
−1, 1 since it is a continuous function. However, the values of cos we commonly learn
are cos(π/6), cos(π/4) and so on, so basically x is a rational times π. In which cases are
these rationals? Turns out they are rational only in the few cases we can guess: cos(0) =
1, cos(π/3) = 1/2, cos(π/2) = 0.

Example 7.7.2 (Useful Lemma)

Let q ∈ Q. Show that cos(qπ) ∈ Q if and only if cos(qπ) ∈ {0,±1
2
,±1}.

What’s the best algebraic way to deal with trigonometric functions? Complex numbers!
Let z = cos(qπ) + i sin(qπ) = eqπi. Then z + z−1 = 2 cos(qπ), which we are given to be
rational. Now if we can show that z + z−1 is an algebraic integer, then this would show
2 cos(qπ) ∈ Z, in which case we would be done (why?).

Now since q is rational, hence some n satisfies nq ∈ Z (set n to be the denominator of
q). Hence z = eqπi becomes a root z2n − 1. Hence, z becomes an algebraic integer. Similarly
z−1 is an algebraic integer so z + z−1 is an algebraic integer!

Question 7.7.9. Where does the proof fail if q is not rational?

Example 7.7.3 (Useful Result)

Let p be a prime and a0, a1, . . . , ap−1 be rational numbers satisfying

a0 + a1ζ + · · ·+ ap−1ζ
p−1 = 0

where ζ is a pth root of unity. Then a0 = a1 = · · · = ap−1.

Since the minimal polynomial of ζ is f(X) = Xp−1 + · · ·+X + 1, hence if ζ is a root of
g(X) = ap−1X

p−1 + · · ·+ a1X + a0, then f(x) divides g(x) (why?). It is not easy to see that
this happens if and only if a0 = · · · = ap−1, as desired.

A definition:

Definition 7.7.4. Let α be an algebraic number and f be its minimal polynomial. Then the
Galois conjugates (or just conjugates) are the roots of f except α.

So practically the conjugates of α are the numbers used to complete α to find the minimal
polynomial. Also, our earlier theorem translates to:

Theorem 7.7.5. Whenever you have have g ∈ Z[X] such that g(α) = 0, then every conjugate
of α is also a root of g.

Before we proceed with more problems, here’s a result for sanity:
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Example 7.7.4 (Galois Conjugates don’t repeat)

Prove that an irreducible polynomial in Q[X] does not have repeated roots.

The proof is simple. If g has a repeated root α, then g(α) = g′(α) = 0. However then the
minimal polynomial of α divides both g, g′, which is impossible.

We know that ζk = e2πik has magnitude 1 for any k. So a natural question is which
algebraic integers have magnitude 1, i.e. lie on the unit circle in the complex plane. Turns
out there are some nasty algebraic integers on the unit circle that aren’t roots of unity.
However, the following amazing result due to Kronecker is true:

Theorem 7.7.6 (Kronecker’s Theorem). Let α be an algebraic integer of magnitude 1. Sup-
pose that all the galois conjugates of α are also on the unit circle. Then α is a root of
unity.

This has an amazing elementary proof:
We finish by solving a challenging problem from the famous Miklós Schweitzer Competi-

tion:

Example 7.7.5 (Miklós Schweitzer Competition 2015/5)

Let n ≥ 4 be a positive integer. Let P,Q be two polynomials with complex coefficients
such that

P (Q(x)) = xn + xn−1 + · · ·+ 2016.

Show that one of degP, degQ is 1.

Assume that degP = k > 1 and degQ = ` > 1. Clearly P,Q are monic. The key idea
is to think of the coefficient of x`−1 in Q(x). It not to hard to see that xn−1 is found in the
Q(x)k term in P (Q(x)), and further is obtained by

x` · x` . . . x`︸ ︷︷ ︸
k−1

·x`−1 = xn−1.

However, each term above occurs
(

k
k−1,1,0,...,0

)
= k times, so the coefficient of x`−1 is 1/k.

Now let α1, . . . , αm be all the roots of P (x) (which might include repeated roots) Then

P (Q(x)) =
m∏
i=1

(Q(x)− αi).

For each Q(x)−αi, the sum of roots is −1/k. However, each root is a root of xn+ · · ·+2016,
and hence an algebraic integer. Thus, the sum should also be an algebraic integer, which we
know is −1/k ∈ Q. Hence −1/k is an integer, showing k = 1, a contradiction.
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Chapter 8

Quadratic Residues

We have introduced quadratic residues in an earlier chapter, and defined them (see Definition
5.2.1). However, I would give the definition again for completeness:

Definition 8.0.1. Let p be a prime. A number a is called a quadratic residue mod p if
there exists an integer x such that x2 ≡ a (mod p). It is called a quadratic nonresidue
otherwise. We use the shorthand QR to denote a quadratic residue and NQR for a qudratic
nonresidue.

For instance, if p = 7, then 2 is a quadratic residue since 32 ≡ 2 (mod 7). However, 3 is
not a quadratic residue (you can check this by listing all 02, 12, 22, . . . , 62 and observing that
3 never appears.) Also, we can extend the definition to non-prime moduli easily:

Definition 8.0.2. Let m > 1 be an integer. An integer a coprime to m is called a quadratic
residue mod m if there exists an x such that x2 ≡ a (mod m). If no such x exists, we call
it a quadratic nonresidue.

A lot of properties that we discuss below apply when we are dealing modulo a prime
number p. They don’t apply for composite numbers, however. But for a composite number,
we can deal with each of its prime factors individually.

In this chapter we will try and study properties of quadratic residues. Before we move
on, I would like to remind you of Fermat’s Christmas Theorem (see Theorem 5.3.1) which
tells us that −1 is a quadratic residue mod p if and only if p ≡ 1 (mod 4). Also, keep in
mind that we would be dealing with non-zero residues mod p everywhere.

Comment 8.0.1: Some texts don’t consider 0 as a quadratic residue! We won’t do
this, since it’s confusing. However, the reason behind their assumption is important
to us as well (which largely is the fact that 0 does not have an inverse). So for sanity,
make it a habit to check the case 0 individually whenever we talk about a theorem on
quadratic residues.

211



212 CHAPTER 8. QUADRATIC RESIDUES

8.1 How to find them?

This is the first question we try to answer. The naive answer is to find all the elements
{12, 22, 32 , . . . , (p − 1)2} (mod p). Instead of first writing all the elements of this set, then
removing repetitions, let’s try to directly do this.

Suppose 0 < i, j < p such that i2 ≡ j2 (mod p). Then p | (i− j)(i + j), so that p | i− j
or p | i + j. The latter case corresponds to i ≡ −j (mod p). The first case is not possible.
Thus, if we consider the following set X

X =
{

12, 22, . . . ,
(
p−1
2

)2}
(mod p),

then we find that any two elements in X are distinct. Further, for any number i > (p−1)/2,
we have i2 ≡ (p− i)2, and p− i < (p− 1)/2. So, X is the set of ALL the quadratic residues
mod p. This gives us the following:

Lemma 8.1.1 (Number of Quadratic Residues). For any prime p, there are exactly p−1
2

non-zero quadratic residues. Further, they are given by the set{
12, 22, . . . ,

(
p− 1

2

)2
}

(mod p).

This also implies that there are (p− 1)/2 quadratic nonresidues.

This simple fact alone can help us solve the following problem:

Example 8.1.1

Let p be a prime. Show that the congruence x2 + y2 + 1 ≡ 0 (mod p) always has a
solution (x, y).

Assume p odd, since this is clear for p = 2. Now, we know that there are p+1
2

elements
in the set {0, 1, 2, . . . , p − 1} that can be written as x2 for some x. Further, by the same
logic there are p+1

2
elements in the set {0, 1, 2, . . . , p− 1} that can be written as −1− y2 for

some y. Since these add to p+ 1 while {0, 1, . . . , p− 1} only has p elements, some two must
overlap, which is what we wanted (why?).

Problems for Practice

Problem 8.1.1. Prove that the sum of quadratic residues mod p is congruent to 0, if p > 3.

Problem 8.1.2. Show that the product of quadratic residues mod p is +1 if p ≡ 1 (mod 4),
and −1 otherwise.1

1Does this seem familiar? This was used in the first proof of Fermat’s Christmas Theorem (the one
without primitive roots), where we directly put x = ((p− 1)/2)! and showed x2 ≡ −1.
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8.2 Multiplication

This is the first non-trivial question we try to answer. This will motivate a genius notation
which will form the base of the theory of quadratic residues. Suppose you have two squares.
Then their product is obviously a square. So, the product of two QRs is a QR.

What about QR × NQR? Well, intuitively it doesn’t feel right for this to be a square.
Indeed, if x2y ≡ z2 (mod p), then y ≡ (z · x−1)2 (mod p), contradicting the fact that y is a
NQR (note here that we are dealing with quadratic residues).

Finally, what is a NQR × NQR? Try and guess the answer (maybe take a few examples).
For instance, if n is a NQR, then n× n = n2 is a QR. Turns out that in general the product
will always be a QR! Here’s one ingenious proof:

Suppose n is a NQR. Let q = (p− 1)/2 and X = {x1, x2, . . . , xq} be the set of QRs and
Y = {y1, y2, . . . , yq} be the set of NQRs. Then

X ∪ Y = {1, 2, 3, . . . , p− 1} = S,

where S is the set of all non-zero residues modulo p. Now, by Theorem 2.5.1, nS ≡ S
(mod p). However, since a NQR times a QR is a NQR, hence nX must be the set of NQRs
(since it has q elements). This means that nY must be the set of QRs, and so n times any
NQR is a QR, which is what we wanted to prove! Thus we have the following:

Lemma 8.2.1. We have the following (remember that we are dealing with non-zero residues)

1. QR×QR = QR;

2. QR×NQR = NQR;

3. NQR×NQR = QR.

So the same category objects give QR, and opposite category gives NQR. Does this
remind of you something?

This should ring a bell and motivate you to think of +1,−1, since the ”same category
idea” is everywhere; multiplication by negative integers, labelling of positive and negative
charges, magnetic poles, dipoles, rotation etc. This idea motivates giving a +1 to a QR, and
a −1 to a NQR. This is how we do it:

Definition 8.2.1. Let p be a prime, and x be an integer. Then we define the Legendre’s
notation as (

x

p

)
=


1 if x is a QR

0 if x ≡ 0 (mod p)

−1 otherwise

Thus, Lemma 8.2.1 gives us the following very useful property:

Theorem 8.2.1 (Legendre’s Symbol is completely multiplicative). Let a, b be integers and
p a prime. Then (

a

p

)(
b

p

)
=

(
ab

p

)
.
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Using the Legendre’s symbol, we basically have converted the English question ”is x a
quadratic residue” to a mathematical expression. For instance, we have the following lemma,
that English couldn’t have allowed us to write:

Theorem 8.2.2 (Euler’s criterion). Let p be a prime. Then(
a

p

)
≡ a

p−1
2 (mod p).

For instance, if a = x2 is a QR, then the left side is 1 and the right side is (x2)(p−1)/2 =
xp−1 ≡ 1 (mod p). The interesting case is when a is a NQR. The easiest way to prove this
is use the following:

Lemma 8.2.2 (Primitive Roots and Quadratic Residues). Let g be a primitive root modulo
p. Then for any a 6≡ 0 (mod p), write a = gk. Then a is a quadratic residue if and only if k
is even.

This is easy to prove, and I leave it as an exercise (this was also Problem 5.5.4). Back to
Euler’s Criterion, write a = gk with k odd. Then a(p−1)/2 ≡ gk(p−1)/2 ≡ −1 (mod p) (why?).
Hence we are done.

Comment 8.2.1: We know that every non-zero number is a root of the polynomial
xp−1 − 1 in Fp. So,

p | x
p−1
2 − 1 or p | x

p−1
2 + 1.

We know that every number of the form 12, . . . ,
(
p−1
2

)2
is a root of x

p−1
2 − 1. By

Lagrange’s Theorem (Theorem 5.9.4), we know that this polynomial has at most deg =
p−1
2

roots in Fp[X]. Hence, these all are the only roots of this polynomial (why?) and
so every quadratic nonresidue satisfies

x
p−1
2 ≡ −1 (mod p).

Hence we have given an alternate proof of Euler’s Criterion.

Lemma 8.2.1 is very useful, and is sufficient to solve a lot of problems. An amazing
example is the following:

Example 8.2.1

Prove that for a prime p > 3, the smallest quadratic nonresidue is less than
√
p.

The idea is simple, pick the smallest quadratic nonresidue r, and try to show r <
√
p. The

first thing we can do is to use the definition of r to get that {1, . . . , r − 1} are all quadratic
residues.

Now, since r is a NQR, hence ra is a NQR for any QR a. In particular, {r ·1, . . . , r ·(r−1)}
are all NQRs. Now, if r >

√
p (note that r cannot equal

√
p) then r2 > p. This means r2
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”crosses” p. Here’s the idea: If r2 lands on a number in {1, . . . , r − 1}, we have something
interesting. However, we can’t control where r2 lands. But this is a good idea.

If we try to mend this idea, we look at numbers of the form r, 2r, . . . , (r − 1)r. Consider
the first number that crosses p, say ra.2 Hence, by definition,

ra > p > r(a− 1).

(why not ≥?). Hence, we get p+r > ra > p. Hence, ra mod p lies in {1, 2, . . . , r−1}, which
means it must be a QR, a contradiction!

We will see a generalization of this result in the chapter ”Constructions.”

Problems for Practice

Problem 8.2.1. Give an example of two nonresidues that don’t multiply to give a residue
mod 12. Hence conclude that Lemma 8.2.1 doesn’t always hold in no-prime moduli.

Problem 8.2.2. Prove that any quadratic residue can’t be a primitive root modulo p.

Problem 8.2.3. Prove Lemma 8.2.2.

Problem 8.2.4. Use Euler’s Criterion to prove that the Legendre’s symbol is completely
multiplicative.

Problem 8.2.5. Show that for any prime p,(
−1

p

)
= (−1)

p−1
2 .

8.3 The Law of Quadratic Reciprocity

We now try to investigate if there’s a nice formula to find the Legendre’s symbol. For this
purpose, we have the following beautiful theorem:

Theorem 8.3.1 (Quadratic Reciprocity Law). Let p 6= q be odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 .

This is a very powerful theorem, and is amazing in its own right. If you want to find
(p/q), you can instead calculate (q/p).

Question 8.3.1. Explain the significance of ”reciprocity” in the theorem’s name.

2Why must such an a exist? This is the idea of discrete continuity. Since r ·1 < p but r ·r > p, hence there
must exist an a ∈ (1, p) such that ra > p but r(a − 1) < p. Despite being extremely useful and ubiquitous,
it is quite a simple idea.
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For instance, q = 3 implies (
3

p

)
=
(p

3

)
· (−1)

p−1
2 .

Thus, 3 is a quadratic residue mod p if and only if p ≡ ±1 (mod 12) (why?). If q = 5, then(
5

p

)
=
(p

5

)
.

Thus, 5 is a quadratic residue mod p if and only if p ≡ ±1 (mod 5). Interesting right?

Let’s use this to evaluate something scary like
(
21
61

)
. We have(

21

61

)
=

(
3

61

)(
7

61

)
QR
= (−1)

3−1
2
·61−1

2

(
61

3

)
(−1)

7−1
2
·61−1

2

(
61

7

)
=

(
1

3

)(
5

7

)
QR
= (−1)

5−1
2
·7−1

2

(
7

5

)
=

(
2

5

)
= −1.

So 21 is not a quadratic residue mod 61.

Again, we left out the case p = 2. The poor case always gets left out from all the big
theorems, but is never ignored; here’s the result with p = 2 :

Theorem 8.3.2 (Criterion for 2). For any odd prime p,(
2

p

)
= (−1)

p2−1
8 .

In other words, 2 is a quadratic residue modulo p if and only if p ≡ ±1 (mod 8).

We don’t prove Quadratic Reciprocity for now. There’s a classic proof that we won’t
discuss. We do, however, present a special and non-standard proof in the special section at
the end.

Comment 8.3.1 (T): ere’s a very beautiful theorem which states that if a number is
a quadratic residue mod p for all but finitely many prime numbers, then it is square
number. This is not just an amazing result, but useful too. You can find some
applications of this in the book [12]. This, however, is not very easy to prove. It is
given as an exercise problem (with solution) in the chapter ”Constructions”.

Let’s try some simple examples now.

Example 8.3.1

Prove that if a prime p is a quadratic residue of an odd prime q, and p is of the form
4k + 1, then q is a quadratic residue of p.
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This is a direct application of quadratic reciprocity:(
q

p

)
= (−1)

p−1
2
· q−1

2

(
p

q

)
= (−1)2k·

q−1
2 · 1 = 1.

Question 8.3.2. Where did we use the fact that q is odd?

Example 8.3.2

The last digit of the number x2 +xy+ y2 is zero (where x and y are positive integers).
Prove that two last digits of this numbers are zeros.

The problem statement in itself is very interesting. We basically want to show if 10 |
x2 + xy+ y2, then 102 also divides this. Firstly, if 2 | x2 + xy+ y2, then one can easily check
that we must have x ≡ y ≡ 0 (mod 2). Hence, 4 | x2 + xy + y2.

Now suppose 5 | x2 +xy+ y2. Again, if 5 | x, y, we are done like before. Also, if 5 divides
one of x, y, it divides both. So assume 5 divides neither. Hence,

5 | 4(x2 + xy + y2) =⇒ (2x+ y)2 ≡ −3y2 (mod 5).

So, −3 = (2x · y−1 + 1)2 (mod 5) is a quadratic residue (since 5 - y). Hence,

1 =

(
−3

5

)
=

(
−1

5

)(
3

5

)
= (−1)

5−1
2 · (−1)

3−1
2
·5−1

2

(
5

3

)
=

(
2

3

)
= −1.

So we have a contradiction. Hence 5 | y =⇒ 5 | x, and so 52 | x2 + xy + y2, and we are
done.

Problems for Practice

Problem 8.3.1. If a is a quadratic nonresidue of each of the odd primes p and q, is x2 ≡ a
(mod pq) solvable?

8.4 Legendre Symbol Manipulation

This section is better understood by examples than words. Let’s try to prove the following:

Lemma 8.4.1. If gcd(a, p) = 1 and p is an odd prime, then

p∑
n=1

(
an+ b

p

)
= 0.
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Just recall that {an+ b} forms the complete residue class mod p if gcd(a, p) = 1. So

p∑
n=1

(
an+ b

p

)
=

p∑
n=1

(
n

p

)
= 0,

since there are an equal number of QRs and NQRs.

This was a simple example. However, what if we had a quadratic in place of an + b?
This method fails there. We need a more general method. So let’s try to find a more general
method. Since we can’t exactly pin-point when an+b would be a QR, our best bet would be
to try something algebraic. Which identity can convert the Legendre symbol into something
algebraic?

Yes, Euler’s criterion. So
(
an+b
p

)
≡ (an + b)

p−1
2 (mod p). This is something we could

try, however there is a cost: we would be able to find the value (mod p) but not the exact
value. But let’s try this anyway for now. Also, a thing we can do is(

an+ b

p

)
=

(
a

p

)(
n+ c

p

)

where c ≡ b · a−1 (mod p) (we used p - a here). Now, we just evaluate the sum
(
n+c
p

)
. We

have (let w = p−1
2

)

p∑
n=1

(
n+ c

p

)
≡

p∑
n=1

(n+ c)w

≡
p∑

n=1

(
nw +

(
w

1

)
nw−1c+ · · ·+ cw

)
(mod p)

How do we evaluate the above sum? Firstly, write this as:

p∑
n=1

(
nw +

(
w

1

)
nw−1c+ · · ·+ cw

)
=

(
p∑

n=1

nw

)
+

(
w

1

)
c

(
p∑

n=1

nw−1

)
+ · · ·+ cw

(
p∑

n=1

n0

)
. (8.1)

So now we just need sums of the form 1i + 2i + · · ·+ pi. Does this ring a bell? Recall:

Lemma 8.4.2 (Sum of Powers mod p). Let p > 2 be a prime. Then for any integer x,

1x + 2x + · · ·+ (p− 1)x ≡

{
−1 if p− 1 | x
0 otherwise

(mod p).

Using this, we see that each sum in Equation 8.1 is 0, and hence the original sum is 0.
Thus,

p∑
n=1

(
an+ b

p

)
≡ 0 (mod p).
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Now we have to deal with the issue we mentioned earlier: how do we find the exact value?
Here’s the trick. If S is the sum we want, then S ≡ 0 (mod p). Also, it involves the sum of
p Legendre symbols, each of which is atmost 1 and at least −1. Hence,

−p ≤ S ≤ p.

So, S ∈ {−p, 0, p}. We have to eliminate the possibilities S = p and S = −p. Note that

S = p if all
(
an+b
p

)
= 1, which means all an+b are quadratic residues. However, since p > 2,

this is impossible. Similarly S 6= −p and we are done.

This seemingly long method has a merit: it can be generalized more easily. Try to prove
the following yourself first, as the method is the same.

Lemma 8.4.3. Let p be an odd prime and a be an integer with gcd(a, p) = 1. Then

p∑
n=1

(
n2 + a

p

)
= −1.

We again employ the same method, however this time write it without explaining each
step.

S =

p∑
n=1

(
n2 + a

p

)
≡

p∑
n=1

(n2 + a)
p−1
2

=

p∑
n=1

(
np−1 +

(
(p− 1)/2

1

)
np−2a+ · · ·+ a

p−1
2

)

=

(
p∑

n=1

np−1

)
+

(
(p− 1)/2

1

)
a

(
p∑

n=1

np−3

)
+ · · ·+ a

p−1
2

(
p∑

n=1

n0

)
≡ −1 (mod p)

So, S ≡ −1 (mod p). However, we can see that |S| ≤ p− 1. Hence, S ∈ {−1, p− 1}.

We have to eliminate the possibility that S = p−1. Note that S = p−1 if all
(
n2+a
p

)
= 1,

which means n2+a is quadratic residues for all 1 ≤ n ≤ p. Thus, {02+a, 12+a, . . . ,
(
p−1
2

)2
+a}

is precisely the set of all quadratic residues including 0 (why?), i.e.{
02 + a, 12 + a, 22 + a, . . . ,

(
p−1
2

)2
+ a
}
≡
{

02, 12, 22, . . . ,
(
p−1
2

)2}
(mod p).

We need to somehow show this is not possible. What’s the first thing we do for equal sets?
Yes, add and equate the elements. We get

02 + 12 + · · ·+
(
p−1
2

)2 ≡ (02 + a) + (12 + a) + · · ·+
((

p−1
2

)2
+ a
)

(mod p).

Hence,
(
p+1
2

)
a ≡ 0 (mod p), which means a ≡ 0 (mod p). However the statement includes

gcd(a, p) = 1, and so this is impossible! Hence S 6= p− 1 and so S = −1, and we are done.
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Question 8.4.1. As usual, where did we need p > 2? Why did we consider 0 along with the
quadratic residues here? Also, what happens if gcd(a, p) 6= 1? What does the sum evaluate
to in that case?

Using this, we can obtain the following:

Corollary 8.4.1. Let p be an odd prime and a, b be integers both coprime to p. Then

p∑
n=1

(
an2 + b

p

)
=

(
a

p

)
.

To prove this, just multiply our previous lemma by
(
a
p

)
. Also think why we need a, b

both coprime to p.

Problems for Practice

Problem 8.4.1. Show that
p∑

n=1

(
n2 + a

p

)
= (p− 1)

if p | a.

Problem 8.4.2. Use Corollary 8.4.1 and a suitable transformation to prove:

Let a, b, c be integers and let p be an odd prime with p - a. Then

p∑
n=1

(
an2 + bn+ c

p

)
= (p− 1)

(
a

p

)
if p | b2 − 4ac.

p∑
n=1

(
an2 + bn+ c

p

)
= −

(
a

p

)
otherwise.

This is the most general form of quadratic and hence the most useful result. Keep this in
mind. There’s another form which is often useful: If a, b are not congruent, then

p∑
n=1

(
(n+ a)(n+ b)

p

)
= −1.

8.5 Points on the circle x2 + y2 ≡ 1 in Fp
The title is self-explanatory; we try to solve the following equation:

x2 + y2 ≡ 1 (mod p).

Problem 8.5.1. Use the method from Example 8.1.1 to sow that x2 + y2 + 1 ≡ 0 (mod p)
always has a solution x, y ∈ Fp.
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Does this mean the end of our discussion? Certainly not. Suppose p = 7 so that the QRs
are {0, 1, 2, 4}. Hence, we can list all possible values of x2 + y2 (mod 7) as:

02 12 22 32 42 52 62

02 0 1 4 2 2 4 1
12 1 2 5 3 3 5 2
22 4 5 1 6 6 1 5
32 2 3 5 4 4 5 3
42 2 3 5 4 4 5 3
52 4 5 1 6 6 1 5
62 1 2 5 3 3 5 2

We see that there are 8 solutions to x2 + y2 ≡ 1 (mod 7). So, now we ask: how many
solutions does x2 + y2 ≡ 1 (mod p) have?

Directly counting with two variables is hard. So, we count the number of 1s in each row
and add all of them. That is, we fix y = c, and see how many x exist. So, our question is
how many solutions does x2 ≡ 1− c2 (mod p) have. Once we answer this (in terms of c), we
sum the number of solutions as c goes from 0 to p− 1.

Since we have fixed c, we have 1 − c2 = a is a constant. So we ask: how many solution
does x2 ≡ a (mod p) have? Clearly it’s 2 when a is a QR and 0 when a is a NQR (and 1 if
a = 0). There’s a nice algebraic way to write this:

Lemma 8.5.1. The number of solutions to x2 ≡ a (mod p) for a fixed a is

1 +

(
a

p

)
.

Hence, the number of solutions to x2 ≡ 1− c2 (mod p) is

1 +

(
1− c2

p

)
.

Thus, the number of solutions to x2 + y2 ≡ 1 (mod p) is

p−1∑
c=0

1 +

(
1− c2

p

)
= p+

(
−1

p

) p−1∑
c=0

(
c2 − 1

p

)
= p+ (−1)

p−1
2 · (−1).

Hence, x2 + y2 ≡ 1 (mod p) has p− (−1)
p−1
2 solutions. So, we have shown

Lemma 8.5.2. The number of solutions to x2 + y2 ≡ 1 (mod p) for an odd prime p and
x, y ∈ Fp is

p− (−1)
p−1
2 .

For instance, when p = 7, this gives 7 − (−1)3 = 8, exactly what we had before. This
also implies something interesting: the equation x2 + y2 ≡ 1 (mod p) always has a solution,
and at least p− 1 of them.

We can generalize the above result to get
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Theorem 8.5.1. Let p be an odd prime. Let N be number of solutions to x2 + y2 ≡ a
(mod p) with x, y ∈ Fp. Then

N =

p+ (p− 1)(−1)
p−1
2 if a ≡ 0 (mod p)

p− (−1)
p−1
2 otherwise

Problems for Practice

Problem 8.5.2. Prove Theorem 8.5.1.

Problem 8.5.3. Show that the number of solutions to x2 − y2 ≡ a (mod p) for x, y ∈ Fp is
p− 1. This represent the number of points on the hyperbola x2 − y2 = a in Fp.
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8.6 Example Problems

Quadratic residues are really powerful in problems, especially Olympiad problems. Let’s
start by a classic example

Example 8.6.1

Prove that 2n + 1 has no prime factor of the form 8k − 1.

Suppose p | 2n + 1, so that 2n ≡ −1 (mod p). Now, clearly p 6= 2 and so this gives
ordp(2) = 2n (why?).

If n is even, then 2n ≡ −1 (mod p) above implies that −1 is a quadratic residue and so
p ≡ 1 (mod 4), meaning p cannot be of the form 8k − 1.

If n is odd, then 2n+1 ≡ −2 (mod p) implying −2 is a QR. However,

1 =

(
−2

p

)
= (−1)

p−1
2

+
p2−1
8 .

So if p ≡ −1 (mod 8), then the above is impossible. So we are done.

Now a problem which has a surprisingly simple solution, but is not easy by any means.

Example 8.6.2 (Iran TST 2013)

Prove that for positive integers x, y, z, the number x2 + y2 + z2 is not divisible by
2013(xy + yz + zx).

The 2013 is sitting there just because of the exam year. Now 2013 = 3 × 11 × 61. We
only need the factor of 3.

Assume on the contrary. Clearly we can assume that gcd(a, b, c) = 1. Now write x2 +
y2 + z2 = 3k(xy + yz + zx) so that

(x+ y + z)2 = (3k + 2)(xy + yz + zx).

Here is the key idea: Since 3k + 2 ≡ 2 (mod 3), hence there exists at least one prime factor
p of 3k+ 2 so that p ≡ 2 (mod 3) and it has an odd exponent in 3k+ 2, otherwise the prime
factors multiply to give a number which is ≡ 1 (mod 3).

So, there exists a prime p ≡ 2 (mod 3) such that νp(3k+2) is odd. But then p | x+y+z
and so p | xy + yz + zx as νp(3k + 2) is odd. So

p | xy + z(x+ y) ≡ xy − (x+ y)2 =⇒ p | x2 + xy + y2.

This in particular means that if p | y, then p | z, x too contradicting the gcd assumption. So
p - y.
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This means (2x · y−1 + 1)2 ≡ −3 and so −3 is a quadratic residue. However, since p ≡ 2
(mod 3),

1 =

(
−3

p

)
= (−1)

p−1
2 · (−1)

p−1
2

(p
3

)
= −1.

This is a contradiction.

Now we do a challenging problem, which is a great example problem involving quadratic
residues.

Example 8.6.3 (Taiwan TST?)

Suppose that ϕ(5m − 1) = 5n − 1 for a pair (m,n) of positive integers. Prove that
gcd(m,n) > 1.

Assume on the contrary, and assume m > 2. Then note that

gcd(5m − 1, 5n − 1) = 5gcd(m,n) − 1 = 4.

In particular, 5m − 1 is square free, and min{ν2(5m − 1), ν2(5
n − 1)} = 2. Write 5m − 1 =

2ep1p2 . . . pk with pi pairwise distinct odd primes. Clearly k > 0 for m > 2 (by Zsigmondy,
say). Then ν2(5

n− 1) ≥ (e− 1) + k ≥ e and so e = 2. In particular, m is odd. Thus, we can
write

5n − 1 = 2(p1 − 1)(p2 − 1) . . . (pk − 1). (8.2)

Now, consider the following crucial claim:

Claim. Suppose p | 5m − 1 for some odd prime p 6= 5, where m > 2 is odd. Then p ≡ ±1
(mod 5).

Proof. Assume p ≡ ±2 (mod 5). Then(
5

p

)
= (−1)

p−1
2
·5−1

2 ·
(p

5

)
= −1.

So 5 = g` for some primitive root g (modulo 5) and non-negative odd integer `. But then
2 | p− 1 | m`, a contradiction since m, ` are odd.

Thus, pi ≡ ±1 (mod 5) for all i. However, by taking Equation (8.2) modulo 5, we must
have pi ≡ −1 (mod 5) for all i. Then

−1 ≡ 5m − 1 = 4p1p2 . . . pk ≡ 4(−1)k (mod 5)

−1 ≡ 5n − 1 = 2(p1 − 1) . . . (pk − 1) ≡ 2(−2)k (mod 5).

However, it is easy to see these two equations can’t hold simultaneously. So we are done.

Last, we solve a challenging problem with a surprising application of quadratic residues.
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Example 8.6.4 (AOPS 2019 IMOTC Thread)

If p > 3 is a prime such that ϕ(p− 1) > p−1
3
, then there are two consecutive primitive

roots modulo p.

Assume not. Let g be a primitive root, which means g−1 is also a primitive root. Now,
by our assumption, neither of g + 1, g−1 + 1 is a primitive root. However,

g · (g−1 + 1) ≡ g + 1 (mod p).

Now, since a primitive root is always a quadratic nonresidue, hence g is a quadratic non-
residue and so the above implies that exactly one of g+ 1, g−1 + 1 is a quadratic nonresidue
(why?), say g+1. Then the set {g, g−1, g+1} is a set of three quadratic nonresidues. Associate
this (that is, create a map) from g to this set.

Now note that g 6≡ g−1 (mod p) for any primitive root g, Also, g, g−1 map to the same
set, and no two primitive roots map to the same set unless they are the same or inverses.
So, the image set of this map is half of the number of primitive roots, which is ϕ(p− 1)/2.

Since each set haS 3 quadratic nonresidues, hence there are at least

3 · ϕ(p− 1)

2
>
p− 1

2

quadratic nonresidues by the given hypothesis. However, this is a contradiction, and we are
done.
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8.7 Practice Problems

Problem 8.7.1. For a given prime p > 3, define S = {03, 13, 23, · · · (p − 1)3}. Then prove
that S is a complete residue class mod p if and only if p ≡ 2 (mod 3).

Problem 8.7.2 (Iran third round number theory exam 2015/3). Let p > 5 be a prime
number and A = {b1, b2, . . . , b p−1

2
} be the set of all quadratic residues modulo p, excluding

zero. Prove that there doesn’t exist any natural a, c satisfying (ac, p) = 1 such that set
B = {ab1 + c, ab2 + c, . . . , ab p−1

2
+ c} and set A are disjoint modulo p. Hints: 442

Problem 8.7.3 (Indian TST). Suppose that p is an odd prime and that A and B are two
different non-empty subsets of {1, 2, . . . , p− 1} for which

1. A ∪B = {1, 2, . . . , p− 1};

2. If a, b are both in A or both in B, then ab (mod p) ∈ A;

3. If a ∈ A, b ∈ B, then ab (mod p) ∈ B.

Find all such subsets A and B.

Problem 8.7.4. A prime p is called a Sophie-Germain prime if 2p + 1 is also a prime.
Show that if p ≡ 1 (mod 4), then 2 is a primitive root mod 2p+ 1. Hints: 96 228

Problem 8.7.5 (Iranian Third round Number theory exam 2015/5). p > 5 is a
prime number. Prove that one of the following numbers is in form of x2 + y2.

p+ 1, 2p+ 1, 3p+ 1, . . . , (p− 3)p+ 1.

Hints: 475 283

Problem 8.7.6 (IMO Shortlist 1991). Let p > 3 be a prime and let a, b, c be integers
with a 6= 0. Suppose that ax2 + bx + c is a perfect square for 2p− 1 consecutive integers x.
Prove that p divides b2 − 4ac. Hints: 393

Problem 8.7.7 (Vietnam TST 2005/5 Part a). Let p be a prime number of the form
4k + 1. Show that

p−1∑
i=1

(⌊
2i2

p

⌋
− 2

⌊
i2

p

⌋)
=
p− 1

2
.

Hints: 340

Problem 8.7.8 (RMM 2013/1). For a positive integer a, define a sequence of integers
x1, x2, . . . by letting x1 = a and xn+1 = 2xn + 1 for n ≥ 1. Let yn = 2xn − 1. Determine
the largest possible k such that, for some positive integer a, the numbers y1, . . . , yk are all
prime. Hints: 42 364 150
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Problem 8.7.9 (Romania TST 2008). Let a and b be positive integers such that 2a − 1
divides 3b − 1. Prove that either a = 1 or b is even. Hints: 17 33

Problem 8.7.10 (Gabriel Dospinescu). Prove that for any positive integer n, the number
23n + 1 has at least n prime divisors of the form 8k + 3. Hints: 282 68 54

Problem 8.7.11 (IMO 1996/4). The positive integers a and b are such that the numbers
15a + 16b and 16a − 15b are both squares of positive integers. What is the least possible
value that can be taken on by the smaller of these two squares? Hints: 160 466 142

Problem 8.7.12. Let p be a prime number of the form 4k + 1. Prove that

p−1
4∑
j=1

⌊√
jp
⌋

=
p2 − 1

12
.

Hints: 446 431 269

Problem 8.7.13 (AMM). Find all positive integers n such that 2n − 1 | 3n − 1. Hints: 165

65 Sol: pg. 299

Problem 8.7.14 (Taiwan 1997). Let n be a positive integer and let k = 22n + 1. Show

that k is a prime if and only if k divides 3
k−1
2 + 1. Hints: 352 118 174 Sol: pg. 299

Problem 8.7.15 (ELMO 2011/5). Let p > 13 be a prime of the form 2q + 1, where q is
prime. Find the number of ordered pairs of integers (m,n) such that 0 ≤ m < n < p−1 and

3m + (−12)m ≡ 3n + (−12)n (mod p).

Hints: 97 175 266 344 Sol: pg. 299

Problem 8.7.16 (Iran TST 2020/6). p is an odd prime number and n = p−1
2

. Find all
n-tuples (x1, x2, . . . , xn) ∈ Fnp such that

n∑
i=1

xi ≡
n∑
i=1

x2i ≡ · · · ≡
n∑
i=1

xni (mod p).

Hints: 212 333 263 208 232 Sol: pg. 300

Problem 8.7.17 (USA TST 2014/2). Let a1, a2, a3, . . . be a sequence of integers, with the
property that every consecutive group of ai’s averages to a perfect square. More precisely,
for every positive integers n and k, the quantity

an + an+1 + · · ·+ an+k−1
k

is always the square of an integer. Prove that the sequence must be constant (all ai are equal
to the same perfect square). Hints: 211 326 371 Sol: pg. 301
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Problem 8.7.18 (USOMO 2020/3). Denote by A the set of all integers a such that
1 ≤ a < p, and both a and 4− a are quadratic nonresidues. Calculate the remainder when
the product of the elements of A is divided by p. Hints: 239 171 35 139 Sol: pg. 302
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z A Proof of The Quadratic Reciprocity Law

There are over a 100 different proofs of the quadratic reciprocity law, and the most common
that you find in book uses a lemma of Gauss. We, however, present a different proof through
a completely different route. We first try to generalize our result on the number of solutions
to x2 + y2 ≡ 1 (mod p). Here’s the result:

Theorem 8.7.1 (V. Lebesgue). Let p > 2 be a prime and let n be an odd integer. The
number of solutions to the congruence x21 + · · ·+ x2n ≡ 1 (mod p) for xi ∈ Fp is

pn−1 +

(
(−1)

p−1
2 p

)n−1
2

.

Note that we have n odd in the hypothesis.

Proof. To prove it, we look more generally at the equation x21 + · · · + x2n = a and let the
number of solutions be N(a, n). Then we write this equation as

x21 + · · ·+ x2n−2 = a− (x2n−1 + x2n).

So,

N(a, n) =
∑

xn−1,xn∈Fp

N(a− x2n−1 − x2n, n− 2).

Now, by Theorem 8.5.1, we know that a − x2n−1 − x2n takes each residue different from a

p− (−1)
p−1
2 many times, and the residue a p+ (p− 1)(−1)

p−1
2 times. So

N(a, n) =

(
p− (−1)

p−1
2

)∑
b 6=a

N(b, n− 2) +

(
p+ (p− 1)(−1)

p−1
2

)
N(a, n− 2)

=

(
p− (−1)

p−1
2

) p−1∑
b=0

N(b, n− 2) + p(−1)
p−1
2 N(a, n− 2).

Now, it is easy to see that (why?)

p−1∑
b=0

N(b, n− 2) = pn−2.

Hence, we get

N(a, n) = pn−2
(
p− (−1)

p−1
2

)
+ p(−1)

p−1
2 N(a, n− 2).

Now, we have a recursion formula, and so we can just finish by induction.

Question 8.7.1. Where do we use the fact that n is odd?
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The recursion we obtained is the important result, and we can use it to find a formula for
n even as well. However, for our purposes n odd suffices. Now let’s try to prove the qudratic
reciprocity law using this.

Suppose we want the number of solutions to x21 + · · · + x2q ≡ 1 (mod p) for odd primes
p, q. By Lebesgue’s result, this is

N = pq−1 +

(
(−1)

p−1
2 p

) q−1
2

= pq−1 + (−1)
p−1
2
· q−1

2 p
q−1
2 ≡ 1 + (−1)

p−1
2
· q−1

2

(
p

q

)
(mod q).

Do some terms feel familiar? If we can show

N ≡ 1 +

(
q

p

)
(mod q), (8.3)

then we would get (
q

p

)
≡ (−1)

p−1
2
· q−1

2

(
p

q

)
(mod q).

Since both the sides are in {1,−1} and q > 2, hence their difference would be at most 2 which
would be divisible by q. So they must be equal, which is precisely the Quadratic Reciprocity
law!

So now we must only show Equation 8.3. The proof of this is combinatorial. Observe
that if (x1, x2, . . . , xq) is a solution, then so are (x2, x3, . . . , x1), . . . , (xq, x1, . . . , xq−1). So, we
can obtain groups of q solutions of this equation, obtained by permuting x1, . . . , xq cyclically.
Since q is a prime, the only possibility for two solutions in a group to be equal is to have
x1 = · · · = xq (think why). So, if M is the number of solutions to x1 = · · · = xq, then

N ≡M (mod q).

Now to find M, we only have to solve the equation qx2i ≡ 1 (mod p). This is the same as
(qxi)

2 ≡ q (mod p) which has

M = 1 +

(
q

p

)
solutions. And so, we are done!

Comment 8.7.1: Quadratic Residues are very interesting, and studying their proper-
ties we dive deep really fast. We define something known as the Gauss sum and study
its properties. Gauss sums give a very short proof of both Lebesgue’s result and the
quadratic reciprocity law. Manipulations involving these give fascinating results. For
instance, the following is Jacobi’s conjecture, proven by Dirichlet:

If p is a prime of the form 4k+3, then there are more quadratic residues in the first half.
This is the same as saying there are more quadratic residues in between 1, (p − 1)/2
than quadratic nonresidues.
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Comment 8.7.2 (Continued): When p = 4k + 1, then QRs are equally distributed
in both the halves, because for each quadratic residue a, we find −a to also be a
quadratic residue. However, for p = 4k + 3 there are more QRs in the first half. An
algebraic way of writing this is

p−1
2∑

k=1

(
k

p

)
> 0.

This is a beautiful result, with a non-elementary proof using something known as
Dirichlet’s L-function (although the proof can be derived using Gauss sums).
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Chapter 9

Constructions

Existence type problems are very common, not just in Number Theory, but all fields of
maths. When you are asked to show the existence of something, you might either explicitly
give a construction, or somehow show its existence implicitly, for instance a probabilistic
proof of existence.

Constructions don’t always occur as problems, often as ideas in other problems too,
especially where you have a lot of freedom with variables. Choosing the right variables to
work with is the main task in these. Hence, this chapter is valuable in all sorts of problems

In this chapter, we will focus on two main ideas:

1. Existence: Use methods to show the existence directly instead of explicitly writing
down the object. This would (could) involve the use Chinese Remainder Theorem,
Dirichlet’s Theorem and Thue’s Lemma1.

2. Hands-on Constructions: These would involve writing down the object manually
and showing it works. These problems belong more to the combinatorial family which
makes them hard, since there aren’t a lot of fixed techniques that can work. You have
to get your hands dirty on a lot of approaches and see which one works the best. You
might have to use some theorems (like the Chinese Remainder Theorem) to guarantee
existence, but the way in which you use it would require a construction type logic.

Just as an advice: Often problems of the form ”Do(es) there exist” are harder than
simple ”prove this” ones, because you don’t know the answer. Hence, you should rely on
your intuition, but still have an open heart to both possibilities. At times, there might be an
obscure construction, to which believing its existence is harder than actually constructing it.
Assuming that no construction exists in these problems can lead you to a death trap. Hence,
a good idea is to start constructing, see if what you tried fails, see if you can fix it. By this
approach you might even find a convincing reason as to why no construction is possible, and

1It can argued that these are actually hands-on construction methods, since you are explicitly setting up
congruence relations. However, it really depends on the problem, and these methods could be either. For
instance, in a problem asking you to show there exists a prime ≡ 2 (mod 7), the use of Dirichlet’s theorem
works as an existence type proof. However, in a problem in which you show p ≡ 2 (mod 7) satisfies the desired
condition and just use Dirichlet to guarantee its existence, the argument is a hands-down construction.

233
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hence this is safer than crossing out the possibility of a construction existing/not-existing
altogether.

9.1 Dirichlet’s Theorem

In this section, we will discuss a beautiful theorem due to Dirichlet. Let P denote the set of
odd primes, which is infinite. Pick a number, say 4. Then any prime in P is of the form 4n+1
or 4n+ 3. By symmetry, it would make sense if there are an equal number of primes of the
form 4n+1 and 4n+3. Turns out this is true, however ”symmetry” is not the right argument
(remember that primes don’t behave nicely and have no good patterns). In particular, the
number of primes of the form 4n + 1 is infinite, and the same holds for primes of the form
4n+ 3.

Suppose now we consider P modulo 6. Then clearly any prime is either 6n+ 1 or 6n+ 5
(why?). Again, primes, despite not having any pattern, are equally distributed in the sets
{6n+ 1} and {6n+ 5}. In particular, there are infinitely many primes of the form 6n+ 1.

In general, we have the following beautiful theorem:

Theorem 9.1.1 (Dirichlet’s Theorem). Let a, b be coprime integers. Then the arithmetic
progression {an+ b}n≥0 contains infinitely many primes.

Question 9.1.1. Why do a, b have to be coprime?

Comment 9.1.1: In fact, Dirichlet’s theorem is stronger than this. It says that
the primes are equally distributed over the ϕ(a) arithmetic progressions of the form
{an+ x} where x varies over the ϕ(a) integers less than a that are coprime to it. So,
the ”density” of primes in {an+ b} is

1

ϕ(a)
.

You can think of this by imagining prime numbers as points being distributed equally
over the ϕ(a) sets {an + x}, where x varies over positive integers coprime to a. You
can also think of this as the probability that a randomly chosen prime is of the form
an + b, i.e. ≡ b (mod a). For example, a randomly chosen prime has the probability
1/ϕ(4) = 1/2 of being of the form 4n+ 1.
Density is a formal term in Number Theory, and even though is pretty much what
you think it is, we won’t dwell much on that side of analytic number theory. For our
purposes, the fact that the number of primes are infinite in each AP is sufficient.

This theorem is amazing, since it not only says a prime p ≡ a (mod b) will exist, but also
that there will be infinitely many such primes! The proof of this theorem is way beyond the
scope of the book and uses something known as Dirichlet’s L-function, which is an extensive
topic for study in itself.



9.2. CHINESE REMAINDER THEOREM 235

This theorem is very useful. Let’s look at one simple application.

Example 9.1.1

Show that there are infinitely many positive numbers n that cannot be written as
3ab+ a+ b for any a, b ∈ N.

For instance, 10 = 3ab+ a+ b has no solution in positive integers (check this). We need
to show there are infinitely(!) many more.

One of the first things we try in these problems is factorization. So write n = 3ab+ a+ b
for some a, b, n. Trying to factor the right side doesn’t yield anything useful. However, if we
multiply both the sides by 3 and add 1 to both the sides (Simon’s trick) we get

n = 3ab+ a+ b⇐⇒ 3n+ 1 = 9ab+ 3a+ 3b+ 1 = (3a+ 1)(3b+ 1).

Nice! This tells us that 3n+1 is composite. So, if we want to find n such that n = 3ab+a+b
does not have a solution, one thing we can try is to keep 3n+ 1 a prime. For example, when
n = 10, 3n+ 1 = 31 and so 31 = (3a+ 1)(3b+ 1) will have no solution pair (a, b).

Now we just want infinitely many such n such that 3n + 1 is a prime. However, this
directly follows from Dirichlet’s Theorem!

9.2 Chinese Remainder Theorem

Suppose we want an x such that x ≡ 2 (mod 7). Then we can pick anything from the set
{. . . ,−5 , 2, 9, 16, . . . }. Suppose now we want an x such that{

x ≡ 2 (mod 7)

x ≡ 1 (mod 7)

Clearly, there is no solution to this system. Let’s look at something more interesting.{
x ≡ 2 (mod 7)

x ≡ 1 (mod 3)
(9.1)

Any x satisfying the first congruence lies in the set

A = {. . . ,−19,−12,−5, 2, 9, 16, 23, 30, 37, 44, 51 . . . }.

Any number satisfying the second congruence lies in the set

B = {. . . ,−8,−5,−2, 1, 4, 7, 10, 13, 16, 19, 23, 26, 29, 32, 37, 40, 43, . . . }.

Then a solution x to the two equations must be in A ∩B, which we can check is the set

A ∩B = {. . . ,−5, 16, 37, . . . }.
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If you look closely, you will realize this is an AP with common difference 21, which means it
is the set of integers x such that x ≡ 16 (mod 21). We can quickly check if our guess is true.
If x = 21k + 16, then x ≡ 16 ≡ 2 (mod 7) and x ≡ 16 ≡ 1 (mod 3). Hence, any number 16
modulo 21 satisfies Equation 9.1!

However, does any other integer satisfy Equation 9.1?

Question 9.2.1. Check (prove) that any other number does not satisfy the system in Equa-
tion 9.1 by taking an x with x 6≡ 16 (mod 21). So basically the pattern we observed is good
enough.

Let’s now look at a different system.{
x ≡ 1 (mod 3)

x ≡ 1 (mod 6)

Again, you can check that the solution set is:

{. . . ,−5,−2, 1, 4, 7, 10, 13, 16, 19, 22, . . . }∩{. . . ,−5, 1, 7, 13, 19, . . . } = {. . . ,−5, 1, 7, 13, 19, . . . }.

So in this case, the solution set is x ≡ 1 (mod 6). If we think about it now, it’s obvious why
this is true; if x = 6k + 1, then x is automatically 1 (mod 3) as 3 | 6.

One last example: {
x ≡ 1 (mod 6)

x ≡ 2 (mod 9)

Here, the set satisfying x ≡ 1 (mod 6) is

{. . . ,−5, 1, 7, 13, 19, . . . }.

The set satisfying x ≡ 2 (mod 9) is

{. . . ,−16,−7, 2, 11, 20, 29, . . . }.

Try as hard as you want, but you won’t find a common element. Why is this true?

If x satisfies both, then there exist k, ` such that 6k + 1 = x = 9` + 2. However, both
sides don’t match modulo 3.

So, we can our summarize our idea: the classes obtained for two numbers that have a
common factor are not completely independent of each other. However, if they are coprime,
we do sense an independence. This is the intuition behind the Chinese Remainder Theorem:

Theorem 9.2.1 (Chinese Remainder Theorem). Let a1, a2, . . . , an be integers, and b1, b2, . . . , bn
be pairwise coprime integers, i.e. gcd(bi, bj) = 1 for any i 6= j. Then the system of equations

x ≡ a1 (mod b1)

x ≡ a2 (mod b2)
...

x ≡ an (mod bn)

has a unique solution (mod b1b2 . . . bn).
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We developed the intuition for the case n = 2. The general case is quite similar, and the
proof is just by induction with the base case n = 2. I leave it as an exercise for the interested
readers.

Let’s see an example on how to find the x :

Example 9.2.1

Solve the system of linear congurences:{
x ≡ 3 (mod 5)

x ≡ 4 (mod 8)

To solve this, we first use the fact that there must exist k, ` such that x = 5k + 3
and x = 8` + 4. Equating them, we find 5k + 3 = 8` + 4, i.e. 5k = 8` + 1. Modulo 5,
this implies 3` + 1 ≡ 0 (mod 5), so ` ≡ −3−1 ≡ 3 (mod 5). So write ` = 5n + 3 to get
x = 8(5n+ 3) + 4 = 40n+ 28. Note that this satisfies both the congrunces.

Question 9.2.2. Where was the fact that gcd(8, 5) = 1 used?

This theorem is incredibly useful in constructing an x when we want it to satisfy many
properties. Cleverly picking these conditions can help solve some very challenging construc-
tion based problems.

Example 9.2.2

Show that for c ∈ Z and a prime p, the congruence xx ≡ c (mod p) has a solution.

We are working modulo p, so the exponents can be handled using Fermat’s Little Theo-
rem. In particular, since zp−1 ≡ 1 (mod p), hence the exponent cycles mod (p− 1). We use
this to our advantage.

Suppose we set the exponent to be 1, then xx = x = 1. if c = 1 this is enough. However,
if we set the x somehow such that xx ≡ x, then we can set x ≡ c mod p and be done. This
is how we do it: consider the system{

x ≡ 1 (mod p− 1)

x ≡ c (mod p)

This has a solution by CRT as gcd(p, p− 1) = 1. Then this works! Here’s a properly written
proof:

Proof. Consider the system {
x ≡ 1 (mod p− 1)

x ≡ c (mod p)

This has a solution by CRT as gcd(p, p− 1) = 1. We claim that any such x works. Indeed,
we have

xx ≡ xx (mod p−1) ≡ x1 ≡ c (mod p),
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where the first step follows by Fermat’s Little Theorem. Hence, our claim is true and we are
done.

Comment 9.2.1: If you try and follow the main theme of the book here, which is to
look at the larger picture, you would write all the values of xx mod p. You can ease
your work using Fermat’s Little Theorem to get xp−1 ≡ x0. So the set of values of xx

looks like:
00 11 . . . (p− 1)0

p1 (p+ 1)2 . . . (2p− 1)p−2

(2p)0 (2p+ 1)1 . . . (3p− 1)p−3

(3p)p−2 (3p+ 1)0 . . . (4p− 1)p−4

...
...

. . .
...

You observe that the bases and the powers move along different periods, and differ
just by 1. Also, the numbers with exponent 1 in the list are p1, (2p+ 1)1, (3p+ 2)1, . . .
Note that the bases cover all the residues mod p so eventually we will also get c1 ≡ c
(mod p), which is what we want. So we basically found a new proof to this problem!

This argument is perfect. However, the beauty of the Chinese Remainder Theorem
is that we don’t have to explicitly make this table; the theorem contains it without
having to explicitly write it down!

The best way to use CRT in a lot of construction type problems is the following:

Add as many conditions as you want, and combine them using CRT.

9.3 Thue’s Lemma

Thue’s lemma is an amazing result in modular arithmetic, and is very useful in constructions
especially related to squares. Let me first give the statement, and then discuss it further:

Lemma 9.3.1 (Thue’s Lemma). Let n > 1 be an integer and a be an integer coprime to n.
Then there exist integers x, y with 0 < |x|, |y| <

√
n so that

ay ≡ x (mod n).

Basically, we have a ≡ x
y

(mod n), where x, y are ”small”. Let’s prove this first. It’s a
good exercise so be sure to try it yourself first before reading the proof:

Proof. Let r = b
√
nc , which is the unique integer satisfying r2 ≤ n < (r+1)2. Now, consider

number of the form ay − x with 0 ≤ x, y ≤ r. There are (r + 1)2 > n such numbers, so two
would be the same by the Pigeonhole Principle. So, for some (x1, y1), (x2, y2), we have

ay1 − x1 ≡ ay2 − x2 ⇐⇒ (y1 − y2)a ≡ (x1 − x2) (mod n).

So, if we set y = y1 − y2 and x = x1 − x2, we get ay ≡ x (mod n), which is what we need.
We just need to show 0 < |x|, |y| < r. The right inequality is clear. However, we could have
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x = 0. If x = 0, then ax ≡ y implies y ≡ 0. This means the pairs (x1, y1) and (x2, y2) were
the same, which is not true. Hence we have 0 < |x|, |y| < r and the show’s over.

Let’s look at some famous applications

9.3.1 Fermat’s Two Square Theorem

Let’s investigate a question raised by Fermat: which primes can be expresses as sums of
squares? Let’s test (the ones left blank indicate no solution to p = x2 + y2)

p x2 + y2 p x2 + y2 p x2 + y2

2 12 + 12 23 59
3 29 52 + 22 61 62 + 52

5 21 + 12 31 67
7 37 62 + 12 71
11 41 52 + 42 73 82 + 32

13 32 + 22 43 79
17 42 + 12 47 83
19 53 72 + 22 89 82 + 52

At this point, do you observe any pattern? Test your pattern with more values.

If you guessed precisely the primes of the form p ≡ 1 (mod 4) (apart from 2) then you
are correct. This observation contains two things, the first being the fact that no prime
p ≡ 3 (mod 4) can be written as x2 + y2. The second fact is that any prime p ≡ 1 (mod 4)
can be written as x2 + y2. This is Fermat’s two square theorem2

Theorem 9.3.1 (Fermat’s Two Square Theorem). Let p be an odd prime. Then there exist
integers x, y such that p = x2 + y2 if and only if p ≡ 1 (mod 4).

Looking at the x2 + y2 appearing, you should think of Fermat’s Christmas Theorem.
According to it, there exists x such that p | x2 + 1 if and only if p ≡ 1 (mod 4). Interestingly
enough, the condition here is the same too! Clearly, Fermat’s Christmas theorem implies the
first part of our observation above (why?). However, the second part of our observation above
is actually stronger than Fermat’s Christmas Theorem. So we need something stronger.

The key idea is to use Thue’s Lemma as follows: Suppose we have some a coprime to
p. Then we can find 0 < |x|, |y| < √p with ay ≡ x (mod p). Then p | x2 − a2y2. So, if we
pick a such that a2 ≡ −1 (mod p) using Fermat’s Christmas Theorem, then p | x2 + y2. The
amazing part now is that 0 < x2 + y2 < 2p (why?). However, the only multiple of p between
0, 2p is p, so we must have p = x2 + y2 and we are done! By a similar method, you can try
the following problem

Problem 9.3.1. Let n ∈ {−1,−2,−3}. If n is a quadratic residue modulo a prime p, then
there are integers a, b such that p = a2 − nb2.

2This is the real ”Fermat’s Christmas Theorem”, not the one we did earlier (in fact this is a generalization
of that)
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At this point, we can try and answer the more general question: which numbers can be
expressed as sum of squares of two integers? Call a number n good if it can be written as a
sum of squares. Let’s investigate properties of good numbers.

Comment 9.3.1: Consider the circle centered at the origin with radius
√
n, where

n ∈ N. Then there is a lattice point, i.e. a point with integer coordinates, on the
circumference if n is good. Hence, this question of ours has geometric significance.

More than this, there’s another useful appearance. A complex number x+ iy is called
a Gaussian Integer if x, y ∈ Z. Thus, the problem of asking which integer values can
|z| take for a gaussian integer z is the same as asking which integers are good.

Suppose n = x2 +y2, and n has one prime factor p ≡ 3 (mod 4). Then p | x2 +y2 implies
p | x, y by Fermat’s Christmas Theorem (again). So, p2 | n.

Now, also note that p | x, y implies x = px∗, y = py∗. So n = p2((x∗)2 + (y∗)2). Hence, if
p3 | n, then p | (x∗)2 + (y∗)2, again implying p | x∗, y∗. So, p4 | n. In this way, we can show
that νp(n) must be even. This is a necessary condition. You can check that this approach
fails if p ≡ 1 (mod 4), in which case these primes cause no issue. So is νp(n) even for p ≡ 3
(mod 4) primes a sufficient condition?

Question 9.3.1. Show that if n = x2 + y2 is good, then so is 2n by expressing it as the sum
of two squares. In other words we can have any power of 2 and it won’t affect n’s ”goodness”.

Suppose m,n are good. Then what about their product mn? If we can show mn will also
be good, then we our condition above would indeed by sufficient (since every prime p ≡ 1
(mod 4) and p = 2 are good).



9.3. THUE’S LEMMA 241

So we want to express (a2 + b2)(c2 + d2) as a sum of squares. An elegant approach is to
write z = a+ ib, w = c+ id where i =

√
−1. Then

(a2 + b2)(c2 + d2) = |z|2|w|2 = |zw|2 = (ac− bd)2 + (ad+ bc)2.

Hence, if m,n are good, then so is their product. So now using Fermat’s two square theorem,
we know that every prime p ≡ 1 (mod 4) is good. Further, 2 is clearly good. So any
number who prime factors are only 2 or ≡ 1 (mod 4). Further, if n = x2 + y2 is good, then
p2n = (px)2 + (py)2 is good. So if we have an even power of a prime ≡ 3 (mod 4), we don’t
lose the ”goodness”. Hence, we obtain

Lemma 9.3.2. A number n can be expressed as a sum of squares of integers if and only if
for any prime p ≡ 3 (mod 4), we have νp(n) is even (possibly 0).

Comment 9.3.2 (Some extra information on Brahmagupta’s Identity): The
identity

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2 = (ac− bd)2 + (ad+ bc)2.

is called Brahmagupta’s Identity. It can be derived by directly expanding both the
LHS and RHS, however the complex numbers’ approach is an elegant one.

This identity can be used to prove the Cauchy-Schwarz inequality for the 2 variable
case. Also, it can be used to generate quadruples (x, y, z, w) with x2 + y2 = z2 + w2.
For instance, this is done by first picking a Pythagorean triplet (k, `,m), and then any
x, y. They are then combined using

(mx)2 + (my)2 = m2(x2 + y2) = (k2 + `2)(x2 + y2) = (kx− y`)2 + (ky + `x)2.

So (mx,my, kx− y`, ky + `x) is a working quadruple.

Let’s look at another amazing application of Thue’s lemma:

Example 9.3.1

Let p be a prime. There exist integers a, b such that p = a2 + ab + b2 if and only if
p = 3 or p ≡ 1 (mod 3).

Firslty, we prove that if p ≡ 2 (mod 3), then we can’t find such a, b (which is the non-
constructive and easy part of the problem). Suppose on the contrary that p = a2 + ab+ b2.
A better way of writing this is 4p = 4(a2 + ab+ b2) = (2a+ b)2 + 3b2. Then

(2a+ b)2 ≡ −3b2 (mod p).

Hence, −3 is a quadratic residue modulo p unless p | b. However, using quadratic reciprocity,

−1 =

(
−3

p

)(p
3

)
=

(
−1

p

)
· (−1)

p−1
2
· 3−1

2 = 1,



242 CHAPTER 9. CONSTRUCTIONS

a contradiction. So p | b, meaning p | a too. But then p2 | a2 + ab + b2 = p, which is
impossible.

Now comes the interesting part. Ignore p = 3, since (1, 1) works then. Now note that the
above method can be modified to find an x for which p | x2 +x+1, when p ≡ 1 (mod 3) (try
it). Then, using Thue’s lemma, find a, b such that ax ≡ b (mod p) with 0 < |a|, |b| < √p.
Then

a2 + ab+ b2 ≡ a2 + a(ax) + (ax)2

≡ a2(x2 + x+ 1) ≡ 0 (mod p).

Now, p | a2 + ab+ b2 and 0 < a2 + ab+ b2 < 3p. Hence, a2 + ab+ b2 ∈ {p, 2p}. We are close,
but not there. What if a2 + ab + b2 = 2p? Well, then both (a, b) must be even (check this).
Hence, 4 | a2 + ab + b2 = 2p, which is impossible. So this possibility is rejected altogether.
Hence, a2 + ab+ b2 = p, and we are through.

9.4 Hands-On Constructions

Upto this point we have talked of methods that are more existence type, in which you know
the number exists using CRT, or you found a prime using Dirichlet. This section is dedicated
to problems where we manually and explicitly construct objects. (Also, just as a note, this
section would be more about small tricks rather than just a collection of examples.)

Solutions of this type to construction problems are often ”magical” and out of the blue,
and roughly take the form ”take P (x) = 24x3− 4xy2 + 1. This works now deal with it”. For
instance, here is a prime example:

Example 9.4.1 (Kvant)

Is there an infinite set of positive integers such that no matter how we choose some
elements of this set, their sum is not a perfect power?

Proof. The answer is yes. Consider the set A = {2n · 3n+1 : n ≥ 1}. If we add some elements
from this, it would be of the form 2x3x+1y for some y coprime to 6. This clearly isn’t a perfect
power.

This was not an easy problem by any standard. The proof, on the other hand, is a one
line solution with no back story given, which probably involved pages and pages of rough
work and trials.

In general, what makes these problems hard is their combinatorial nature, which means
you will have to try a lot of things and there are no fixed approaches you could try. In this
section, I would try to give some small ideas which could work at times, but more so focus
on examples, including slight motivations for them (because each solution takes a lot of trial
and error and there is no one fixed motivation that can dig a path through). I will try and
give some strategies and hopefully you would be able to approach such problems better by
the end of this chapter.
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9.4.1 Restrictions

The general idea is to experiment with possibilities. At times, you can try to add restrictions
and see if they work. For instance, if you want to find odd working n, you only look at which
primes values of n work. If you can find a prime that works, you are good to go. Otherwise
go back a step and try something else. It’s always a leap of faith. The key part is to ask the
question: ”why did my restriction fail?” If you can answer it, you should be able to mend it.

Enough of general talks, let’s look at some examples now. The first one shows how even
the slightest pattern is worth considering:

Example 9.4.2

1. Find infinitely many pairs of integers a and b with 1 < a < b, so that ab exactly
divides a2 + b2 − 1.

2. With a and b as above, what are the possible values of

a2 + b2 − 1

ab
?

With no idea on how to start with (2), we start with (1). Naturally, we first set a = 2 to
get 3b|b2 − 8. It is clear that b = 3 works.

At this point, we ask: does every solution of the form (a, a+ 1) work? Substitute it, and
we get

E =
a2 + b2 − 1

ab
=
a2 + a2 + 2a+ (1− 1)

a(a+ 1)
=

2a(a+ 1)

a(a+ 1)
= 2

That’s how some wishful thinking can come in handy!

For the part (2), we guess that every natural number is possible, for which all that
was needed was to make a (clever) construction. It’s logical to try to extend the above
construction to (a, b) = (a, a + k). If you try this, you would realize it doesn’t work. What
is it that is not working here, but worked for k = 1?

After some thought, we realize that it is the 1 that gets canceled by the (annoying) −1!
So we try (a, b) = (a, ka− 1) instead. We then get

E =
a2 + (ka− 1)2 − 1

a(ka− 1)
=

(k2 + 1)a− 2k

ka− 1
= k +

a− k
ka− 1

So we want ka− 1|a− k. The simplest thing that we can do is to make a− k = 0 by setting
a = k. That’s it, it works! So we have the working construction (a, b) = (k, k2 − 1) showing
every integer k is possible.
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Example 9.4.3 (IMO Shortlist 2014 N4)

Let n > 1 be an integer. Prove that there are infinitely many integers k ≥ 1 such that⌊
nk

k

⌋
is odd.

If n is odd, then this isn’t very hard. Just take k = nt for any t. This works.

The interesting part is n even. Suppose n = 2. On experimenting k = 1, 2, 3, . . . , 12,
we find that 12 is the smallest integer for k that works. Now 12 = 22 × 3. This motivates
k = n2(n+ 1). Does it work?⌊

nn
2(n+1)

n2(n+ 1)

⌋
=

⌊
nn

2(n+1)−2

n+ 1

⌋
=
nn

2(n+1)−2 − 1

n+ 1
,

which is odd since the numerator and denominator are both odd (here, we used the obser-
vation that nn

2(n+1)−2 ≡ 1 (mod n+ 1)).

So, for each even n, we have working number. How do we get infinitely many? Well, in
our proof we used the fact that nn

2(n+1)−2 ≡ 1 (mod n+ 1) since n2(n+ 1)− 2 is even. This
remains true if we replace 2 by any even number. So, if we try k = n2t(n+ 1) for any t, we
find ⌊

nn
2t(n+1)

n2t(n+ 1)

⌋
=

⌊
nn

2t(n+1)−2t

n+ 1

⌋
=
nn

2t(n+1)−2t − 1

n+ 1
,

which is still odd. So, for even n, we have found the construction k = n2t(n+ 1).

Example 9.4.4 (APMO 1997)

Find a number n between 100 and 1997 such that n | 2n + 2.

This expression should remind you of Example 5.8.2. What the result there tells us is
that n cannot be odd. So we only try to find even n. Suppose we restrict it to n = 2p. But
then p | 22p−1 + 1, which fails because of Fermat’s Little Theorem.

Suppose we restrict our attention to n = 2pq. So we want pq | 22pq−1 + 1, which means
−2 is a quadratic residue mod p, q. Further Fermat’s Little Theorem gives us

pq | 2pq − 1 ⇐⇒ p | 22q−1 − 1 and q | 22p−1 − 1.

We have enough restrictions on our search now, so we manually start to find values. Since we
want −2 to be a quadratic residue, we must have q ≡ {1, 3} (mod 8). Now 3 gives p | 31, so
p = 31. But then 31 ≡ 7 (mod 8). So take q = 11. It shows p | 221−1 = (27+1)(214−27+1).
So if p | 129, then p = 43 since p 6= 3. This works, since 11 | 22(43)−1 − 1 = 285 − 1 (why?).
Hence n = 2 · 11 · 43 works.
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9.4.2 Wishful Thinking

Yes, wishful thinking is very common in all kinds of problems. It is highly involved in any
problem, and mostly used more than once in a challenging one. However, in this section
I present some problems which are short and cute, depicting purely the idea of wishful
thinking.

Example 9.4.5

Prove that for any n, there exist n consecutive composite numbers.

This shows how prime numbers are so sparsely placed. The key idea is to think factorials,
since they basically contain n consecutive numbers. So, n! + i would have i as a common
factor, which would mean this can’t be prime. So if we pick n! + 1, n! + 2, . . . , n! + n, then
we are done... or are we? Well, n! + 1 could be a prime, we can’t guarantee anything here.
How do we fix this? We start from n! + 2. However, this gives us n− 1 consecutive numbers.
To get n consecutive numbers, we pick (n+ 1)! + 2, (n+ 1)! + 3, . . . , (n+ 1)! + (n+ 1), and
this works.

Example 9.4.6 (RMM 2015/1)

Does there exist an infinite sequence of positive integers a1, a2, a3, . . . such that am
and an are coprime if and only if |m− n| = 1?

The key idea here is to think in terms of numbers in terms of its prime factors, since then
we can easily handle the coprime condition as having no common numbers. So, looking at
numbers as multisets (chapter 1 anyone?), we want sets A1, A2, . . . such that Am ∩ An = φ
if and only if m,n are consecutive.

Suppose we set A1 = {2}. Then we can set A2 = {3}. Then A3 must contains A, and so
must be A4. Hence both contain {2}, and so they can’t be disjoint. So we start with two
elements. In fact, we try and keep 2 ”new” elements, i.e. elements which haven’t occurred
before).

So set A1 = {2, 3}. Then set A2 = {5, 7}. Write A3 = {2, 11, 13}, and1 A4 = {3, 5, 17, 19}.
Now for A5, we choose 2 from A1, and we are lucky since 2 6∈ A4. Similarly, we choose 7
from A2 since 7 6∈ A4. So we set A5 = {2, 7, 11, 23, 29}. And this idea of ours works, we
alternatively add elements of A1 into sets after A3, and similarly alternatively add elements
from A2 into sets beyond A4. We can express this in the following table:

Ai {2, 3} {5, 7} {11, 13} {17, 19} {23, 29} {31, 37} {41, 43} {47, 53}
From A1 2 3 2 3 2 3
From A2 5 7 5 7 5
From A3 11 13 11 13 . . .
From A4 17 19 17
From A5 23 29
From A6 31
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Then let the sets Si to be Ai ∪ the ith column works, for instance S1 = {2, 3} and S4 =
{17, 19, 3, 5}.

9.4.3 Pell’s Equations

Recall the

a2 − db2 = 1

is the Pell’s equation in (a, b) for a given square-free d. We know that this has infinitely
many solutions. Occasionally, this fact is useful in constructions. For instance, let’s look at
the following problems:

Example 9.4.7

Find infinitely many triples (a, b, c) of positive integers such that a, b, c are in arithmetic
progression and such that ab+ 1, bc+ 1, and ca+ 1 are perfect squares.

Firstly, to utilize the AP condition, we make the standard substitution (a, b, c) 7→ (a −
v, a, a+ v), an then we have that 

a2 − av + 1 = A2

a2 + av + 1 = B2

a2 − v2 + 1 = C2

Now, remember the trick of multiplying a2 + ab+ b2 by 4 to complete the square? We apply
something similar, but a slight variation. Since we have to choose a, we set a = 2u for some
u. Then some wishful thinking gives

4u2 − 2uv + 1 = (u− v)2 + 3u2 − v2 + 1
4u2 + 2uv + 1 = (u+ v)2 + 3u2 − v2 + 1
4u2 − v2 + 1 = u2 + 3u2 − v2 + 1

where motivated by the 2uv, we wrote the first expression in the form (u − v)2 + · · · and
similarly for the second one, and seeing carefully, we find that the annoying (common)
component in the first 2 expressions also appears in the last expression! So, we act wishfully
and try to set 3u2 − v2 + 1 = 0. If we can have this for infinitely many (u, v), we are done.
However, this is precisely Pell’s equation!

So, our construction is to pick any (u, v) with v2 − 3u2 = 1, and then set (a, b, c) =
(2u− v, 2u, 2u+ v). These can be checked to work manually too.

Example 9.4.8

Show that there exist infinitely many positive integers n such that n2 + 1 divides n!.

Here’s the key idea: if we can select n2 + 1 = dm2 and ensure dm2 | n!, we are done.
The equation we seek is n2 − dm2 = −1, which is negative Pell’s equation. Recall the this
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has infinitely many solutions if we can find one solution. So, we choose d selectively. Since
22 − 5(1)2 = −1, hence d = 5 is good.

Now, if we want 5m2 | n!, we first try to prove n > 5m2, since then this would be clear.
However, this is not true (why?). We would be done however if two multiples of m are less
than n, since then m2 | n!, and we can ensure n > 5 (how?). Clearly, m, 2m <

√
5m =√

n2 + 1 < n+ 1 implies m, 2m ≤ n, and so our construction works.

Example 9.4.9

Prove that there exists infinitely many positive integers n such that n2 + 1 has two
divisors whose difference is n.

Suppose one divisor is a and the other is n + a. The simplest thing for us would be
a(n + a) = n2 + 1, i.e. n2 + 1 = a2 + an. We try to complete the square now, for which we
multiply both the sides by 4. Then this becomes (2a+n)2− 5n2 = 4. This is Pell’s equation!
However, this is not so easy to solve because of the 4 instead of 1. But if we set n = 2k for
some k, then this becomes (a+k)2−5k2 = 1. This is Pell’s equation and hence has infinitely
many solutions, and hence works.

9.4.4 Fermat’s Little Theorem

Fermat’s Little Theorem is very useful in polynomial constructions. There are two particular
uses I would talk about:

1. Every number x ∈ Fp is a root of the polynomial xp − x.

2. xp−1 ≡ 1 (mod p) iff p - x.

The second one can be used to set up ”indicator variables”. For instance, let’s try to prove
the following two results on polynomials in Fp[X] (the names are made-up)

Example 9.4.10 (Degree Reduction)

If f ∈ Z[X] is a polynomial so that deg f > p, where p is a prime, then either

• Every integer is a solution of p | f(x); or

• There exists a monic polynomial g ∈ Z[X] with deg g < p and the roots of
p | g(x) are the same as that of p | f(x).

The key idea is to notice that every integer is a root of xp−x in Fp. So, we find polynomial
q, r ∈ Fp[X] so that f(x) = (xp − x)q(x) + r(x). If r is identically zero (recall it’s coefficient
are in Fp), then p | f(x) for all x.

Otherwise, we find that r(x) is also zero whenever f(x) is 0 modulo p. This works, except
it might not be monic. So write bxm to be the leading coefficient of r with b 6= 0. Then
consider g ∈ Fp[X] that satisfies

g(x) = b−1r(x)
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This works, and so we are done.

Example 9.4.11 (Functions to small polynomials)

Let h : Fp → Fp be a function. Then there exists a polynomial f with deg f ≤ p − 1
such that h(x) ≡ f(x) (mod p) for all x ∈ Fp.

The proof is constructive in nature. We define the indicator function εa(x) : Fp → {0, 1}
such that εa(x) = 1 if and only if x ≡ a (mod p), for some a. Then defining f(x) =
h(0)ε0(x) + h(1)ε1(x) + · · ·+ h(p− 1)εp−1(x) works.

So if we find an indicator function which is a polynomial, then we are done. The following
function

εa(x) = 1− (x− a)p−1

works.
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9.5 Example Problems

This section contains many example problems, which serve as a finale. The problems here
meander through many ideas discussed in this chapter, and hence are quite illustrative.

Example 9.5.1

Let n be a positive integer. Prove that the following two statements are equivalent.

1. n is not divisible by 4

2. There exist a, b ∈ Z such that a2 + b2 + 1 is divisible by n.

We first do the easy direction, which is n | a2 + b2 + 1 implies 4 - n. if 4 did divide n,
then we would get a2 + b2 ≡ −1 (mod 4). I will leave it upto you to show this is not possible
(hint: what values can x2 (mod 4) take?).

Now comes the interesting part: showing that if 4 - n, then there exist a, b such that
n | a2 + b2 + 1. Looking at the ”a2 + b2”, we think of Fermat’s two square theorem. If p ≡ 1
(mod 4) is a prime, then there would exist a, b such that p = a2 + b2. So we would want
n | p + 1. Now comes the interesting part, since gcd(n, 4) = 1, hence the following system
would have a solution: {

p ≡ 1 (mod 4)
p ≡ −1 (mod n)

The above system would have a solution of the form p ≡ (•) (mod 4n). Such a p would
satisfy both our conditions. However, how do we ensure we can find a prime p satisfying?
Yes, by using Dirichlet’s theorem.

Next we do a problem which can be done by other methods, especially non-constructive
(which are more natural solutions). However, a constructive solution is quite fascinating so
it would be a shame to not include it. The key idea is again to be greedy and keep on adding
as many conditions as needed, and use CRT to combine them.

Example 9.5.2 (All-Russian Mathematics Olympiad 2018 Grade 10/6)

Let a and b be given positive integers. Prove that there are infinitely many positive
integers n such that nb + 1 doesn’t divide an + 1.

We use the simplest idea for construction: find a prime p dividing nb + 1 that doesn’t
divide an + 1. So we want to construct an n such that p | nb + 1, i.e. nb ≡ −1 (mod p). This
can be done if we find an n such that ordp(n) = 2b. How do we do this though?

Here’s the idea: use a primitive root. They are our best tool to control orders, so why

not. So we can let n ≡ g
p−1
2b and that would work... if p−1

2b
is an integer. So we would want

2b | p− 1. Add that to the list of conditions we want.
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Next, we want p - an + 1. For this, we can pick p − 1 | n so that an ≡ 1 (mod p) by
Fermat’s little theorem. So we have the system:{

n ≡ z (mod p)
n ≡ 0 (mod p− 1)

We pick such a n. What about p? We want a p such that p ≡ 1 (mod 2b). And of course, we
can choose any of the infinitely many primes satisfying this (by Dirichlet). So we are done.

Next, we take a look at a beautiful problem. Even though the statement might seem
weird, it is quite intriguing. The solution is also purely wishful thinking, which makes you
like the problem even more after reading the solution.

Example 9.5.3 (USAMTS 2017-18 Round 3 P4)

A positive integer is called uphill if the digits in its decimal representation form an
increasing sequence from left to right. That is, a number a1a2 . . . an is uphill if ai ≤ ai+1

for all i. For example, 123 and 114 are both uphill. Suppose a polynomial P (x) with
rational coefficients takes on an integer value for each uphill positive integer x. Is it
necessarily true that P (x) takes on an integer value for each integer x?

If the answer is no, then we must show that there exists a polynomial P (x) ∈ Q[X],
either indirectly or explicitly, such that P sends uphill integers to integers, but some non-
uphill integers to non-integers. If the answer is yes, then we would need to somehow show
uphill numbers are strong enough to define P over all integers. It is not too hard to see that
proving the latter would be much harder, so we first try to see if no is a possibility.

The first thing we try is to find a good way to think about uphill numbers. After some
thought we can find that 123 = 111 + 11 + 1, 1245 = 1111 + 111 + 11 + 11 + 1. So, if we
define b1 = 1, b2 = 11, b3 = 111, . . . , then each uphill number can be expressed as a sum of
bi. A key observation here is that each uphill number is the sum of at most 9 bi because each
digit is atmost 9.

Now, the bi motivate us to think modulo 11. Clearly, bi ≡ 0 (mod 11) if i is even and
bi ≡ 1 (mod 11) if i is odd. So any uphill number is at most 9 modulo 11. Hence, if x ≡ 10
(mod 11), then x cannot be an uphill integer. So we have found that uphill numbers belong
to a class of numbers (numbers which are at most 9 mod 11), and this class is much easier
to deal with. So, if we can construct P ∈ Q[X] such that P (x) ∈ Z iff x 6≡ 10 (mod 11) for
an integer x, then we may celebrate.

We are now done with the hard part, and is just like Example 9.4.11. Note that x10 ≡ 1
(mod 11) iff x 6≡ 0 (mod 11) by Fermat’s Little Theorem. So, the polynomial

P (x) =
(x− 10)10 − 1

11

works.

I would like to conclude by sharing a difficult problem given to me by my friend Samuel
Goodman. The solution I present here was also communicated to me by him.
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Example 9.5.4

Let p be a prime that is 1 modulo 4. Let x denote the number of non-quadratic residues
less than or equal to

√
p, modulo p. Then

|2x−√p| ≤
√
p+ 1

2
.

Comment 9.5.1: In the chapter of quadratic residues, we showed that the smallest
quadratic non-residue is less than

√
p, i.e. we showed x > 0. Here, we are asked to

prove the much stronger result that

1

2

(
√
p−

√
p+ 1

2

)
≤ x ≤ 1

2

(
√
p+

√
p+ 1

2

)
.

The task of showing x > 0 was in itself a good challenge, hence you can expect this
to be a delight too.

Here’s the beautiful proof:

Proof. There are (p−1)/2 quadratic non-residues. Select any one, say r. Then, using Thue’s
lemma, we find 0 < |a|, |b| < √p such that ar ≡ b (mod p). Call the pair (a, b) good. Now,
the key observation is that exactly one of a, b must be a non-quadratic residue, and the other
is a residue.

Now, p ≡ 1 (mod 4) implies −1 is a quadratic residue. So if (a, b) is a good pair, so are
(−a, b), (a,−b) and (−a,−b) (note the condition for Thue’s lemma involves |a|, |b| < √p not
just a, b). At least one of these has both its elements less than

√
p. Call such a pair special.

Noting that no two good pairs can be equal (why?), we conclude that there are at least
1
4

(
p−1
2

)
= p−1

8
special pairs.

The final trick is to consider all ordered pairs (k, `) with 0 < k, ` <
√
p and exactly one

of k, ` is a quadratic residue, the other being a quadratic non-residue. Clearly, there are
x(
√
p− x) such pairs. However, since every special pair belongs to this category, hence

x(
√
p− x) ≥ p− 1

8
.

This can be solved to get the desired bound.
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9.6 Practice Problems

Problem 9.6.1. The integers a and b have the property that for every nonnegative integer
n the number of 2na+ b is the square of an integer. Show that a = 0. Hints: 100

Problem 9.6.2 (USAMO 2011/4). Consider the assertion that for each positive integer
n ≥ 2, the remainder upon dividing 22n by 2n− 1 is a power of 4. Either prove the assertion
or find (with proof) a counterexample. Hints: 221 444 252

Problem 9.6.3 (USAMO 2017/1). Prove that there are infinitely many distinct pairs
(a, b) of relatively prime integers a > 1 and b > 1 such that ab + ba is divisible by a + b.
Hints: 327 230

Problem 9.6.4 (IMO 1989/5). Prove that for each positive integer n there exist n con-
secutive positive integers none of which is an integral power of a prime number. Hints: 181

87 372

Problem 9.6.5 (USA TSTST 2018 Problem 4). For an integer n > 0, denote by F(n)
the set of integers m > 0 for which the polynomial p(x) = x2 +mx+ n has an integer root.

1. Let S denote the set of integers n > 0 for which F(n) contains two consecutive integers.
Show that S is infinite but ∑

n∈S

1

n
≤ 1.

2. Prove that there are infinitely many positive integers n such that F(n) contains three
consecutive integers.

Hints: 394 71 479

Problem 9.6.6 (USAJMO 2016/2). Prove that there exists a positive integer n < 106

such that 5n has six consecutive zeros in its decimal representation. Hints: 406 135 105

Problem 9.6.7 (AoPS Mock Olympiad ”SORY” P23). Determine whether there exists
an infinite set S of positive integers such that for every real number t ∈ (0, 1

2
), we have

|x−my| > ty

for every pair of different elements x, y of S and every positive integer m. Hints: 77 18

Problem 9.6.8 (RMM 2011/1). Prove that there exist two functions f, g : R → R, such
that f ◦ g is strictly decreasing and g ◦ f is strictly increasing. Hints: 294 240 45 483

Problem 9.6.9. Prove that the equation a2+b2 = c2+3 has infinitely many integer solutions
(a, b, c). Hints: 254 330 15

3See [8]
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Problem 9.6.10 (APMO 2009/4). Prove that for any positive integer k, there exists an
arithmetic sequence

a1
b1
,
a2
b2
,
a3
b3
, . . . ,

ak
bk

of rational numbers, where ai, bi are relatively prime positive integers for each i = 1, 2, . . . , k
such that the positive integers a1, b1, a2, b2, . . . , ak, bk are all distinct. Hints: 94 227 184 Sol:

pg. 302

Problem 9.6.11 (Bulgarian Olympiad). Let f ∈ Z[X] be a non-constant polynomial
and let n, k be positive integers. Prove that there exists a positive integer a such that each
of the numbers f(a), f(a+ 1), . . . , f(a+ n− 1) has at least k distinct prime divisors. Hints:

255 299

Problem 9.6.12 (China TST 2006 Day 6/2). Prove that for any given positive integer
n and m, there is always a positive integer k so that 2k − n has at least m different prime
divisors. Hints: 366 416 353 138

Problem 9.6.13. Prove that if a number is a quadratic residue modulo all but finitely many
primes, then it is a square. Hints: 450 40 Sol: pg. 303

Problem 9.6.14 (USAMO 2008/1). Prove that for each positive integer n, there are pair-
wise relatively prime integers k0, k1, . . . , kn, all strictly greater than 1, such that k0k1 . . . kn−1
is the product of two consecutive integers. Hints: 132 262 234

Problem 9.6.15 (IMO Shortlist 2005 N6). Let a, b be positive integers such that bn +n
is a multiple of an +n for all positive integers n. Prove that a = b. Hints: 154 425 316 Sol: pg.

303

Problem 9.6.16 (EGMO 2018/6).

1. Prove that for every real number t such that 0 < t < 1
2

there exists a positive integer
n with the following property: for every set S of n positive integers there exist two
different elements x and y of S, and a non-negative integer m (i.e. m ≥ 0), such that

|x−my| ≤ ty.

2. Determine whether for every real number t such that 0 < t < 1
2

there exists an infinite
set S of positive integers such that

|x−my| > ty

for every pair of different elements x and y of S and every positive integer m (i.e.
m > 0).

Hints: 428 76 439 23 Sol: pg. 304
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Problem 9.6.17 (USA TST 2 2017/3). Prove that there are infinitely many triples
(a, b, p) of positive integers with p prime, a < p, and b < p, such that (a+ b)p − ap − bp is a
multiple of p3. Hints: 481 482 426 188

Problem 9.6.18 (IMO Shortlist 2013 N3). Prove that there exist infinitely many posi-
tive integers n such that the largest prime divisor of n4 +n2 + 1 is equal to the largest prime
divisor of (n+ 1)4 + (n+ 1)2 + 1. Hints: 248 454 307 438

Problem 9.6.19 (China TST 1 2019/2). Fix a positive integer n ≥ 3. Do there
exist infinitely many sets S of positive integers {a1, a2, . . . , an, b1, b2, . . . , bn}, such that
gcd(a1, a2, . . . , an, b1, b2, . . . , bn) = 1, {ai}ni=1, {bi}ni=1 are arithmetic progressions, and

∏n
i=1 ai

=
∏n

i=1 bi? Hints: 152 63 159 Sol: pg. 304

Problem 9.6.20 (Tuymaada 2004, also INMO 2019/4). Let n and M be positive
integers such that M > nn−1. Prove that there are n distinct primes p1, p2, p3 · · · , pn such
that pj divides M + j for all 1 ≤ j ≤ n. Hints: 110 472 462 336 Sol: pg. 305

Problem 9.6.21 (USA TSTST 2015/5). Let ϕ(n) denote the number of positive integers
less than n that are relatively prime to n. Prove that there exists a positive integer m for
which the equation ϕ(n) = m has at least 2015 solutions in n. Hints: 119 345 260 75 147 465

Sol: pg. 305

Problem 9.6.22 (APMO 2020/4). Find all polynomials P (x) with integer coefficients
that satisfy the following property:

For any infinite sequence a1, a2, . . . of integers in which each integer in Z appears exactly
once, there exist indices i < j and an integer k such that ai + ai+1 + · · ·+ aj = P (k). Hints:

398 144 48 469 186 Sol: pg. 306

Problem 9.6.23 (USA TSTST 2016/3). Decide whether or not there exists a noncon-
stant polynomial Q(x) with integer coefficients with the following property: for every positive
integer n > 2, the numbers

Q(0), Q(1), Q(2), . . . , Q(n− 1)

produce at most 0.499n distinct residues when taken modulo n. Hints: 417 162 485 243 423 323

Sol: pg. 307
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z Linear Independence among
√
ni

This section is about a very elegant proof of a particular result, and is taken from [15]. Unlike
some of the other special sections, this is not a section to teach you a particular theorem or
some theory. However, this is the final section of the book, so presenting a beautiful proof
that has ideas interlinked from our work so far and advanced number theory would be a
great way to end our journey.

We build up the key idea through examples and eventually present the full formal proof
by the end of the discussion.

Motivation

• Let i =
√
−1, and suppose a, b ∈ Z with

a+ bi = 0.

Then a = b = 0.

• Suppose a, b ∈ Z and
a+ b

√
2 = 0.

Then a = b = 0.

• Suppose a, b, c ∈ Z and
a+ b

3
√

2 + c
3
√

4 = 0

Then a = b = c = 0.

The first example implies that simple integer operations like scaling and translating by
integers can’t reduce i to 0, or even some irrational number like

√
2 to 0.

What about rational numbers? Here’s an exercise for you:

Problem 9.6.24. Show that if q ∈ Q, then a+ bq = 0 has a non-trivial solution in integers
a, b

What’s so special about non-rational numbers? Do all irrational numbers follow this?
(Hint: No, take 1 · (2

√
2) + (−2) ·

√
2 = 0.)

Our goal is to present some special tuples of irrational numbers that do satisfy this. First,
we introduce a term.

Definition 9.6.1. A set of numbers {x1, x2, . . . , xn} ∈ Cn is said to be linearly indepen-
dent over integers if the only solution {a1, a2, . . . , an} ∈ Zn to the equation

a1x1 + a2x2 + · · ·+ anxn = 0

is the trivial solutions a1 = a2 = · · · = an = 0.
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Example 9.6.1

The numbers {1, i} are independent, and so is {1,
√

3}. Here’s an exercise: Show that
{1, 3
√

2, 3
√

4} is independent.

Our main goal in the talk would be to to prove:

Theorem 9.6.1. Let {n1, n2, . . . , n`} be distinct square-free integers. Then

√
n1,
√
n2, . . . ,

√
n`

are all linearly independent.

Note here that taking n` = 1, this implies that any linear combination of non-integer
square roots is irrational! This generalizes the classic problem about proving

√
2 +
√

3 is
irrational. But how do we prove this theorem?

Raw Idea

Firstly, suppose want to prove {1,
√

2} are linearly independent, which is equivalent to
showing

√
2 is irrational. The classic proof of that is the ”reductio-ad absurdum” method.

However, that method won’t work in our problem. So we need to find a different method.

Here’s the nice idea: look at things locally. Since 2 is not a quadratic residue mod 3,
hence it can’t be a square! Neat way of showing

√
2 is irrational, right?

So now suppose we want to show
√

2 +
√

3 = k is irrational. We try a similar method.
In fact, the prime 7 works,

√
2 ≡ ±3 (mod 7) and so we must have 3 ≡ (k ± 3)2 (mod 7),

but 3 is not a quadratic residue! So here’s an overview of our approach:

We would like to find a prime p in general, such that modulo p, every term in

a1
√
n1 + a2

√
n2 + · · ·+ a`

√
n`

except the last one becomes an integer. So, we would love to have:

Lemma 9.6.1. Suppose we have primes q1, q2, . . . , q`. Then there exists an arbitrarily large
prime p such that q1, . . . , q`−1 are quadratic residues modulo p, however, q` isn’t.

The arbitrarily large part is needed since we would not want p | a`, otherwise that would
make a`

√
n` ≡ 0 an integer mod p, ruining our plan.

Spolier Alert: The Lemma is indeed true, and we prove it at the end, since it is a bit
technical. Now, we just formalize a finish using this lemma.
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Finishing using the Lemma

The proof would be induction on the number of prime factors in n1n2 . . . n`. The base case
is clearly true.

Assume on the contrary, and suppose there does exist (a1, . . . , a`). Say the set of prime
factors currently is q1, q2 . . . , qk. Notice that we can view the n1, n2, . . . terms as polynomial
in q1, q2, . . . , qk. So we can write

0 = a1
√
n1 + · · ·+ a`

√
n` = A+B

√
qk,

where A,B are linear combinations of products of
√
q1, . . . ,

√
qk−1.

Example 9.6.2

For instance, if (q1, q2, q3, q4) = (2, 3, 5, 7), we can write

2
√

6−
√

10 + 5
√

42 + 7
√

7 = (2
√

6−
√

10)︸ ︷︷ ︸
A

+ (5
√

6 + 7)︸ ︷︷ ︸
B

√
7.

So now we can find prime p by the lemma such that A,B ∈ Fp giving

qk ≡
(
−A
B

)2

(mod p).

So qk is also a QR. However, this contradicts the choice of p, so we are done!

Or are we...

Loophole

There’s a tricky point that B−1 might not exist modulo p, so we can’t divide by B.

To fix this, we would like to choose a prime p such that B 6≡ 0 (mod p). Since surds
modulo p keep changing on changing p, there is no direct way to do this.

Example 9.6.3

Like
√

2 ≡ ±3 (mod 7) but
√

2 ≡ ±6 (mod 17), and even
√

2 ≡ ±8 (mod 31).

The trick now is slightly technical. Note that B is a sum of algebraic integer, and hence
itself an algebraic integer. So its minimal polynomial P (x) has integer coefficients. Also,
the other roots of P (x) (the conjugates of B) are also integer mod p by the lemma, and is
non-zero by the induction hypothesis.

In particular, the constant term c ∈ Z 4 of P (x) is fixed and non-zero, and is an integer
multiple of B modulo p. So if we pick p > c, then p - c and so B 6≡ 0 (mod p). So done! �

4This is called the norm of B. The fact about it we use here is that even though B can keep changing
mod p, the constant integer c won’t.
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Proof of the Lemma

Of course, some of you might not be satisfied with the key lemma left hanging. So here’s
the proof, which is quite similar to Problem 9.6.13.

Proof. It is quite logical to think of the chinese remainder theorem here. However, we would
need mod qi instead of mod p. So we must invert the order using Quadratic reciprocity.(

qi
p

)
= 1⇔

(
p

qi

)
= (−1)(p−1)(qi−1)/4

for qi > 2. For simplicity, we may take 4 | (p−1) so that we want (p/qi) = 1. In fact, to have
(2/p) = 1 if qi = 2, we might as well choose p ≡ 1 (mod 8).

Now, just greedily use the Chinese remainder theorem: Let s be a non-quadratic residue
mod q`. Then the system

p ≡ 1 (mod 8)

p ≡ 1 (mod qi) for all i < `, qi 6= 2

p ≡ s (mod q`).

has a solution by CRT. But we want p to be a prime. How to ensure that? Dirichlet’s
Theorem of course! So we are done.



Hints

1. Show that f(ab) = f(a) + f(b) + 1 if both a, b are even and f(ab) = f(a) + f(b) otherwise.

2. Vieta Jump to finish.

3. When x = 1, do some bounding and parity work to show y + z ∈ {503 · 2, 503 · 4}.

4. You should now get a formula for how many times a segment of length ` appears. So find a
formula for the desired sum.

5. Try to force a telescoping sum.

6. Consider algebraic combinations of P (n− 1), P (n), P (n+ 1) to get simpler terms.

7. You get (a+ c− 2b)q = b2 − ac. When does this imply q is rational?

8. Make n+ c = p2. Combine your results.

9. Write d = 4k + 1 and finish.

10. Show that n = 1.

11. Prove σ(n) < n
√
d(n) for all pα except one p, where you use the factor of

√
2.

12. Why can we shift and scale terms? If we do this to set s1 = t1 = 0 and s2 = 1, then what do
we get?

13. If pM - Q(n), show that M < αt for some constant α. Why does this imply M is bounded by
a constant?

14. You get an − bn = p(b− c), . . . In order to pair up (a− b) with (an − bn), what do you do?

15. (2`, 2`2 − 2, 2`2 − 1) works.

16. Use the fact that 2ni − 1 | 2x − 1 and combine all the divisibility relations.

17. If b is odd, then 3 is a quadratic residue mod any divisor of 3b − 1.

18. Show ν2(ai+1) < ν2(ai).

19. Did you know Vieta Jumping is also known as Root Flipping?

20. Suppose a z exists. How do you show uniqueness?

21. Now show 4n+ 1 < (
√
n+
√
n+ 1)2 < 4n+ 3.

22. Show that R(mc) have the same set of prime divisors.

23. Pick p2 so that p2 ≡ p1−1
2 (mod p1) and p2 > 2p1. Continue adding elements like this.

259
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24. In which set would n be?

25. How many factors does 18 have?

26. Each point in I is uniquely defined by its value mod ai for all i (why?). So, give a complete
characterization of the endpoints of ` mod all ai.

27. Prove f(1) = 0

28. If S` is the sum of powers, then what is S1,S2,S3?

29. Remove the ceiling by introducing a new variable.

30. Consider elements of the form axi + 1 where xi ∈ Sp.

31. You should get yp−1 + y ≤ p(y + 1).

32. The process never ends unless a = b. What solutions do you get in this case?

33. There is a prime divisor p of 2a − 1 which is ≡ 3 (mod 4).

34. Take the smallest prime divisor p of n and consider dk−1dk.

35. If b ≡ z2, then show that (2−z)(2+z) = 4−b is a QR. What can you say about 2−z, 2+z?

36. You should get xi is periodic with period c2 − c. Does this cause any issues?

37. Use a variant of Euclid’s construction (for the infinitude of primes).

38. It does have solutions! Work it out algebraically instead of number theoretic ways (like mod)

39. Prove it for n = 2k, then 2k + 2k−1. What do you do in general?

40. Pick p to be a quadratic residue modulo all prime divisors of n except one, so it becomes a
NQR. How do you do this?

41. Use m− n | f(m)− f(n) repeatedly.

42. The answer is k = 2.

43. Consider (x+ a)(x+ b)(x+ c) and (x− d)(x− e)(x− f).

44. If a is a power of 2, then f(n) = ag(n) has a unique solution due to a parity argument.

45. Consider the intervals (2k, 2k+1].

46. Using gcd(x, n+ 1) = 1, you should be able to show gcd(m, y − 1) = 1.

47. What is the simplest lower bound on the row,column sums?

48. For degP ≥ 2, the intuition is that P grows very fast and skips a lot of numbers. Based on
this idea, try to construct a sequence {ai} that doesn’t satisfy the problem’s property.

49. Your best bet is induction.

50. Let g be a primitive root. What are the others?

51. You would like degQ = degP = d. For how many points do you need to define Q? What
values do you choose?

52. Use a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca).
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53. Use LTE to show r ≤ 2.

54. Show that any divisor of 23
i
+1 is either 1 or 3 modulo 8. How do we ensure that 22·3

i−23
i
+1

gives a new prime of the form 8k + 3?

55. The numerator is the sum of n!
i . Pair up consecutive odd, even terms.

56. Let y be a primitive root. What w should you choose to set a ≡ yw?

57. The number of pairs (a, b) with a, b coprime and a+ b = n is ϕ(n)/2. This is also atmost the
number of possible values of a = 2k5`. What bound does this give you?

58. Why do you only need to prove the result for n = pα?

59. Convert lcm into gcd .

60. If yp−1 + x | xp−1 + y ≡ (−y)p(p−1) + y. What does LTE give?

61. Take z = 1. So now you want infinitely many pairs (x, y) ∈ N2 such that y+1
x + x+1

y ∈ Z. How
do you do this?

62. Use the fact that 1i + 2i + · · ·+ (p− 1)i ≡ 0 (mod p) for a prime p and 0 ≤ i < p− 1 to show
the formula you had before is 0 modulo a1.

63. There is no AP that satisfies a . . . (a + (n − 1)d) = (a + d) . . . (a + nd). So make a slight
adjustment to the sequence {ai}.

64. Both the polynomials have a root α ∈ (0, 1).

65. Prove that any prime factor p of 2n − 1 must be ±1 (mod 12).

66. Show that p− 2 6∈ A, p− 4 6∈ A are impossible.

67. Show p | 2(p− 3)! + 1. Assume n ≤ −4 now.

68. Show that gcd(22·3
i − 23

i
+ 1, 23

i
+ 1) is atmost 3.

69. Express u2, v2 in terms of d, a, b and then eliminate a.

70. Can 5 divide any of them?

71. If the elements are a+ n
a , b+ n

b , c+ n
c , then using the fact that they are consecutive find c in

terms of x = a− b, y = b− c.

72. The idea is to force two equal ai, aj to be equal. Show that we only need to show this over
a finite set of primes.

73. What about the case k = 3?

74. Take m = p2νp(an)+νp(n)+1 to get a complete characterization of good sequences.

75. Try to prove that ϕ(N) = ϕ(p1 . . . , pk) has at least k solutions in n with each prime factor
of N being one of pi.

76. The answer to the second part is yes. Construct is inductively.

77. This shows
{
x
y

}
= 1

2 for every x > y in S.

78. Multiply the two relations you got to obtain a divisibility relation involving ac + bd, ab +
cd, ad+ bc.
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79. Write a = x/z and b = y/z so that zn | xn − yn.

80. Suppose it is montonic for n ≥ N. Then why is d((n+ 1)2 + 1) > d(n2) + 2?

81. We have xn = (y − 1)m. What is m (mod y − 1)?

82. For any c, consider θ(p− p(c)).

83. What is the maximum possible value of gcd(x, k) for any x?

84. What is d (mod 4)?

85. If d is the gcd, then write ani = dki − P. The definition of P gives a polynomial identity in
Pn. What relation in d, P does it give?

86. Show that n = 2km2 for some nonnegative integer k and odd natural m.

87. You would like terms of the form N !+m = m
(
1 + N !

m

)
. What’s the obvious scenario in which

this isn’t a perfect power?

88. You must have ν2(2q − 2) = ν2(ordp(5)) ≤ ν2(p− 1).

89. Let f(n) be the number of operations it takes to reach 2. If n = 2kpα1
1 ...pαtt , show that

f(n) = k − 1 + α1f(p1) + ...+ αtf(pt). What do you get for n odd?

90. You should get b+ d+ a− c | (a+ b)(a+ d) and a similar result for b+ d− a+ c.

91. 13(2x+ 3y) = 26x+ 39y. Why is this useful?

92. If ν2(nk) = 0, then when is S odd?

93. Use Fermat’s Little Theorem to reduce the relation 503 | y3 + z3. What do you get?

94. Suppose the fractions are (x+ 1)/N, (x+ 2)/N, . . . . How do you ensure the denominators are
distinct?

95. If k2 ≤ 4n+ 1 < (k + 1)2, between which squares would 4n+ 2, 4n+ 3 lie?

96. ord(2p+1)(2) ∈ {1, 2, p, 2p}.

97. Simplify the congruence to a congruence involving 3,−4,−12.

98. Take a prime divisor p > 2 of x+ y. What can you say about νp(x+ y) when n is odd?

99. Divide by 23 and give a factor of 2 to each term. You should get ak + bk = ±2. What does
this give?

100. Multiply a term by 4

101. Show that if p < k, then p = 2. Also, when is p not less than k?

102. What happens if n is odd?

103. What can you say about p+m− 1?

104. Show that L = lcm(n+ 1, . . . , 2n+ 1) divides m− n.

105. Find an n such that 5n ≡ 520 (mod 1020). Why does this work?

106. 2n+ 1 is always odd. What does this mean?

107. Apply the same method of grouping.
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108. Use Bézout’s theorem on m,n.

109. Suppose n = ` works. Construct an n > ` that works too.

110. What can you say about a common divisor of M + i,M + j?

111. If A = {a1, . . . , ak}, bound a2 − a1, ak − ak−1 by our previous observations.

112. Take (a, b) = (x,−x) and similar values to directly find P (x).

113. If d | n, then how many times does d occur in f(n)?

114. To show non-powers of 2 don’t have a unique solution, why does it suffice to show this just
for odd integers?

115. Use the Pigeonhole Principle to finish.

116. For the next two part, the prime factors of which numbers are the easiest to control?

117. Get 10nS = nk!. So nk | 10. Then if 2, 5 | nk, then gcd(S, 10) = 1. What does this mean?

118. What is ordk(3)?

119. Use induction to show the result for any k, not just 2015.

120. Write Q(x) = xdR(x) so that x - R(x). We would like to show R is a constant.

121. Count how many terms in the product are divisible by p, how many by p2 and so on.

122. Let k = b
√
nc . How do you remove the square root?

123. You should get P (x)−x | P 2(x)−P (x) | · · · | P k(x)−P k−1(x) | P k+1(x)−P k(x) = P (x)−x.

124. When x = 2, show |y − z| = 1 and hence show y + z = 503.

125. The solution is θ(p) = p(c) for a constant c.

126. Now use mod 11 to find the possible values of a.

127. What is another formula for ζ(n)?

128. x2y · y2z · z2x = (xyz)3.

129. Generate a new quadruple (a∗, b, c, d).

130. 1
2 + 1

3 + 1
6 = 1.

131. Multiply to get the key equation: an−bn
a−b ·

bn−cn
b−c ·

cn−an
c−a = −p3.

132. You want to show the existence of x0 for which the polynomial P (x0) = x20+x0+1 is divisible
by at least n+ 1 primes.

133. If a = 2k5`, then a < n. So how many such numbers are possible?

134. The key observation is that one of the two divides the other.

135. 58 ≡ 54 (mod 104), so the last digits become 0625.

136. Define the sequence of integers bk = (a1 + · · · + ak)/k. The given question is equivalent to
showing what about the sequence 〈bk〉?
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137. Find an algebraic way to convert 2x + 3y to 9x + 5y by adding/subtracting/multiplying
things.

138. Combine all the conditions using CRT. (There’s a catch in using CRT. Try to find and fix
it)

139. Suppose 2 ∈ A and write A = {2, x1, . . . , xi, 4 − x1, . . . , 4 − xi} and B = {y1, . . . , yj , 4 −
yi, . . . , 4− yj}. Show that you can map each pair (xi, 4− xi), (yi, 4− yi) to an element of B.
What more can you say about this map?

140. If S is the set of p2
i
, then which elements from S multiply to give f(2k)?

141. Take p > 2 and show p+ 1 divides np + 1. What is the order of n mod p+ 1?

142. Show that 481 | x, y.

143. If n = 2k, then which primes of the form 4k + 3 can divide 2n − 1?

144. Use Pigeonhole to show all degP = 1 work.

145. Guess a quadratic polynomial that works.

146. Take x, y so that u = νp(A
x −B) < νp(A

y −B) = v.

147. Using the induction hypothesis, N = npk+1 give k solutions where n satisfies the case k, How
do you get 1 more?

148. Pick a q from this set of prime divisors. Take a clever choice for c to get a contradiction.

149. Is n = p possible? What about p2? What about pk?

150. If x1 6= 2, then show that x2, x3 ≡ 3 (mod 4) and hence −2 is a quadratic nonresidue mod
x3.

151. Give a construction to show Sk is infinite if k has an odd prime factor.

152. The key trick here is to consider bi to be a translated sequence of ai, i.e. set b1 = a2, b2 =
a3, . . . . Now we need to handle the endpoints carefully so that the product is the same.

153. In the 1+1/2+· · ·+1/n problem, we considered ν2. In the 1+1/3+. . . problem we considered
ν3. However, in our problem, if for some i pi ∈ {2, 3}, then ν2, ν3 are useless. Which νp should
we consider here?

154. Instead of directly showing a = b, try to show a ≡ b (mod p) for any prime p.

155. Show that d = 2 · 37 or d = 2 · 33p for a prime p.

156. Can you ensure infinitely many solutions to a+ kb = nt for some t, k?

157. Assume θ(x) = 0. Why does it suffice to show θ(p) = 0 for all polynomials p ∈ Z[X] with
p(0) = 0?

158. You get p | f(0). Why does this cause issues?

159. Take a1 = m, a2 = mb1, a3 = mb2, . . . for some m.

160. Say the first one is x2 and the second is y2. Find a, b in terms of x2, y2.

161. This time take ν3.
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162. Show that you only have to show the result for primes.

163. Assume 5 6= p 6= q 6= 5. Use p | 5p + 5q.

164. Show that P ∈ Q[X].

165. Show that n is odd

166. Choose t ∈ Q wisely and set x = π. Use the fact that π is transcendental (i.e. it is not the
root of any polynomial with rational coefficients).

167. It’s easier to work with k = c− 2 = a2+b2+a+b
ab .

168. Show that ab+ cd > ac+ bd > ad+ bc.

169. Suppose x+ y = 2`. When can we use LTE?

170. Try to count the number of times a segment of ` can appear.

171. For any x in A or B, in which set is x(4− x)?

172. Suppose p | P (n). In terms of n, what other P (•) does p divide?

173. In general, write k = 2sx − 1 for x < k odd. Find an equation showing k is expressible
assuming x is.

174. You should get ϕ(k) ≥ k − 1.

175. To use p− 1 = 2q with q an odd prime, show that ordp(x) ∈ {q, 2q} for x ∈ {3,−4,−12}.

176. ordp(5) 6= q − 1 but divides 2q − 2. When is this possible?

177. Let gcd(a, b) = d, a = dk, b = d`.

178. What is a νp way of writing what we want to prove?

179. Find sum of elements and sum of squares of elements.

180. Write p− 1 ≡ −1, p− 2 ≡ −2, and so on.

181. Recall Example 9.4.5.

182. To show the new root is less than x, use estimates such as 4ac > 4a2 = b(c2 − a2)− f.

183. Show that we must have 2n− 1 = 3` for some m all of whose prime factors are ≡ 1 (mod 4).
Does the required m exist now?

184. Add one more condition on the primes to ensure (x+i), N have only the prime pi in common.

185. νp(x+ y) = min{νp(x), νp(y)} when νp(x) 6= νp(y).

186. If you have added till ai, take ai+2 to be the integer of smallest magnitude not yet in the
sequence (can you think why we do this?). Then choose ai+1 wisely.

187. For the second part, you can try to show b5xc + b5yc ≥ bxc + byc + b3x+ yc + b3y + xc .
Why does this follow from the identity you proved before?

188. See Example 9.3.1

189. Can n be even?
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190. Use f(n) | f(n+ kf(n)).

191. If p | n, then gcd(p, cd+ 1) = 1 for all 0 ≤ c ≤ k − 1. If p < k, what does this mean?

192. Let m−n = Lγ. Let y be the largest power of 2 in γ. What is the power of 2 in Lγ
n+i for each

i?

193. Use a primitive root g.

194. Fix i < j. How many values of k satisfy ai + ki ≡ ak + kj (mod p)?

195. If n is even, use the expression for n/2. If n is odd, use the expression for (n+ 1)/2.

196. You get d | 2Pn.

197. Now suppose gcd(10, s) > 1. Find a way to fix the number you found before such that the
factors of 2, 5 in s don’t cause any issue.

198. Try Hermite’s identity. See the next hints for a second solution

199. Show (y + 1)n > m > yn if n > 1.

200. Firstly assume gcd(s, 10) = 1. What is the simplest number with sum of digits s?

201. Show that all ti are integers now! What about si?

202. Apply Fermat’s Little Theorem to find a periodicity result for f.

203. Find the answer for 3a, 3a · 5b, 3a · 5b · 7c. Guess a pattern

204. Define A to be the set of a such that ap−1 6≡ 1 (mod p2). Can both a, p− a not be in A?

205. Use f(n) | f(n+ kf(n)).

206. Almost every approach leads to a solution here. For a short one, try to complete the square

207. This time, show p2 | ip + (p− i)p.

208. If x 6= 0, you get a bijection from T 7→ T and hence two equal sets.

209. Write m in terms of p in the divisibility relation you obtain.

210. Eliminate n = 2

211. Suppose p | a1. Show that p | ap+1.

212. Guess the answer

213. Take cases on p; it’s size determines if d8 = 27 or p or 54.

214. Pick p to be the smallest prime factor of n.

215. The discriminant must be a square.

216. Show that b | 22n and prove that the only prime divisor of b is 11 with maximum power 1,
i.e. b = 11.

217. Show b2xc − 2 bxc ≤ 1 so νp
((

2n
n

))
≤ k, where k is such that pk ≤ 2n < pk+1. Why is

νp(lcm) ≥ k?

218. Show that at least one number in each pair in {(2, 3), (4, 5), . . . , (p− 3, p− 2)} is in A.



9.6. PRACTICE PROBLEMS 267

219. Get an alternate expression for g−1 (you might motivate this from the quadratic x2 = x+1).

220. In the case c odd, you should show every odd composite number is possible.

221. We basically want 2n mod n to be odd (why?). Go with your gut feeling about the answer
(i.e. true or false)

222. Grouping the coefficients (and ignoring them), you get sums of powers. Does this ring a
bell?

223. Show that the given implies k2 + k`+ `2 | d. Can you get the bound now?

224. Characterize all n for which d(n) = 2k?

225. Use Problem 3.4.6

226. Bound lcm(a, b, c) to show it must equal bc.

227. Pick primes pi such that pi | x+ i using the Chinese Remainder Theorem.

228. Show that 2 is a quadratic nonresidue.

229. Consider modulo a suitable number. Guess it by experimenting

230. You can’t have b− a = 1. What about b− a = 2?

231. Show that ip + (p− i)p +
(
p+1
2

)p
−
(
p−1
2

)p
is divisible by p. Group terms accordingly now.

232. Add elements of the equal sets to conclude x = 1.

233. Consider the set 0 6∈ Sp formed by the elements of S mod p for some prime p.

234. Lastly you just need to show that the set of primes dividing elements of P (1), P (2), . . . is
infinite. Does this ring a bell?

235. Show that composite n don’t work.

236. Write n = 2x3y5zpα1
1 . . . and define c to be the part inside d•e in the formula for d1(n). Take

cases for c even, odd.

237. If k ≥ 4, then a1ak = a2ak−1 = . . . and a similar result for divisors of m. What do you get?

238. This is very similar to to Problem 6.7.11.

239. Define the set B to be elements b for which b, 4− b are both quadratic residues.

240. If f is discontinuous, we try to make the intervals where f is increasing or decreasing. Let g
be a ”jump” function which helps to change intervals.

241. Make a table (or graph) with each row corresponding to a value of k. Join two elements by
a line in a row if they are congruent for that k. How many lines are there in the table?

242. The formula would be the sum of a polynomial p(x) as x varies over all possible values of `
(which you found before). What is the degree of p?

243. Choose degQ = 4 and something of the form (kx2 + `)2, so that Q(a) ≡ Q(b) gives a ≡ −b
or ka2 + ` ≡ −kb2 − `.

244. Write ab − 1 = (ad)b/d − 1 and use LTE now.
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245. z, z2 have the same set of prime divisors.

246. Show p | f(j2/4) = 0 for some j and infinitely many primes p.

247. Use loose but careful estimates.

248. Define f(n) = n2 + n+ 1. What’s the relation of this with our sequence?

249. Since siti ∈ Z, hence the denominator of si divides ti. So what should r be?

250. Which famous inequality gives 1 + p+ · · ·+ pα ≥ (α+ 1)pα/2?

251. Noting that x > y, just use Vieta Jumping

252. Try n = p2 for some prime p now.

253. p− 2k is bounded but there are infinite possibilities for p, k. What does this show?

254. Set c = b+ k. Which k is a good choice?

255. We want a ≡ x1 (mod pi) for k primes such that pi | P (xi).

256. A segment is characterized by its endpoints. What congruence relations must the endpoints
satisfy for the segment to have length?

257. What is S in terms of a primitive root g?

258. Finally, show the set of primes diving T is finite.

259. Suppose it’s a a× b table with a ≥ b. What happens if b = 1?

260. You let p1, . . . , pk to be the first k prime numbers, so that any prime factor of pi − 1 is also
from this set. Further, every prime factor of x should be one of pi.

261. Write a = pk back in the equation. What happens?

262. P (x0) ≡ 0 (mod p1p1) ⇐⇒ P (x0) ≡ 0 (mod p1), P (x0) ≡ 0 (mod p2).

263. Use the result derived to show that if T is the set of quadratic residues except {0, 1}. then
t ∈ T =⇒ (t− 1)x+ 1 ∈ T, where x is any xi.

264. What is the relation between bi, bi+1?

265. What is the most obvious sequence with a set of fixed prime factors?

266. Explicitly find the orders of 3,−4,−12. What does order = 2q mean?

267. Find an ` such that A` −B is divisible by pv+1.

268. Now that we know f is multiplicative, what do we do?

269. Now you just need the sum of quadratic residues mod p (why?)

270. Can m be a perfect power?

271. Show that if pM | T and pm | Q(n), then M is bounded.

272. For any t ∈ Q, what’s the leading term and coefficient of P (x) + P (t− x)?

273. Can you bound f(2p)?

274. Show nk = nk−1 + 1
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275. Show that 4k+ 1 is expressible. To show 4k+ 3 is expressible, you 8k+ 3 is expressible. For
8k + 7, again make two cases.

276. For the second part, think 11(4a+ 5b− 3c).

277. How many times can k appear in the three gcds? What about a smaller divisor of k?

278. Show that if k is odd, then 2k + · · ·+ 1 has at least one prime divisor p ≡ 3 (mod 4)

279. Write d = gcd(xy+ 1, xy+x+ 2) = gcd(x+ 1, y−1) so that xy+ 1 = du2, xy+x+ 2 = dv2.

280. Suppose 5k is the smallest of all, and attained for a20181 + a2. What does this assumption
give?

281. If a > b, you should get p | a but not b.

282. Use induction

283. You can assume 0 ≤ x, y ≤ p−1
2 . How many solutions does x2 + y2 ≡ 1 have?

284. In the remaining expression, what is ip+(p−i)p
p2

(mod p)?

285. Show p | P (2q) for all primes p. What does this mean?

286. Show d(n2 + 1) ≤ n for even n to conclude.

287. This can be seen as a quadratic in a. One solution is (2, 2, 2, 2).

288. Phrase it in terms of modular things.

289. Use induction to finish.

290. Take p to be the smallest prime factor of n.

291. Pick n = 2p such that 2p > `. In which cases does 2p not work? How do you handle these
cases?

292. How would you define the polynomial Q(n)? What could be it’s degree?

293. Show that f(22a−2) = a22a−2.

294. Suppose we add a restriction: f is continuous. What happens?

295. Pick a prime p. What’s the simplest upper bound on νp
((

2n
n

))
?

296. Vieta Jumping! But simplify the numerator first

297. When is a
b ,

b
a is terminating for a pair of coprime integers a, b?

298. Suppose p | a+ b. When can LTE work?

299. For f(a+ 1), f(a+ 2), . . . set up similar systems.

300. What’s the best way to deal with the case p = 3?

301. gcd(ai + j, aj + i) = gcd(ai + i + aj + j, aj + i). Can you force p - (ai + i) + (aj + j) for all
i, j by taking a suitable sequence?

302. By Heron’s formula, A = x
√

3(x2 − 1). You want x2−1
3 to be a square. Does this remind you

of something?
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303. Use LTE to show 5k | a20182018 + 1 is not possible.

304. Introduce k = |m− n|.

305. Instead of the sum of d, look at the sum of n/d.

306. Show gcd(2n+ 4, 14n+ 3) = 1.

307. Can ||f(i)|| be strictly decreasing?

308. Use f(a+ d) ≡ f(a) (mod d).

309. You get αm + αm+1 = α(1 + α) = αn. What bound on n does this give you?

310. The identity should have a difference of squares.

311. Show k ≤ 2 and deal with these cases.

312. Suppose n has two prime factors and write n = pαm, with p the smallest prime factor of n.

313. Consider a change of variables to A,B ∈ Q+ so that the problem becomes about the terms
An −B which are ALL divisible by p.

314. Let p < q be the two smallest primes factors of n. Where could p, q be? What about n
p ,

n
q ?

315. Let k be such that 2k ≤ n < 2k+1. Keep pairing up consecutive terms to get ν2 of the
numerator is ν2(n!/2k).

316. Set n ≡ 0 (mod p− 1) and another congruence. Then use CRT to combine them.

317. To do this, first construct a k such that νp(A
k− 1) = v. Then consider Akr+y−B, and select

r decisively.

318. Consider ν2.

319. Prove f(x) = c(x− 1)r. How do you bound r

320. If p | q − 1, try to find a suitable a such that x−1 + 1 ≡ a (mod p) gives the result.

321. Write f(x) = x+ c. Use Wilson’s theorem to eliminate some values of c.

322. Show that x, 22
x

+ 1 are coprime.

323. You get the bound for large enough primes p. How do you ”ignore” the small primes?

324. Use some estimates on ϕ(n) to show this can’t hold for infinitely many n.

325. Introduce the fractional part!

326. a1 + a2 + · · ·+ ak ≡ a2 + · · ·+ ak, and the left side is k times a square while the right is k− 1
times a square. Is this possible for all k?

327. You want ab ≡ (−1)aaa (mod a+b). So set a to be odd. You then want ab−a ≡ 1 (mod a+b).

328. How many powers of 2 can you find in n+ 1, n+ 2, . . . , 2n+ 1?

329. Multiply 5 to the left and you get 5n.

330. Pick k = 1.

331. If q | (x+ 1)p − xp, what is ordq(x
−1 + 1)?



9.6. PRACTICE PROBLEMS 271

332. For n = 3, assume a+ b+ c = 1. Then normalize by writing a = x/(x+ y + z), . . .

333. To make use of the condition, expand (wxi + 1)n (mod p) over all xi.

334. It’s a cyclic expression, so assume an ordering on νp(a), νp(b), νp(c).

335. What happens now if p | n?

336. Show that all the new terms are pairwise coprime.

337. First show that νp(an)− νp(a1) ≤ Hn−1νp(C), where Hn = 1 + 1/2 + · · ·+ 1/n.

338. We don’t have a good formula for S` if ` ≥ 4. How do we prove the formulas for S2,S3?
Maybe try and use those methods

339. Use induction

340. What is the value of each summand?

341. Can deg f be greater than 1?

342. Instead of proving your expression is ≥ 0, prove that it is > −1. This gives you more freedom
on estimates.

343. Assume a ≥ b ≥ c and show a | bc.

344. Show in the original equation that each 0 < n−m < q gives a valid (n,m) pair.

345. Suppose you have a set of prime factors S = {p1, . . . , pk}. To keep ϕ(x) = ϕ(n) for a fixed n
and many x, you want each prime factor of ϕ(x) to be from S. How do you ensure this?

346. The cubic factorizes!

347. If p = 2 divides z, use LTE to show ν2(n) is bounded.

348. Can you find a m such that νp(m) > νp(n) and νp(am) > νp(an).

349. You have akϕ(b)+1 ≡ a (mod b). Are a, b coprime?

350. Group terms in the most natural way possible.

351. Write n in binary and do this.

352. If k is a prime, then why do you need to show 3 is a quadratic nonresidue?

353. To attach a new prime dividing 2` − n, we would want gcd(p, x) = 1.

354. Observe that g(g − 2) ≡ −(g − 1) (mod p).

355. Ensure all the 3 conditions of LTE

356. Let s = max
j
νp(aj), and say s = νp(aw). What can be the νp of the rest of the terms?

357. This is similar to Wolstenholme’s theorem. Try Gaussian pairing.

358. Evaluate the small cases by hand. For the larger ones, consider mod 8.

359. Look at tuples of the form (νp1(an), . . . , νpk(an)), so that we have to force two tuples to be
equal (why?). Count the number of such tuples and use the bound on νp(an) from before.

360. In p | P (n+ pk), pick a k such that p− 1 | n+ k. What do you get?
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361. If k = 2`, then what can you say about ordp(a · b−1) where p is a prime?

362. If n = 3xpα1
1 . . . , then you should get d1(n) =

∏
pi≡1(αi + 1)

⌈
1
2

∏
pj≡2(αj + 1)

⌉
, where the

indices are mod 3.

363. Show that x ∈ {1, 2} using the fact that x | 2012 = 22 · 503.

364. Show that x1, . . . , xk must be prime.

365. To show a z exists, try an approach like in Example 2.12.1.

366. Fix n and induct on m.

367. Pick r to be the gcd of all ti.

368. If 2k − 1 | 2n − 1 with k odd, then it has a prime factor p ≡ 3 (mod 4). What next?

369. Write x+ y = 3k, x− y = b.

370. Create a polynomial to find expressions of the form a+ b+ c, ab+ bc+ ca.

371. Show that p | ak+1 for our choice of k.

372. Consider (2n)! + k.

373. What’s the best way to deal with the case p | x?

374. Try Vieta Jumping

375. What are the possible lengths of any segment? It would obviously be an integer, but can you
explicitly say which values it can take?

376. Write (n + 1)` − 1 as the telescoping sum of (i + 1)` − i` as i goes from i to n. (this is how
formulas for S2,S3 are derived)

377. Write p+m− 1 = pα and use pα +m− 1 | n.

378. You should get 3n−1 + 5n−1 | 2 · 3n−1. Why are we done?

379. Work mod some special number.

380. mod 10.

381. The right side is not multiplicative (why?). So what do we do?

382. Show that f = ϕ ∗ id.

383. Consider n = pq for two distinct odd primes p, q.

384. Show that that if R(mc), R(m) have the same prime divisors, then so do R(mc−1) and R(m).

385. Why must we have p = 2?

386. Derive a formula for d1(n).

387. Pick any prime p ∈ {2, . . . , 100}. Then what does (n+1)p−1
n give by the telescoping method?

388. You get 2k+1m2 + 1 = (2k + · · ·+ 1)σ(m). What happens if k is odd?

389. Guess the answer

390. What does (i, j) = (2m, 2n) give?
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391. Get a quadratic in x.

392. What can you add/subtract from n2 + km2 to get k + 1?

393. Use the result from Problem 8.4.2.

394. Characterize all n such F(n) has two consecutive elements

395. Product of 4x− a2 works.

396. Just do some bounding now.

397. Consider a number with all digits 1. Write n = 10x1 + · · · + 10xs . What can you choose the
xi to be such that this becomes divisible by s?

398. Guess the answer.

399. What’s the νp condition for a rational number to be an integer?

400. How does this relate to polynomials?

401. If p | (b+ c), then p | bc. What does this give?

402. Use induction.

403. m+ 1 | mm + 1 if m is odd. Which odd number should you choose?

404. Rearrange the equation and make the key substitution: x = a + c, y = c − a, where c2 =
a2 + d4a2/be.

405. Consider a prime p dividing f(k2) with 0 < k < p/2. Then p − 2k ≤ A. What does this
mean?

406. Compute small powers and observe how consecutive zeroes occur.

407. How do you deal with 1/i (mod p)?

408. Let lcm(n1, . . . , nk) = x. What do you get?

409. What formula did we find in Example 3.5.9?

410. Why do you need to show F = G ∗ 1?

411. If ab = 7 · 2k, then a = 7 · 2t, b = 2k−t or a = 2t, b = 7 · 2k−t. Why does this help here?

412. Gaussian pairing.

413. How do we handle the condition that P,Q are coprime?

414. Show that both the sides are multiplicative

415. Try the same method as the n | 2n − 1 problem.

416. If x = 2k − n, then find a class of ` for which x | 2` − n.

417. The answer is yes.

418. Why can you assume gcd(a1, . . . , an) = 1?

419. How do you prove p | 1 + 2 + · · ·+ p?

420. Prove f(n) | nf(n).
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421. Take m = 2n− 1.

422. Use n− i | Q(n)−Q(i) = Q(n)− qi for 0 ≤ i ≤ d.

423. Take Q(x) = (2x2 − 1)2 and carefully count the number of repeated residues.

424. Pick a prime factor p common to d, P. What does it give you?

425. For a given prime p, smartly pick a n such that p | an + n and p | bn − an =⇒ p | b− a.

426. How does this give p3 | f(p)?

427. Show that there is a row with all elements atmost n/b.

428. If S = {a1, . . . , an}, then max ai ≥ n− 1 + min aj .

429. Make the same substitution as in Problem 4.9.19, i.e. u = (X + Y )/2, v = (X − Y )/2.

430. Use induction.

431. The left side should become the sum of a
(⌊

(a+1)2

p

⌋
−
⌊
a2

p

⌋)
.

432. Take (n, 2n), (2n, 3n), (3n, n) to get n | 2a2n.

433. Show that νp(aj) < s for all j 6= w.

434. When can you use LTE?

435. Look at 3α for some α.

436. Now p | 2(p− 3)!− 2(p− n)! holds for all large primes and a fixed n ≤ −4. Why is this not
possible?

437. This basically means cd+ 1 is coprime to n for all 0 ≤ c ≤ k− 1. What is d in terms of n, k?

438. Use f(n2) = f(n)f(n− 1) to show it can’t be strictly increasing either.

439. You want 1− t > x mod y
y > t. A hint to do this is to consider f(x) =

x−1
2
x , which gets closer

to 1
2 as x increases.

440. What’s the solution of the Pell’s equation x2 − 3y2 = 1.

441. In this case show that
⌊
nk
2j

⌋
=
⌊
nk
5j

⌋
for all j. Why is this not possible?

442. What do you do when you have 2 equal sets?

443. If p > 2 divides z, find an inequality using LTE which can’t hold for infinitely many n

444. Consider the restriction: n is a prime. What happens here?

445. You should get b2 = (k − 2)2(4k + 1) so 4k + 1 is an odd square. Use this to get a complete
family of solutions.

446. For a fixed constant a, how many j satisfy a =
⌊√

jp
⌋
?

447. Use an argument similar to n | 2n − 1 =⇒ n = 1 to show p | f(p+ 1) for all large primes

448. If p is a prime, what is f(p)?

449. You have a sequence β such that n =
∏
p

∏β(p)−1
i=0 p2

i
. What constraint do the β satisfy?
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450. We would like to construct a prime p such that n is a quadratic nonresidue mod p. If n = pi,
then we can easily do this using quadratic reciprocity and Dirichlet’s theorem. What about
the general case?

451. Show that 2Q(n)−1 | 3T −1 where T = gcd(P (n+zQ(n)). We just need to show T is bounded
by a constant now (why?)

452. Pick a prime divisor p of n. What do you know about ordp(2)? Is there a special p you should
pick?

453. Show n ≤ 4 using ”vieta Flipping”. Do all n ∈ {1, 2, 3, 4} work?

454. Define ||x|| to be the largest prime factor of x. If the problem statement is not true, then
show that ||f(i)|| must be monotone eventually.

455. Find the answer for 2a, 2a · 3b, 2a · 3b · 5c.

456. Show that νp(an) ≤ A log n for some fixed constant A.

457. If m satisfies the property, then show that so does mq for any prime q.

458. If a2m is odd, show a2t+1 is odd for all t.

459. Make n+ c a prime p.

460. Use some smart bounding to show Q(n) = qn for all n.

461. Use Theorem 3.3.1.

462. Divide (M + i) by gcd(M + i, (n− 1)!). What happens?

463. Prove the result for n = pk. What about the general case?

464. Show m < 2n and finish.

465. Let pk+1 − 1 = pα1
1 . . . pαkk . Then consider N = pα1+1

1 . . . pαk+1
k .

466. You should get −15 is a quadratic residue mod 481. Is this possible?

467. p− 1 ∈ A. So p− 2 6∈ A. So p− 3 ∈ A. So p− 4 6∈ A. Is this possible?

468. use b+ d+ a− c divides ac+ bd to get a more useful result.

469. Add elements one by one.

470. Let q be a prime divisor of x. Then ordq(p− 1) | 2x, q − 1. Is there a special choice for q?

471. Take x1x2 . . . xn − 1 mod 2y+1.

472. Try to alter the terms so that you remove almost all factors less than n− 1.

473. If ν5(nk) = 0, then S is odd. So?

474. This gives q | p(p− 2) if q is the smallest prime factor of x.

475. You want x2 + y2 ≡ 1 (mod p) with 1 < x2 + y2 < (p− 2)p+ 1.

476. What can you deduce about ordp(5), ordq(5)?

477. For k ≤ 2, what can be the prime factorization of n?

478. What is ai (mod 5) over all i?
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479. You should get c = (•)/(y − x). What’s the simplest way of making this an integer?

480. Why is this sufficient to imply that only finitely many such primes exist?

481. Factorize f(t) = (a+ b)t − at − bt for t = 3, 5, 7.

482. Show that (a2 + ab+ b2)2 | f(p) for certain primes p.

483. Take f(x) = x,−x alternatively in these intervals, and let g(x) = 2f(x).

484. Write (6, 2, 2, 2) as (2, 6, 2, 2). Then you have a new quadratic, new root!

485. We want to force as many terms to be equal as possible. x ≡ −y =⇒ x2 ≡ y2 hence
Q(x) = x2 removes half the pairs, but we need to remove more and so need Q(a) = Q(b) to
give more constraints. What degree should we choose?

486. We want k =
∏ 2αi+1

αi+1 . Here, show all αi are even and guess the answer.

487. Suppose you have a set of k terms from the sequence that are all pairwise relatively prime.
Can you construct a new term?

488. Let p be the smallest prime not in the list.



Solutions to Selected Problems

Solution 1.4.2

Firstly, since p, q are odd, hence p+ q is even, so 2 | p+ q. Thus, (p+ q)/2 is an integer. To
show p+ q has at least three prime factors, we must show (p+ q)/2 is not a prime. But

p <
p+ q

2
< q.

By hypothesis, p, q are consecutive primes. Hence (p+q)/2, an integer between them, cannot
be a prime! �

Comment: Looking at examples for the first few primes, it might be tempting to
show something like one of 3 or 5 always divides p + q. However, that approach fails.
If thought logically, showing something like 3 | p+ q almost always happens would be
saying that their is a nice pattern that consecutive primes follow. However, we know
how random they are, so our intuition should be enough to tell us that this approach
cannot fail.

Solution 1.12.8 (Russia 2001 Grade 11 Day 2/2)

Let d = gcd(a, b) and write a = dk, b = d`, with gcd(k, `) = 1. Then

d2(k2 + k`+ `2) | d3k`(k + `)⇔ k2 + k`+ `2 | dk`(k + `).

However, gcd(k, k2 + k`+ `2) = gcd(`, k2 + k`+ `2) = 1, and even gcd(k + `, k2 + k`+ `2) =
gcd(k + `, k`) = 1. Thus, k2 + k`+ `2 | d. Hence d ≥ k2 + k`+ `2.

Thus,

|a− b|3 = d2 · d · |k − `|3

≥ d2 · (k2 + k`+ `2) · 13

= a2 + ab+ b2 > ab.

Hence, |a− b| > 3
√
ab, which is the desired bound. �

277
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Solution 1.12.15 (INMO 2019/3)

Let k = |m− n|. We have to then prove

gcd(m, k) + gcd(m+ 1, k) + gcd(m+ 2, k) ≤ 2k + 1.

Clearly k = 1 works, and k = 2 works if m is even. Suppose k > 2 now.

Observe that k can appear at most once in the above three gcds. So,

gcd(m, k) + gcd(m+ 1, k) + gcd(m+ 2, k) ≤ k +
k

2
+
k

2
< 2k + 1.

Hence, the only equality cases are when m,n are consecutive, or differ by 2 and both are
even.

Solution 1.12.16 (USAMO 2007/1)

Define bk = a1+a2+···+ak
k

. We know bk ∈ N for all k by the hypothesis. They key observation
is

bi+1 =
a1 + a2 + · · ·+ ai+1

i+ 1
<
a1 + a2 + · · ·+ ai + i

i
= bi + 1.

as 0 ≤ ai+1 ≤ i. So, bi+1 ≤ bi for all i, and hence {bi} is a non-increasing sequence. However,
it is always positive and hence lower bounded, so it will eventually become constant. This
is the key idea.

So, eventually a1 + a2 + · · ·+ an forms an arithmetic progression for large enough n ≥ i,
and hence the differences ai+1, ai+2, . . . are all equal. This is what we wanted to prove. �

Solution 1.12.17 (USAMO 2007/5)

The proof goes by induction on n, the base case n = 1 being clear. Now we have the following
identity that can be proven by direct expansion:

x7 + 1

x+ 1
= (x+ 1)6 − 7x(x2 + x+ 1)2

So put x = 77n and note that the right side is a difference of squares, hence not a prime.
Thus, 77n+1

has at least 2 primes factors more than 77n +1, and this completed the induction.

Comment 9.6.1: This was inspired by the following identity:

(a+ b)7 − a7 − b7 = 7ab(a+ b)(a2 + ab+ b2)2.

Some similar useful identities are

(a+ b)3 − a3 − b3 = 3ab

(a+ b)5 − a5 − b5 = 5ab(a+ b)(a2 + ab+ b2).
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Solution 1.12.18 (ELMO 2017/1)

As the power of each term in both RHS and LHS is n, we can assume gcd(a1, a2, . . . , an) =
1 so we need to show

gcd(an1 + P, an2 + P, . . . , ann + P ) ≤ 2.

Let d = gcd(an1 + P, an2 + P, . . . , ann + P ), assume d 6= 1, 2 otherwise we are done. Consider
a p, a prime factor of d. This means p | ani + P for all i. If for some i, p | ai, then
p | P , so p | an1 , an2 , . . . ann or p | a1, a2, . . . , an which is false as gcd(a1, . . . , an) = 1. This
means gcd(d, P ) = 1. Finally we have, d | ani + P , so let ani = dki − P for some integer ki.
Multiplying this over all i, we get

P n = an1a
n
2 . . . a

n
n = (dk1 − P )(dk2 − P ) . . . (dkn − P ).

If we multiply out each term on RHS, except (−1)nP n = −P n (as n is odd), all terms are
divisible by d and on LHS P n remains. Therefore d | 2P n but gcd(d, P ) = 1, so d | 2 and we
are done. �

Solution 1.12.19 (IMO 2001/6)

The key claim is the following:

Claim. We have ac+ bd | (ab+ cd)(ad+ bc).

There are many ways to prove this. But before that, let’s see how this finishes the
problem. Now, a > b > c > d implies ab + cd > ac + bd > ad + bc (by the rearrangement
inequality, or simply by expanding (a− d)(b− c) > 0 and (a− b)(c− d) > 0). So, if ab+ cd
is a prime, then ab+ cd would be coprime to ac+ bd. Hence ac+ bd | ad+ bc which implies
ac+ bd ≤ ad+ bc, contradicting what we found earlier. Hence we are done. �

Now let’s see how to prove the claim. The proof we give is just clever algebraic manipu-
lations:

Proof. Firstly,

b+ d+ a− c | (ac+ bd) + a(b+ d+ a− c) = (a+ b)(a+ d).

Similarly,

b+ d− a+ c | (ac+ bd) + c(b+ d− a+ c) = (c+ b)(c+ d).

So,

(b+ d+ a− c)(b+ d− a+ c) | (a+ b)(a+ d)(c+ b)(c+ d)

⇔ ac+ bd | ((ac+ bd) + (ad+ bc)) ((ac+ bd) + (ab+ dc))

This gives ac+ bd | (ab+ cd)(ad+ bc), which is what was desired.
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Comment: Expand and simplify the given condition to

a2 − ac+ c2 = b2 + bd+ d2.

So, by the cosine law, there exists a quadrilateral ABCD with AB = a,BC = c, CD =
b,DA = d such that ∠ABC = 60◦ and ∠CDA = 120◦. Since 60◦+ 120◦ = 180◦, hence
ABCD is cyclic. Now, using Ptolemy’s theorem, there exists an expression for AC2

just in terms of a, b, c, d. If you remember it, great! otherwise we can derive it now.
Write α = 60◦. Then

a2 + c2 − 2ac cosα = b2 + d2 + 2bd cosα =⇒ 2 cosα =
a2 + c2 − b2 − d2

ac+ bd
.

Hence,

AC2 = a2 + c2 − 2ac · a
2 + c2 − b2 − d2

ac+ bd
=

(ab+ cd)(ad+ bc)

ac+ bd
.

So ac+ bd | (ab+ cd)(ad+ bc), and this is a new proof of the claim!

In fact, we can remove the geometry from the above problem completely by working
1 = 2 · 1

2
instead of 2 cosαa So,

a2 + c2 − ac = b2 + d2 + bd =⇒ a2 + c2 − b2 − d2 = ac+ bd.

So,

(ac+ bd)(a2 + c2− ac) = (ac+ bd)(a2 + c2)− ac(a2 + c2− b2− d2) = (ab+ cd)(ad+ bc).

This can be thought of as a ”third proof” of the claim. It would generally be written
as a ”clever algebraic manipulation”, however a geometric interpretation makes it very
easy to discover.

aConstants are harder to note since they are just sitting there. Variables, on the other hand, are
much easier to work with since you can see them in action. This is one of the weird moments when
a general version is easier to deal with than the normal one.

Solution 2.14.11 (Sierpiński)

Let n = 2α5βγ, where γ is coprime to 10. Consider the number

n = 10α+β(10sϕ(γ) + · · ·+ 10ϕ(γ)).

Clearly, the sum of digits of n is s. Further, 2α5β | n and by Euler’s Theorem,

10sϕ(γ) + · · ·+ 10ϕ(γ) ≡ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
s

= s ≡ 0 (mod γ).

Hence, s | n and our construction works.
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Solution 2.14.13 (USAMO 2018/4)

The key observation is the following:

Claim. For any i < j, there is exactly one value of k for which ai + ki ≡ aj + kj (mod p).

Proof. Just observe that the two being congruent is the same as k ≡ (ai − aj) · (j − i)−1

(mod p), which is a unique number only depending on i, j.

Now, make a table whose kth row is elements of the form ai + ki. For each row, join two
elements by a line if they are congruent modulo p. 5 Now, a pair (ai, aj) for some i, j is
connected only in one row in the entire table by the claim. Hence, the total number of lines
in the table is the number of pairs, which is

(
p
2

)
.

Further, there are p rows. Hence one rows contains at most 1
p

(
p
2

)
= 1

2
(p−1) lines. Hence,

at most (p − 1)/2 pairs are congruent, meaning that we have at least 1
2
(p + 1) remainders,

as desired. �

Solution 2.14.15 (Iran 2017 Round 3/1)

The idea is to use Bézout’s theorem. We find integers a, b such that am+ bn = 1. So

x ≡ xam+bn = xamxbn ≡
(
yaxb

)n
(mod p).

Similarly,

y ≡ yam+bn = yamybn ≡
(
yaxb

)m
(mod p).

Hence z = yaxb works.

To prove uniqueness, assume on the contrary that z1, z2 exist that satisfy the given
conditions. So zn1 ≡ zn1 ≡ a (mod p) and zm1 ≡ zm2 ≡ b (mod p). So, if z = z1 · z−12 , then
zm ≡ 1 ≡ zn (mod p). However, by Example 2.12.1, we find z ≡ zgcd(m,n) ≡ 1 (mod p),
giving z1 ≡ z2, a contradiction. �

Solution 2.14.16 (IMO Shortlist 2015 N3)

Observe that xk − 1 = m−n
n+k

. Hence, m− n is divisible by all n + 1, n + 2, . . . , 2n + 1, hence
divisible by their LCM. Write lcm(n + 1, n + 2, . . . , 2n + 1) = L and m − n = Lγ. Now,
assume the result is not true. So there exists k ∈ N such that(

Lγ

n+ 1
+ 1

)(
Lγ

n+ 2
+ 1

)
. . .

(
Lγ

2n+ 1
+ 1

)
− 1 = 2k.

Now the key observation is that there is exactly one power of 2 in n + 1, n + 2, . . . , 2n + 1
since 2n+ 1 = 2(n+ 1)− 1. Suppose this is 2w. Clearly, the highest power of 2 in L’s prime
factorization is also w.

5Alternatively, make a graph Gk whose vertices are a` and two elements ai, aj are joined if ai+ki ≡ aj +kj
(mod p).
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So now Lγ
n+i

is odd if and only if n + i = 2w. Also, if the power of 2 in γ is y, then

2y < Lγ
n+i

< 2k and so k ≥ y + 1. So, Lγ
n+i
≡ 0 (mod 2y+1) unless n + i = 2w, in which case

this remainder is 2z. Hence

0 ≡
(

Lγ

n+ 1
+ 1

)(
Lγ

n+ 2
+ 1

)
. . .

(
Lγ

2n+ 1
+ 1

)
− 1

≡ 1 · 1 . . . 1 · (2y + 1)− 1

≡ 2y (mod 2y+1)

which is a contradiction. �

Solution 2.14.17 (ELMO 2019/5)

They key claim is the following:

Claim. Let p be a prime. Let Sp denote the the set S whose elements are reduced modulo p.
Then if 0 6∈ Sp, then |Sp| = 1.

Proof. Assume Sp = {x1, . . . , xn} and 0 6∈ Sp, so that n < p. Pick any a ∈ Sp, and observe
that all elements of {ax1 + 1, . . . , axn + 1} are distinct modulo p. However, all these are in
S, and this set has n elements too. Hence, we must have

Sp = {ax1 + 1, ax2 + 1, . . . , axn + 1}.

Summing up the elements yields

x1 + · · ·+ xn ≡ a(x1 + · · ·+ xn) + n⇔ (a− 1)(x1 + · · ·+ xn) ≡ −n (mod p).

Since n < p, hence p - n meaning that x1 + · · · + xn 6≡ 0 (mod p). Now the above holds for
all a ∈ Sp, which is impossible since a ≡ −n · (x1 + · · · + xn)−1 (mod p) is unique. Hence,
we must have n = 1, as desired.

So if p divides no element of S, then all elements in S are congruent to s, where s is some
element of S. However, s2 + 1 ∈ S implies s2 + 1 ≡ s (mod p), i.e. p | s2 − s+ 1.

Since s can be fixed (choose any one element of S), hence s2 − s + 1 is finite implying
it has a finite number of prime factors. Hence, the number of primes p not dividing any
element of S is finite too, and we are done.

Solution 3.7.12 (IMO Shortlist 2016 C2)

The answer is n = 1. Suppose there are a rows and b columns. If b = 1, then clearly we must
have n = 1 so say a ≥ b > 1 now. The key idea is that the common row, column sums are
> n because n would be an element in some cell.

There are at most b− 1 divisors of n that are greater than n
b
, since divisors come in pairs

(k, n/k). However, a > b−1 and so there would be a row in which all divisors are at most n
b
.

But then the sum here becomes at most b · n
b

= n, contradicting our previous observation.



9.6. PRACTICE PROBLEMS 283

Comment 9.6.2 (Outline of a more Number Theoretic Approach): The above
was, in heart, a combinatorial solution. However, we can use number-theoretic esti-
mates too.

Solution 3.7.13 (St. Petersburg Mathematical Olympiad 1998)

Assume that it is monotonic for all n ≥ N. Then

d((n+ 1)2 + 1) ≥ d(n2 + 1) + 2

because d(x) is even if x is not a square. (We would normally have a +1, but here a simple
observation helped us to change it to a +2. However, as we will see, the entire solution that
follows hinges on this factor of 2.)

So we get for any m ≥ N,

d(m2 + 1) ≥ d(N2 + 1) + 2(m−N).

For large enough m, we find 2(m −N) > m. Hence d(m2 + 1) > m for all large enough m.
We now show this isn’t true for even m.

Half of the factors of m2 + 1 are less than
⌊√

m2 + 1
⌋

= m (because divisors come in
pairs (k, n/k)). Further if m is even, then no even number can be a divisor of m2 + 1. So
there are at most 2(m/2) = m divisors, which means d(m2 + 1) ≤ m for all even m. This,
however, contradicts what we had earlier. �

Solution 3.7.16 (IMO Shortlist 2011 N1)

If n =
∏

p p
α(p), then d(n) = 2k if and only if we have a sequence β such that for each prime

p, α(p) = 2β(p) − 1 = 20 + 21 + · · · + 2β(p)−1, and
∑

p β(p) = k. Hence, any such number n

satisfies d(n) = 2k if and only if

n =
∏
p

β(p)−1∏
i=0

p2
i

, k =
∑
p

β(p).

Let S be the set of integers of the form p2
i

as p varies over primes. Then d(n) = 2k when
n is the product of the elements of a finite subset T ⊂ S. Here, T has k terms and if any
t ∈ T , then every divisor s ∈ S of t is also in T .

Note that the set Tk consisting of the smallest k elements from S satisfies the condition
above. Further, given k, the smallest n with d(n) = 2k is the product of the elements of Tk.
This n is in fact f(2k). Also, we clearly have Tk ⊂ Tk+1, which proves the desired result.
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Solution 3.7.17 (ELMO 2017/4)

Consider a < n such that gcd(a, b) = 1, or equivalently gcd(a, n) = 1. Then one of a, b has
no prime factors apart from 2, 5, wlog say a.

Thus, for all large n and any pair (a, b) ∈ N2 with a+b = n such that we have gcd(a, n) =
gcd(b, n) = 1, we have a = 2k5l or b = 2k5l for some k, l ∈ N. The number of such pairs for
a fixed n is ϕ(n)/2. Also, since a = 2k5l < n, the number of such pairs would be at most
(log2(n) + 1)(log5(n) + 1). Hence, we get for large n,

(log2(n) + 1) (log5(n) + 1) ≥ ϕ(n)

2
.

Since n > 2, hence the left side is at most

(2 log2 n)(4 log5 n) =
8

log 2 log 5
· (log n)2 = c(log n)2

for a constant c (basically O((log n)2)). However, we know ϕ(n) ≥ n−
√
n. Now linear growth

is faster than logarithmic growth, hence c(log n)2 < n−
√
n for large enough n, and we have

our contradiction. �

Solution 3.7.19 (IMO Shortlist 2016 N2)

We claim the answer is 2 and all composite numbers. We prove that these work and are
the only possibilities. Let pi denote primes that are 1 (mod 3) and qj the ones that are ≡ 2
(mod 3). We first find a formula for d1(n).

Claim. Let n = 3xpα1
1 . . . pαss q

β1
1 . . . qβrr . Then

d1(n) =
s∏
i=1

(αi + 1)

⌈
1

2

r∏
j=1

(βj + 1)

⌉
.

Proof. Since we want divisors that are ≡ 1 (mod 3), hence we don’t want any factor from
3. Further, we can arbitrarily choose prime factos from {pi}, however we must have an even
number of factors from {qj}.

If
∏

(βj + 1) is even, then at least one terms, say (β1 + 1), is even. Then except for q1,
we can arbitrarily choose primes from {qi}. Then the parity of β1 is uniquely determined by
them, so there are 1

2
(β1 + 1) choices.

If all βj + 1 are odd, then the idea is the same, but slightly more technical. There are⌈
βi+1
2

⌉
choices for an even βi + 1, and

⌊
βi+1
2

⌋
for an odd βi + 1. So we can induct now, the

inductive step being:⌈
r−1∏
j=1

(βj + 1)

⌉
·
⌈
βr + 1

2

⌉
+

⌊
r−1∏
j=1

(βj + 1)

⌋
·
⌊
βr + 1

2

⌋
=

⌈
1

2

r∏
j=1

(βj + 1)

⌉
.

So the claim has been proven.
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Now let n = 3x2y5zpα1
1 . . . pαks q

β1
1 . . . qβrr . Then let c = (y + 2)(z + 2)

∏
(βj + 1). Then

d(10n)

d1(10n)
=

(x+ 1)c

dc/2e .

So if c is even, then the above becomes 2(x + 1). Here, x can be any non-negative integer.
Hence, all even numbers can be expressed in this way.

If c is odd, then y, z are odd too, and each βj is even. hence the above ratio becomes

d(10n)

d1(10n)
=

2(x+ 1)c

c+ 1
.

This is an integer, so c+ 1 | 2(x+ 1) as gcd(c, c+ 1) = 1. Write 2(x+ 1) = k(c+ 1). So the
above equals

kc = k(y + 2)(z + 2)
r∏
j=1

(βj + 1).

As y, z are odd, hence y + 2, z + 2 ≥ 3. In particular, this shows the number is composite.

We now show every odd composite number ab with a, b ≥ 3 is indeed possible (the

smallest odd composite number is 3× 3 = 9). Take n = 3
ab−1
2 2a−25b−2. Then c = ab and so

d(10n)

d1(10n)
=

2
(
ab−1
2

+ 1
)
ab

ab+ 1
= ab.

Hence, we are done.

Solution 3.7.20 (China Mathematical Olympiad 2017/5)

We claim that no n is possible. Let A = {a1, . . . , ak}. The solution can be broken into a
bunch of steps:

Claim. n cannot be a prime power.

Proof. If n = pk, then its divisors are 1, p, p2, . . . , pk. However, there is no subset with ≥ 3
elements which forms arithmetic progression.

Let p < q be the smallest prime factors of n.

Claim. n ∈ G.

Proof. If n ∈ A, then any other element in A is at most n
2
. But then the common difference

becomes ≥ n− n
2

= n
2
, and so A cannot have more than 2 elements.

Claim. At most 1 of 1, p, q are in G.

Proof. Clearly p, q cannot both be in G since q
p
6∈ Z. Further, if {1, p} or {1, q} are in G,

then n ∈ G implies n must be a prime power, which is impossible.
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This claim implies a2 − a1 ≥ p− 1.

Claim. At most one of n
p
, n
q

is in G.

Proof. This is because n/q
n/p
6∈ Z.

This claim shows ak − ak−1 ≥ n
q(q+1)

. However since a2 − a1 = ak − ak−1, hence we get
p− 1 ≥ n

q(q+1)
, which shows

n ≤ q(pq + p− q + 1) < q3.

Since n has at least 6 divisors, hence n ∈ {p2q, pq2, pqr} (keeping in mind that q is the
second smallest divisor of q). A simple case work along with our claims from above suffice
to show that neither is possible, and we are done. �

Solution 3.7.21 (China 2015 TST 3/6)

Firstly observe that n = 6 works. We will inductively find an increasing sequence of working
integers. They claim is the following:

Claim. If p is a prime, then f(p) = d(p!)/2 and

f(2p) >
d((2p− 1)!)

2
.

Proof. The former is clear. For the latter, let S denote the set of divisors of (2p−1)!
p

, and let

|S| = k. Then, any divisor of (2p − 1)! would be either in S or pS, so d((2p − 1)!) = 2k.
Further, any number in S, pS, p2S would be a divisor of (2p)!. So d((2p)!) ≥ 3k. Hence

f(2p) = d((2p)!)− d((2p− 1)!) ≥ k =
d((2p− 1)!

2
,

as claimed.

Now suppose n = ` works. Let p be a prime such that 2p > `. Then if n = 2p works, we
are done. Otherwise there is a number x < 2p with f(x) ≥ f(2p). Here x cannot be a prime

since then f(x) = d(x!)
2

< (2p−1)!
2

< f(2p). Hence x is composite. But then pick the smallest
such composite number less than 2p and it works. �

Comment 9.6.3: In fact, n = 2p always works.

Solution 4.9.9

We claim that the solutions are (a, b) = (k, 1), (l, 11), where k is any integer and l is any
integer such that 11|l±1. These work, and now we will show that these are the only solutions.



9.6. PRACTICE PROBLEMS 287

Firstly assume b > 1, and say that P (n− 1), P (n), P (n+ 1) ∈ Z. Then

P (n+ 1) + P (n− 1)− 2P (n) ∈ Z =⇒ b|20n3 + 10n (9.2)

P (n+ 1)− P (n− 1) ∈ Z =⇒ b|10n4 + 20n2 + 2 (9.3)

Hence, b|2(10n4 +20n2 +2)−n(20n3 +10n) = 30n2 +4 and b|2n(30n2 +4)−3(20n3 +10n) =
−22n. Thus, b|22n, which we will refer to as (3).

Claim. If p|b, then p = 11. Further, v11(b) ≤ 1

Proof. If p = 2, then 2|n5 + a and 2|(n+ 1)5 + a which implies 2|(n+ 1)5 − n5, which is not
possible.

Next assume p > 2. Then we must have p - 2n, otherwise (2) =⇒ p|2, absurd. So
p - 2n, p|22n =⇒ p = 11 Now 11 - 2n =⇒ 11 - n and so v11(b) ≤ v11(22n) = 1, and the
claim has been proven

Thus, b = 11 as b > 1 by our assumption. Now we have proven that 11 - n and so (1) =⇒
11|2n2 + 1. Thus n2 ≡ 5 ⇔ n ∈ {4, 7} (mod 11). Now since (4 − 1)5 ≡ 45 ≡ (4 + 1)5 ≡ 1
(mod 11) as well as (7− 1)5 ≡ 75 ≡ (7 + 1)5 ≡ −1 (mod 11), hence the solutions are indeed
the claimed ones. �

Solution 4.9.12

One solution is (2, 2, 2, 2). Now consider the quadratic x2 − bcdx + b2 + c2 + d2 = 0 with
b = c = d = 2. One root is 2, and the other is 6. So (6, 2, 2, 2) is also a solution. Permute
this to (2, 6, 2, 2) now, and consider the same quadratic with (b, c, d) = (6, 2, 2) this time,
and keep proceeding.

For instance you get the following solutions in this way:

(2, 2, 2, 2)→ (6, 2, 2, 2)→ (22, 6, 2, 2)→ (262, 22, 6, 2)→ (34852, 262, 22, 6)→ . . .

In fact we can just keep swapping a, b keeping c = d = 2 constant throughout.

Solution 4.9.17 (IMO Shortlist 2008 N1)

If two of a, b, c are equal, then it is easy to see that all must be equal. So assume all are
pairwise distinct. Now we get relations of the form an − bn = −p(b − c). Multiplying them
gives our key identity

an − bn

a− b
· b

n − cn

b− c
· c

n − an

c− a
= −p3. (9.4)

Now suppose that p > 2. We show that, in fact, being prime is too strong a condition, the
following more general claim is also true:

Claim. Equation 9.4 cannot hold for any odd integer p.
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Proof. We make two crucial observations: the first is that if n is odd, then xn−yn, x−y have
the sign, and hence the left side becomes positive. So n is even. The second observation is
that

xn − yn

x− y
= xn−1 + xn−2y + · · ·+ yn−1 ≡ xn−1 ≡ 0 (mod 2)

if x ≡ y (mod 2). In our case, the pigeonhole principle gives shows that two elements in
{a, b, c} have the same parity, giving the desired contradiction since −p3 is odd. Hence the
claim has been proven.

Now suppose p = 2. Then Equation 9.4 shows that a, b, c have the same parity, otherwise
an odd number would divide −23. As before, we can show that n is even, say n = 2k. Write
Equation 9.4 as

ak + bk

2
· a

k − bk

a− b
· b

k + ck

2
· b

k − ck

b− c
· c

k + ak

2
· c

k − ak

c− a
= −1.

Hence each term is ±1. But then ak + bk = ±1. If k is even, then this means |a| = 1 = |b|.
But then ak − bk = 0, contradicting the identity above.

If k is odd, then a+ b | ak + bk = ±2. since a, b have the same parity, hence a+ b = ±2.
Similarly b + c, c + a = ±2. But then two of these have the sign, which is impossible since
these are distinct integers. Hence we have exhausted all the possibilities.

Solution 4.9.18 (IMO Shortlist 2017 N6)

We claim the answer is n = 3. Firstly, n = 1 is clearly not possible. So suppose there exist
infinitely many solutions for n = 2. Suppose a+ b = x and 1

a
+ 1

b
= y where x, y ∈ Z. Write

a = p/q with p, q coprime. Then

y =
1

a
+

1

x− a
=

x

a(x− a)
=

q2x

p(xq − p)
.

So p | x. Write x = pk. Then

y =
q2pk

p(pqk − p)
=

q2k

p(qk − 1)
.

Now, clearly gcd(qk − 1, q2k) = 1, hence we must have qk − 1 = 1, i.e. qk = 2. If q = 1,
then a is an integer and x = 2a, meaning b = a. But then ab | a + b and so a = b = 1 or 2.
If q = 2 and k = 1, which means x = p and a = p/2. But then p | 4 and so a = b = 1

2
. So we

only have finitely many possibilities.

Now we show the result for n = 3. Here, we take(
1

1 + x+ y
,

x

1 + x+ y
,

y

1 + x+ y

)
where x, y are positive integers. Then we just want

x+ 1

y
+
y + 1

x
∈ Z
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for infinitely many (x, y) ∈ N2. Let’s see how we do this. Suppose the above is k for some k.

Suppose for some k we have a solution (x, y) with x ≤ y. We thus get the equation
x2− (ky− 1)x+ y2 + y = 0, and now employ vieta jumping. Let the other root be x0. Then
xx0 = y2 + y > 0 and x0 = ky − 1− x ∈ Z. Hence, x0 ∈ N. So we jump

(x, y) 7→
(
y2 + y

x
, y

)
.

Now, if can show x0 > y, then we have found a larger pair, and we can keep on proceeding
forever. But this is clear since

y2 + y

x
≥ y2 + y

y
= y + 1 > y.

So we went (x, y) 7→ (x0, y) where x ≤ y < x0. Now we need to pick a suitable k such that
we have a valid solution at the start. if k = 4, then (x, y) = (1, 1) works and we get

(1, 1)→ (2, 1)→ (2, 6)→ (21, 6)→ (21, 77)→ . . . .

Solution 4.9.19 (IMO Shortlist 2019 N8)

Assume on the contrary. Then there exists an 0 ≤ f < b such that the equation becomes

a2 +
4a2 + f

b
= c2

for some c. Clearly, c > a(> 0). This rearranges to

(b+ 4)a2 − bc2 = −f.

So the above becomes b(a − c)(a + c) + 4a2 = −f. So if we write x = a + c and y = c − a,
then the above becomes

−xyb+ 4

(
x+ y

2

)2

= −f ⇐⇒ x2 − (b− 2)xy + y2 + f = 0.

We now employ Vieta Jumping. Since c > a, hence x, y ∈ N and x > y ≥ 1. From a solution
(x, y), we jump:

(x, y) 7→ (x0, y) =

(
y2 + f

x
, y

)
,

Now, x0 = (y2 + f)/x > 0 and is an integer since it equals b − 2 − x. So if we can show
x0 < x, then we have established a descent. Note that x0 < x ⇐⇒ y2 + f < x2. Now,

x2 − y2 = 4ac > 4a2 = b(c2 − a2)− f > b > f

since c2 − a2 = (c− a)(c+ a) > 2. Hence, we are done. �
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Solution 4.9.20 (China TST 3 2018 Day 3/2)

We will show that there are no solutions. Firstly, gcd(xy+1, xy+x+2) = gcd(xy+1, x+1) =
gcd(y − 1, x+ 1). So let x+ 1 = da and y − 1 = db, where gcd(a, b) = 1. Then we have

xy + 1 = d · u2 and xy + x+ 2 = d · v2

for some relatively prime (u, v). Thus, du2 = d2ab+ d(a− b) and dv2 = d2ab+ d(2a− b). So,

(d · b+ 1)v2 − (d · b+ 2)u2 = b.

Since v > u, we can let v = X+Y
2

and u = X−Y
2

for some positive integers X and Y . Thus
the equation becomes

X2 − (4bd+ 6)XY + Y 2 + 4b = 0.

Vieta jumping works now: assume for contradiction there is a solution (X, Y ) in positive
integers. Assume X ≥ Y by symmetry. We jump

(X, Y ) 7→
(
Y 2 + 4b

X
, Y

)
.

We give a different finish than what we normally do in Vieta Jumping. Suppose we must
eventually reach a pair of pairs (X1, Y ) and (X2, Y ) with X1 > X2 ≥ Y, so that the proces
stops there. This means that we should have X1 +X2 = (4bd+ 6)Y and X1X2 = Y 2 + 4b.

But since X1, X2 > Y, hence X1 +X2 = (4bd+ 6) · Y , then

X1 ·X2 ≥ Y · (4bd+ 5)Y > Y 2 + 4b,

a contradiction. So the process goes on forever, which again is a contradiction.

Solution 5.9.14 (Iran 2016 Round 3 NT/1)

Clearly, we must have that q - x because otherwise q|(x+ 1)p − xp would imply q|1, absurd.

Suppose (x+ 1)p ≡ xp (mod q). Since gcd(q, x) = 1, hence this gives(
x−1 + 1

)p ≡ 1 (mod q).

Let a = x−1 + 1. Then, ordq(a)|p and since p is a prime, we have ordq(a) ∈ {1, p}. If
ordq(a) = 1, then a ≡ 1 (mod q), which implies x + 1 ≡ x (mod q), absurd. Hence,
ordq(a) = p. So we find p | q − 1 and so q ≡ 1 (mod p).

Conversely, if p|q − 1, then set q = pk + 1 for some integer k. We know that there
always exists a primitive root modulo any prime. Let y be a primitive root modulo q, so
that yq−1 ≡ 1 (mod q). Let a = yk and note that

ap = (yk)p = ypk = yq−1 ≡ 1 (mod q).

Also note that gcd(a − 1, q) = gcd(yk − 1, q) = 1 since y is a primitive root mod q and
k < q − 1. So there exists an integer x such that x(a − 1) ≡ 1 (mod q). This implies
x+ 1 ≡ xa (mod q). Raise both sides of the latter congruence equation to the power of p to
obtain

(x+ 1)p ≡ (xa)p ≡ xp (mod q).

Thus, this value of x works, and this completes the proof.



9.6. PRACTICE PROBLEMS 291

Solution 5.9.17 (USA EGMO TST 2019/2)

Define

S` := 1` + 2` + · · ·+ n`,

so that n | S` for all ` ∈ {1, 2, . . . , 99}. Let p be a prime in {2, 3, . . . , 100}. Then

(n+ 1)p − 1

n
=

1

n

n∑
i=1

(i+ 1)p − ip

=
1

n

n∑
i=1

(
p

1

)
ip−1 +

(
p

2

)
ip−2 + · · ·+

(
p

p− 1

)
i+ 1

=

((
p

1

)
Sp−1
n

+

(
p

2

)
Sp−2
n

+ · · ·+
(

p

p− 1

)
S1

n

)
+ 1

Since each binomial coefficient on the right is divisible by p, and each fraction is an integer
by the hypothesis, hence modulo p, the above gives

(n+ 1)p − 1

n
≡ 1 (mod p).

However, if p | n, then the left side is

(n+ 1)p−1 + (n+ 1)p−2 + · · ·+ (n+ 1) + 1 ≡ 1 + 1 + · · ·+ 1 ≡ 0 6≡ 1 (mod p),

which is a contradiction. Thus, no prime in {2, 3, . . . , 100} divides n, so done.

Comment 9.6.4: The power sum formula works for k = 1, 2, 3, however we don’t
have any (simple) formula for k ≥ 4. So, we fall to first principles, which in this case
is the proof of the cases k = 2, 3 which solves the problem!

Solution 5.9.18 (IMO Shortlist 2014 N6)

The idea is to group up segments of the same length, i.e. for a possible length `, find how
many segments can have length `. Clearly, 0 < ` < a1 otherwise there would be a multiple
of a1 inside L, hence ` ∈ {1, . . . , a1 − 1}. Pick any one segment L of length `. Now, L is
characterized by its endpoints.

So we can find a subset A ⊂ {a1, . . . , an} and a subset B ⊂ {a1, . . . , an} such that the
left endpoint of L is divisible by elements A and the right by elements of B. So we basically
want x such that x ≡ 0 (mod a) for all a ∈ A, x ≡ −` (mod b) for all b ∈ B.

Another condition we need to ensure is that no multiple of any other terms lies inside
L. Clearly, no multiple of an element from A or B can be inside L because ` < a1 < ai for
all i. Also, A,B are disjoint for the same reason. So let C = (A ∪ B)c, i.e. the elements
in {a1, . . . , an} not in A or B. So for any c ∈ C, we want no multiple of c inside L, i.e.
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no multiple between x, x + `. Hence, x can be 1, 2, . . . , c − ` − 1 (mod c). So, we have the
following conditions:

x ≡ 0 (mod a) ∀ a ∈ A;

x ≡ −` (mod b) ∀ b ∈ B;

x ∈ {1, 2, . . . , c− `− 1} (mod c) ∀ c ∈ C = (A ∪B)c.

.

The key observation now is that any marked point in I is precisely defined by its value
(mod ai) for all i.6 Hence the above constraints uniquely define ai.

The final observation is that A,B can be any disjoint subsets of {a1, . . . , an}. Hence, the
number of segments with length ` becomes∑

A∩B=φ

∏
c∈(A∪B)c

(c− `− 1).

Hence, our desired sum becomes

a1−1∑
`=1

∑
A∩B=φ

`2
∏

c∈(A∪B)c

(c− `− 1).

This feels weird, but here’s how the magic happens: Note that the sum over A,B is the same
for all `, and the product after it is a polynomial in `, say p(x). So the above becomes the
sum of p(`) from ` = 1 to a1 = 1. Since |A|, |B| ≥ 1, hence deg p ≤ 2 + (n− 2) = n ≤ a1− 2.
Now since

1i + 2i + · · ·+ (p− 1)i ≡ 0 (mod p)

for all 0 ≤ i ≤ p − 2 (Example 5.5.1), hence the above sum is 0 mod a1 (as ai is a prime),
and we are done!

Comment 9.6.5: The idea we saw at the end will be repetitive in the chapter on
quadratic residues. To write it out explicitly, for instance with f(x) = x3 + 2x+ 1 and
p = 5, we have

p−1∑
x=1

f(x) =
4∑

x=1

x3 + 2x+ 1

=
4∑

x=1

x3 + 2

(
4∑

x=1

x

)
+ 1

(
4∑

x=1

1

)
≡ 0 + 0 + 0 = 0 (mod 5)

Basically, we pair up terms according to their powers, and irrespective of their coeffi-
cients, they add to 0.

6This is quite intuitive, however to formalize it we use the ”Chinese Remainder Theorem”, which we
discuss in the chapter on Constructions.
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Solution 6.7.17 (Iran 2017 Round 3 NT/1)

Let p be the smallest prime not in the list p1, p2, . . . , pk. Out of all νp, let s be the maximum
achieved for aw. The key claim is the following:

Claim. For all i 6= w, we have νp(ai) < s.

Proof. Suppose νp(ai) = s, and write ai = cps. Now both ai, aw cannot be equal to ps, so
assume without loss of generality that ai 6= ps, i.e. c > 1. Then c can’t have any prime factor
from p1, . . . , pk and further p - c. By minimality of p, this means c > p. Hence, ps+1 < ai < n.
But then one of {aj} must equal ps+1, contradicting the maximality of s.

The claim finishes the problem since νp of the sum equals min νp(a
−1
w ) = −s < 0.

Comment 9.6.6: This is a generalization of the two classic problems asking to show

Hn = 1 +
1

2
+ · · ·+ 1

n
6∈ Z, 1 +

1

3
+ · · ·+ 1

2n− 1
6∈ Z.

In the first one, the set {pi} = φ, and in the second case {pi} = {2}. The proofs are
also identical, for instance in the first we consider ν2 and 2 is the smallest prime factor
not in {pi}. Further, we show ν2(Hn) = −k where k is such that 2k ≤ n < 2k+1, which
was possible since νp(i

−1) 6= −k for any other i. This is precisely what we did here.

Solution 6.7.18 (China TST 2 2019/4)

Pick an odd prime p. Let pk ≤ m < pk+1. Then we have to prove

νp(m!)−
⌊
m

2p

⌋
−
⌊
m

4p

⌋
− · · · ≥ k.

Let 2tp ≤ m < 2t+1p. Then⌊
m

2p

⌋
+

⌊
m

4p

⌋
+ . . . ≤

⌊
m

2p

⌋
+

(
m

4p
+
m

8p
+ . . .

)
−
(

m

2t+1p
+

m

2t+2p
+ . . .

)
=

⌊
m

2p

⌋
+
m

2p
− m

2tp
.

Since the Legendre’s formula of νp(m!) has only k non-zero terms, hence we can split that
νp(m!)− k to the sum of (bn/psc − 1) where s = 1 to k. Hence,

νp(m!)− k −
⌊
m

2p

⌋
−
⌊
m

4p

⌋
− . . . =

(⌊
m

p

⌋
− 1

)
+ · · ·+

(⌊
m

pk

⌋
− 1

)
−
(⌊

m

2p

⌋
+

⌊
m

4p

⌋
+ . . .

)
>

((
m

p
− 1

)
− 1−

⌊
m

2p

⌋
− m

2p
+

m

2tp

)
+

(⌊
m

p2

⌋
− 1

)
+ . . .

(⌊
m

pk

⌋
− 1

)
≥
({

m

2p

}
− 1

)
+

(
m

2tp
− 1

)
≥ −1.

Hence, the LHS is ≥ 0 (as it’s in integer) and hence we are done. �
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Solution 6.7.20 (Tuymaada Olympiad)

Write this as

10n((n1 + 1) . . . (nk − 1)nk + · · ·+ (nk−1 + 1) . . . (nk − 1)nk + 1) = nk!.

Let the quantity in the bracket be S, so that 10nS = nk!. So nk | 10 so write nk = 2a5b. Now
we analyze the possible values of a, b:

• Suppose a, b > 0. Then 10 | nk and so gcd(S, 10) = 1. But 10nS = nk!, and so we must
have ν2(nk!) = ν5(nk!). However, clearly

ν2(nk!) =
∑⌊nk

2j

⌋
≥
∑⌊nk

5j

⌋
= ν5(nk!)

since bnk/2jc ≥ bnk/5jc . Hence equality holds so that bnk/2jc = bnk/5jc for all j.
This, however, means nk ≤ 3, and these cases can be manually ruled off.

• Suppose b = 0. Then 2 | nk so S is odd. Hence, ν5(nk!) ≥ ν2(10n) = ν2(nk!) (because
S might contribute some factors of 5). As before, this is impossible.

• Suppose a = 0. Then 5 | nk so gcd(5, S) = 1. Now, the key observation in this
case is that S is odd if nk > nk−1 + 1. However, as before S odd causes issues. So
nk = nk−1 + 1. But then 4 | nk− 1 (since nk is a power of 5), hence S ≡ 2 (mod 4), i.e.
ν2(S) = 1. Hence, ν2(nk!) = 1 + ν2(10n) = n + 1 = ν5(nk!) + 1. As before, this means
bnk/2c = 1 + bnk/5c and so nk ≤ 6. Since nk is a power of 5, hence nk = 5, nk−1 = 4,
which can be checked to not work.

Solution 6.7.23 (USA TSTST 2014/6)

Let s be the order of a · b−1. Then the terms in the sequence divisible by p are precisely those
of the form cak − dbk, cak+s − dbk+s, cak+2s − dbk+2s, . . . . So define

A =
as

bs
, B =

dbk

cak
.

Then we have reduced the problem to:

Claim. Let A,B ∈ Q+ and p be a prime such that A ≡ B ≡ 1 (mod p). Consider the
sequence {An − B} as n goes over non-negative integers. Then we need to show that if
{νp(At −B)}∞t=0 is not constant, then it is unbounded.

Assume on the contrary x, y such that u = νp(A
x − B) < νp(A

y − B) = v. It is enough
to construct a ` such that νp(A

` −B) > v. Then

νp(A
y−x − 1) = νp((A

y −B)− (Ax −B)) = ν(Ax −B) = u.
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So using LTE, we can find a k such that νp(A
k− 1) = v, namely k = (y−x)pv−u. Now write

Ak = pvα + 1 and Ay = pvβ + B with gcd(p, α) = gcd(p, β) = 1. Then (using the binomial
theorem)

Akr+y −B = (pvα + 1)r(pvβ +B)−B
≡ (rpvα + 1)(pvβ +B)−B
= pv(rαB + β) (mod pv+1).

So if we choose r such that r ≡ −β/(Bα) ≡ −β/α (mod p), then the above becomes 0.
Thus, νp(A

kr+y −B) ≥ v + 1. This gives the desired contradiction. �

Solution 6.7.24 (ELMO 2017 N3)

The answer is no. Suppose not for a fixed C. Consider any prime p. Then the problem gives

kνp(ak+1) ≤ kνp(C) + νp(a1) + · · ·+ νp(ak). (9.5)

Now we have the following key claim (guessed by small values)

Claim. Let Hn denote the nth harmonic number defined by

Hn =
1

1
+

1

2
+ · · ·+ 1

n
.

Then
νp(an)− νp(a1) ≤ Hn−1νp(C).

Proof. The proof is just strong induction on n. Firstly, put k = 1 in Equation 9.5 to get

νp(a2)− νp(a1) ≤ 1νp(C),

which serves as the base case since H1 = 1. Now assume the result till some n. Then putting
k = n in Equation 9.5, we find

nνp(an+1) ≤ nνp(C) + νp(a1) + νp(a2) + · · ·+ νp(an)

≤ nνp(C) + νp(a1) + (νp(a1) + H1νp(C)) + · · ·+ (νp(a1) + Hn−1νp(C))

= nνp(a1) + (n+ H1 + · · ·+ Hn−1) .

and hence

νp(an+1)− νp(a1) ≤
1

n

(
n+

(
1

1

)
+ · · ·+

(
1

1
+ · · ·+ 1

n− 1

))

=
1

n


1 +

1

2
+

1

2︸ ︷︷ ︸
2

+ · · ·+ 1

n
+ · · ·+ 1

n︸ ︷︷ ︸
n

+

(
1

1

)
+ · · ·+

(
1

1
+ · · ·+ 1

n− 1

)
=

1

n

(
n · 1

1
+ n · 1

2
+ · · ·+ n · 1

n

)
= Hn.

and the induction is complete.
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The key hypothesis we need now is that ai are pairwise distinct. We want to try to force
νp(ai) = νp(aj) for all primes to get a contradiction. It is not too hard to observe from
Equation 9.5 that that any prime divisor of ak must divide Ca1. So we only need to worry
about a finite set of prime factors, say P = {p1, . . . , pk}.

We have the famous estimate for Hn :

Hn ≤ 1 + log(n+ 1) =⇒ Hn ≤ log n+ log n2 = 3 log n.

(basically Hn = O(log n)7). Now for any prime p ∈ P and any n ≥ 1,

νp(an) ≤ Hn−1νp(C) + νp(a1) ≤ A log n

for some large enough A (since P is a finite set, hence νp(C), νp(a1) are always less than some
fixed constants).

Hence if we look at k tuples of the form (νp1(an), . . . , νpk(an)), then there are at most

k∏
i=1

(1 + A log n) ≤ (B log n)k

for some large enough constant B (basically the product is O((log n)k).)

However, the number of tuples also has to be at least n + 1 (because if two tuples are
the same, then the numbers are the same).So

(n+ 1) ≤ (B log n)k

for all n. However, clearly this fails for large enough n since linear growth exceed logarithmic
growth.

Solution 7.7.9 (USAMO 1995/4)

Let the degree of P be d. Then |qn| < Cnd for some c 6= 0 and all n.

Define the polynomial Q by Q(i) = qi for all 0 ≤ i ≤ d. Then it suffices to show Q(n) = qn
for all n.

Pick any n and 0 ≤ i ≤ d. Then

n− i | qn − qi, and n− i | Q(n)−Q(i) = Q(n)− qi

Thus, we get n− i | Q(n)− qn for all 0 ≤ i ≤ d. If Q(n)− qn 6= 0, then we get the bound

lcm(n, n− 1, . . . , n− d) ≤ Cnd.

7Relevant Term for interested readers: ”Big O Notation”
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The heuristic is that this cannot be true for large enough n. To formalize it, we would need
some more rigorous bounding. There are many ways to do this. One way is to observe that

lcm(n, n− 1, . . . , n− d) = lcm(lcm(n, n− 1, . . . , n− d+ 1), n− d)

=
lcm(n, n− 1, . . . , n− d)(n− d)

gcd(lcm(n, n− 1, . . . , n− d+ 1), n− d)

≥ lcm(n, n− 1, . . . , n− d)(n− d)

gcd(n(n− 1) . . . (n− d+ 1), n− d)

≥ lcm(n, n− 1, . . . , n− d)(n− d)

d!

where the last line is because if p | gcd(n(n− 1) . . . (n− d + 1), n− d), then p | n + i, n + d
implies p | d− i, which means p ≤ d− i < d. Further, there are atmost

This is just a generalizat

Now, we can show that n(n − 1) . . . (n − d) | lcm(n, n − 1, . . . , n − d)T, where T =∑
i 6=j gcd(n− i, n− j) < d

(
d+1
2

)
= k. So,

Cnd ≥ kn(n− 1) . . . (n− d).

However, this fails for large n since the right side is a degree d + 1 polynomial. for some
ε > 0. This fails for large n. So for all n > N, we have Q(n) = qn. For some d < n < N,
we get by m − n | Q(n) − qn for any m > N, which is absurd due to size reasons unless
Q(n) = qn, and so we are done.

Solution 7.7.10 (Iran 2016 Round 3 NT/2)

Suppose that P is non-constant, and without loss of generality the leading coefficient of P is
positive. Hence, for large enough n, we have P (n) > 2. This means there is a prime p | P (n),
and so p | P (n+ pk) for all k. This also shows p | f(n+ pk).

Now Fermat’s Little Theorem gives us f(m) ≡ f(n) (mod p) if m ≡ n (mod p − 1).
Hence, f(n + pk) ≡ f(n + k) (mod p). Thus, if we pick k such that p − 1 | n + k, then
p | P (n + pk) implies p | f(n + pk) ≡ f(n + k) ≡ f(0) (mod p). Hence, p | f(0). But since
f is non-zero by the hypothesis, hence this shows p is bounded, a contradiction to Schur’s
Theorem. �

Solution 7.7.16 (IMO Shortlist 2011 N6)

Firstly, since P (x), Q(X) are coprime over Q[X], hence by Bézout’s lemma there exist poly-
nomials A,B ∈ Q[X] such that PA+QB = 1. We can multiply both sides by a constant so
that this becomes Pa+Qb = N for a fixed N ∈ Z and a, b ∈ Z[X].

Now we use f(n) | f(n + kf(n)) for all z ∈ Z. Thus, Q(n) | Q(n + kQ(n)) for all n and
z. So,

2Q(n) − 1 | 2Q(n+kQ(n)) − 1 | 3P (n+kQ(n)) − 1.
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Considering this over all k, we find 2Q(n) − 1 divides 3T − 1 where

T = 〈gcd(P (n+ kQ(n)))〉∞z=−∞ = gcd(. . . , P (n), P (n+Q(n)), P (n+ 2Q(n)), . . . ).

We want to show that T is bounded by a constant, which would show degQ = 0.

Claim. Suppose p | T. Then νp(T ) is bounded.

Proof. Let pM be a prime power that divides T. If pM | Q(n), then pM | P (n) so pM | N
hence M is bounded.

So say pM - Q(n). If p - Q(n) then P (x) + zQ(x) forms a complete residue class mod p,
and hence pM | P (k) for all k. In particular, pM | P (1), so that M is bounded.

So let νp(Q(n)) = t and write Q(n) = pt`. Then pM | P (n + z`pt) for all z. However
gcd(p, `) = 1, so this gives pM | P (n + zpt) by the complete residue class argument. So for
a choice of z, n + zpt is between pt and 2pt, say equals r (this is modulo pM). But then
pM | P (r), which shows PM < rd < Cptd, so that M < C ′t for fixed C ′.

But since pt | P (n), Q(n), hence pt | N so t is bounded. So M < C ′t also is bounded.

Now we just want primes dividing T to be bounded. Let p | T , then pick p > N so
p - Q(n), and p | P (n). Now p | P (k) for all k. Thus, p | P (1), so in all, p ≤ max(P (1), N),
hence there are only finitely many primes diving T. We are thus done.

Solution 7.7.17 (2020 Korean MO winter camp Test 1 P3)

We claim the answer is Q(x) = Axd, which clearly works. Now let Q(x) = xdR(x) so that
R(0) 6= 0. We aim to show R is constant. Assume that R is not constant and take any
m > R(0). Thus m - R(mc) for any c.

Claim. R(mc) and R(m) have the same prime divisors for any c.

Proof. Firstly, the second condition shows R(m), R(m2), R(m22), . . . all have the same num-
ber of prime divisors.

Now suppose R(mc) and R(m) have the same prime divisors. Since R(m · mc−1) and
R(m)R(mc−1) have the same prime divisors, hence every prime divisor of R(mc) is a prime
divisor of R(m). But R(mc−2 · c) and R(mc−2)R(c) have the same prime divisors, and since
R(mc−2) > 1, hence R(mc−1) has at least as many prime divisors as R(c). So, R(mc−1) and
R(m) have the same divisors.

So from every R(22k) we can induct down to prove the claim.

Let q | R(m). Since m - R(m), hence gcd(q,m) = 1. So Fermat’s Little Theorem shows
q | R(mq−1) ≡ R(1), and hence q | R(1). However, by Schur’s theorem this is a contradiction
unless R is constant, and hence we are done.



9.6. PRACTICE PROBLEMS 299

Solution 8.7.13 (AMM)

Clearly n = 1 is a solution. We will show that there is no other solution. Clearly, n is odd
since 3 - 2n − 1.

Pick a prime divisor p of 2n− 1. Then 3n+1 ≡ 3 (mod p) implies 3 is a quadratic residue
mod p. Hence, the quadratic reciprocity law gives

1 =

(
3

p

)
= (−1)

p−1
2
·3−1

2

(p
3

)
,

and so p ≡ ±1 (mod 12). This is true for all prime factors of 2n− 1, and hence 2n− 1 ≡ ±1
(mod 12), which gives 2n ≡ 2 or 0 (mod 12). The latter is impossible, and the former is only
possible if n = 1. Hence we are done.

Solution 8.7.14 (Taiwan 1997)

First say that k is a prime. Clearly we just have to show that k is a quadratic nonresidue.
Since n > 0, hence k ≡ 1 (mod 4). Further, k = 42n−1

+ 1 ≡ 2 (mod 3). Hence(
3

k

)
= (−1)

p−1
2

(
k

3

)
= −1.

Now for the other direction, since 3
k−1
2 ≡ −1 (mod k), hence 3k−1 ≡ 1 (mod k). In particu-

lar, ordk(3) | k − 1 = 22n but ordk(3) - k−1
2

= 22n−1
. Hence the order is k − 1 = 22n .

But then the order divides ϕ(k), and hence k−1 ≤ ϕ(k). However, this means all elements
in {1, 2, . . . , k − 1} are coprime to k, showing that k is a prime.

Solution 8.7.15 (ELMO 2011/5)

The conditions p = 2q + 1 gives the following key claim:

Claim. Any residue x ∈ {3,−4, 12} is a primitive root if and only if it is not a quadratic
residue.

Proof. Generally, being a primitive root implies not a quadratic residue. In this case, how-
ever, the converse holds too. Since ordp(x) | p − 1 = 2q, hence ordp(x) ∈ {1, 2, q, 2q}. For
our values of x, we can check that 1, 2 are not possible as p > 13. So, the order being a
quadratic residue is equivalent to the order being q, which implies it is not a primitive root,
and this proves the claim.

The next claim is more explicit:

Claim. −4,−12 are primitive roots modulo p, while 3 isn’t, i.e. ordp(−4), ordp(−12) = 2q
while ordp(3) = q.
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Proof. Since (p− 1)/2 = q is odd, hence −1 is not a quadratic residue. So(
−4

p

)
=

(
22

p

)(
−1

p

)
= −1.

So −4 is a primitive root. Now, 3 isn’t a primitive root if it is a quadratic residue. Now
q > 3, and hence p = 2q + 1 ∈ {2 · 1 + 1, 2 · 2 + 1} ≡ {0, 2} (mod 3). Since p > 3, we get
p ≡ 2 (mod 3). So, by quadratic reciprocity,(

3

p

)
= (−1)q

(p
3

)
= (−1) · (−1) = 1.

Hence, 3 is a quadratic residue. Finally,(
−12

p

)
=

(
−1

p

)(
3

p

)
= −1

meaning that −12 is a primitive root. Hence we are done.

Now, rewrite the given condition:

3m + (−12)m ≡ 3n + (−12)n (mod p)⇔ 1 + (−4)m ≡ 3n−m + (−4)n · 3n−m (mod p)

⇔ 1− 3n−m ≡ (−4)m
(
(−12)n−m − 1

)
(mod p).

Now 3n−m ≡ 1 (mod p) happens if q = ordp(3) | n−m. If this is not true, then the above is

(−4)m ≡
(
(−12)n−m − 1

)
·
(
1− 3n−m

)−1
(mod p).

Now, the right depends completely on n −m. Also, since ordp(3) = q, hence each value of
n−m between 1 and q − 1 (we are not considering q - n−m) gives a different value for the
right side. Now since (−4) is a primitive root, hence there would exist some m such that
(−4)m is congruent to the right side.

Hence, for every n − m, there exists a m. Now each (m,n − m) pair uniquely gives a
(m,n) pair. Hence, the fact that there are q − 1 values of n −m means q − 1 solutions in
this case.

So, we just need to deal with the case when q | n − m. In fact, if q - n − m, then
our equation gives 0 ≡ (−4)m ((−1)− 1) (mod p) since ordp(−12) = 2q. However, this is
impossible. Hence no solutions in this case. So the q − 1 solutions we analyzed above are
the only ones.

Solution 8.7.16 (Iran TST 2020/6)

The answer is all sets in which xi ∈ {0, 1} for all i. Clearly it works, so now we will prove
that this is the only possibility.
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The key idea in this approach is to expand (txi+ 1)n and sum over all xi to use the given
condition. The fact that n = p−1

2
is made use of by Euler’s Criterion. Let s be the common

sum in the problem statement. Then∑
i

(
wxi + 1

p

)
≡
∑
i

(wxi + 1)n

=
∑
i

(wxi)
n +

(
n

1

)
(wxi)

n−1 + · · ·+
(

n

n− 1

)
(wxi) + 1

≡ s

(
wn +

(
n

1

)
wn−1 + · · ·+

(
n

n− 1

)
w + 1

)
+ n− s

= s

[(
w + 1

p

)
− 1

]
+ n (mod p).

So, picking w + 1 to be a quadratic residue, we can prove the following key result:

Claim. Whenever t is a quadratic residue with t 6= 0, 1, then (t − 1)xi + 1 is a non-zero
quadratic residue for all i.

It turns out this claim is sufficient to solve the problem. Consider T to be the set of
quadratic residues not equal to 0 or 1. Fix some x = xi. Suppose x 6= 0. Then we can see
that the map

T 7→ T : t 7→ (t− 1)x+ 1

is a bijection by the claim. So we have two equal sets. We now add and compare the elements
from both the sets. Since ∑

t∈T

t ≡ −1 (mod p)

for all p > 3, hence
x(−1− (n− 1)) + (n− 1) ≡ −1 (mod p),

which gives x ≡ 1 (mod p), as desired. �

Solution 8.7.17 (USA TST 2014/2)

Firstly note that each term of the sequence is also a square. Now let p | a1. Then p |
(a1 + · · ·+ ap) and p | (a2 + · · ·+ ap+1). Hence a1 ≡ ap+1 (mod p). In a similar way we can
prove the following more general claim:

Claim. If p | aj, then p | aj±p.
Now let k > 1 be the least quadratic non-residue modulo p. Let Z2 denote the set of

perfect squares. Then

kZ2 3 a1 + · · ·+ ak ≡ a2 + · · ·+ ak ∈ (k − 1)Z2 (mod p).

However, unless p | a2+· · ·+ak, this is impossible since it shows
(
k
p

)
=
(
k−1
p

)
, contradicting

minimality of k. Thus p | a1 + · · ·+ ak. But then

Z2 3 ak+1 ≡ a2 + · · ·+ ak+1 ∈ kZ2 (mod p),

which is impossible again unless p | ak+1. In general,
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Claim. If p | aj, then p | aj±k.

Since gcd(k, p) = 1, hence the above claims give p | ai (for instance use Bézout Lemma
to find u, v such that ku+ pv = d for any integer d. Then 0 ≡ a1 ≡ a1+ku ≡ a1+ku+pv = a1+d
(mod p) for any integer d). Then we can divide all the terms of the sequence by p and obtain
a ”smaller sequence”, and keep repeating this process to show that the set of prime factors
is the same for all terms.

Solution 8.7.18 (USOMO 2020/3)

We claim the answer is always 2 irrespective of p. Define the set B = {b : b, 4 − b ∈
QR}\{0, 4}. We work in Fp, so that each equality below is actually a congruence mod p.
Define X = (A ∪B)\{2}. We start by establishing the following key claim:

Claim. For any b, b ∈ B ⇔ b = x(4− x) for some x ∈ A or B.

Proof. Clearly for x ∈ A or B, x(4− x) is a QR. Now suppose b ∈ B. Then

4− b = y2 ⇐⇒ b = 4− y2 = (2− y)(2 + y).

So take x = y + 2. Then x(4 − x) is a QR and so x ∈ A or B, and b = x(4 − x) so this
works.

The claim gives us a natural mapping from f : X 7→ B given by x 7→ x(4 − x), which
is in B. The key observation now is that f(α) = f(β) ⇐⇒ α = β or α + β = 4. Hence,
for x 6= 2, each pair (x, 4− x) ∈ X2 maps to a unique element of B, and this covers all the
elements of B. Hence,

2
∏
b∈B

b =

(∏
x∈X

x

)
=

(∏
a∈A

a

)(∏
b∈B

b

)
=⇒

∏
a∈A

a = 2.

Solution 9.6.10 (APMO 2009/4)

Pick a set P of n primes p1, . . . , pn such that p1 > p2 > · · · > pn > n. Then, using the
Chinese Remainder Theorem, pick an x such that

x ≡ −i (mod pi)

for all i. Pick N = p1p2 · · · pn. We then claim that the following fractions (on being reduced)
work:

x+ 1

N
, . . . ,

x+ n

N

Clearly gcd(x + i, x + j) = gcd(x + i, j − i) ≤ |j − i| < n < pi, pj. So for each i, the only
prime from P dividing xi + i is pi. Thus

x+ i

N
=

(x+ i)/pi
N/pi
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is the reduced form of each fraction. The reduced denominators of all the fractions are
clearly distinct. Also, no reduced numerator would equal a reduced denominator since the
only p ∈ P dividing x+ i is pi.

Finally we see that that if for some j > i, we have x+i
pi

= x+j
pj
, then x+i

x+j
= pi

pj
> 1 =⇒

i > j, absurd. Hence, the numerators are also pairwise distinct.

Solution 9.6.13

Assume without loss of generality that the number n is square-free. Suppose n = p1p2 . . . pk.
We will show that there exist arbitrarily large primes p such n is a quadratic nonresidue mod
p. We do this very greedily. Now(

pi
p

)
= (−1)

pi−1
2
·p−1

2

(
p

pi

)
, pi 6= 2.

Hence, if we set p ≡ 1 (mod 4) and p ≡ 1 (mod pi), then the right side above becomes +1
meaning that pi is a quadratic residue mod p. On the same note, if we choose p to be a
quadratic nonresidue mod pi, then the right side becomes −1 and hence pi is a quadratic
nonresidue mod p. So set up the system: (also if pi = 2, then pi is a QR mod p if p ≡ 1
(mod 8), so we set p ≡ 1 (mod 8) below instead of just p ≡ 1 (mod 4))

p ≡ 1 (mod 8)

p ≡ 1 (mod pi), 1 ≤ i ≤ k, pi 6= 2

p ≡ a (mod pk)

where a is a quadratic nonresidue mod pk, then by Chinese Remainder Theorem the above
gives us a congruence p ≡ z (mod N). By Dirichlet’s theorem, this has infinitely many prime
solutions, and for any such p,

(
n

p

)
=

 ∏
1≤i≤k−1

(
pi
p

)
︸ ︷︷ ︸

+1

(pkp
)

︸ ︷︷ ︸
−1

= −1.

Hence, pick a very large prime p satisfying p ≡ z (mod N) and we get a contradiction. �

Solution 9.6.15 (IMO Shortlist 2005 N6)

The given condition gives an + n | bn − an for all n. We cleverly pick n now given by the
system of congruence (this has a solution by the Chinese Remainder Theorem){

n ≡ 0 (mod p− 1)

n ≡ −a (mod p)

for any prime p. By Fermat’s Little Theorem, such an n gives an ≡ a, bn ≡ b (mod p).
Further, an + n ≡ a + n ≡ 0 (mod p). Hence, p | bn − an implies a ≡ b (mod p). Since this
is true for all primes p, hence a = b.
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Solution 9.6.16 (EGMO 2018/6)

Let S = {a1, · · · , an} where ai < aj when i < j. Since ai ∈ N, hence an ≥ a1 + n− 1, which
implies that a1

an
can get arbitrarily small for large n. So take m = 0, and choose a sufficiently

large n such that ∣∣∣∣a1an − 0

∣∣∣∣ < t

which is enough to solve the first part. �

The answer to the second part is yes. We construct this set recursively. They key
observation is that for any x, y ∈ S, we must have

1− t >
{
x

y

}
> t⇔ 1− t > x mod y

y
> t.

Note that f(x) =
x−1
2

x
get closer to 1

2
as x increases. So we act greedily and choose a prime

p1 such that 1− t > 1
2
> f(p1) > t. So set p1 to be the first element of S. Then, by Dirichlet,

we can choose a prime p2 such that p2 ≡ p1−1
2

(mod p1) and p2 > 2p1. Next, choose a prime
p3 such that 

p3 ≡ p1−1
2

(mod p1)
p3 ≡ p2−1

2
(mod p2)

p3 > 2p2

Such a prime exists by Dirichlet and The Chinese Remainder Theorem. Proceed and con-
struct the primes pi for all i ≥ 1. Then we claim that the infinite set

S = {p1, p2, p3, · · · } works.

The reason is simple. Firstly, see that for j > i, 0 < pi
pj
< 1

2
and since m 6= 0, hence this

works. Also, if j > i, then
{
pj
pi

}
= f(pi), which by assumption lies in

(
t, 1

2

)
. �

Solution 9.6.19 (China TST 1 2019/2)

The answer is yes. Take m > 1 such that mn ≡ 1 (mod n) (this can be done by choosing a
m such that m ≡ 1 (mod n)). Let d = mn−1

n
, and set

a1 = m, a2 = m(1 + d), a3 = m(1 + 2d), . . . an = m(1 + (n− 1)d)

b1 = (1 + d), b2 = (1 + 2d), . . . bn−1 = (1 + (n− 1)d), bn = (1 + nd).

Then
n∏
i=0

ai = mn︸︷︷︸
=(1+nd)

·
n−1∏
i=0

(1 + id) =
n∏
i=0

(1 + id) =
n∏
i=0

bi.

Further, it is easy to check that the GCD of all terms is 1, and hence our construction works.
Now we want to show there are infinitely many such sequences. However, this is true since
we have infinitely many choices for m. �
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Solution 9.6.20 (INMO 2019/4)

The key observation is that if z is any common divisor of M+i,M+j, then z | i−j implying
z ≤ |i− j| ≤ n− 1. Now the following is the key claim:

Claim. Define

xi =
M + i

gcd(M + i, (n− 1)!)
.

Then x1, . . . , xn are all pairwise coprime.

Proof. Suppose p is a prime dividing both xi, xj. Then p |M + i,M + j and hence p ≤ n−1.
So even after dividing by the gcd if we have a leftover factor of p in xi, xj (with i 6= j), then

νp(M + i), νp(M + j) > νp((n− 1)!) = w.

Then pw+1 | (M + i), (M + j) implies pw+1 ≤ n − 1. But this means pw+1 occurs in the
product (n− 1)!, which contradicts the fact that νp((n− 1)!) = w < w + 1.

Now, since M > nn−1 > (n − 1)! for all n ≥ 1, all xi > 1, implying they have a prime
factor. So pick the set {pi} such that pi is any prime factor of xi. Clearly this works. �

Comment 9.6.7: Note that this proof improves the bound from M > nn−1 to M >
(n− 1)!. We present a second proof which is perhaps easier to come up with.

Proof. Assume on the contrary. As before, if a number z divides two terms M + i,M + j,
then z ≤ n − 1. Now for numbers with at least n prime factors, we can pick a prime easily
for them. So ignore them for now.

Suppose that M + i has less than n prime factors. Then since M + i > nn−1, there exists
some prime factor p of M + i such that pα = pνp(M+i) > n. Pick this prime p for M + i. If p
is also chosen for another M + j, then we must have also pβ = pνp(M+j) > n. However, then
gcd(pα, pβ) > n, contradicting the fact that any common divisor of M + i,M + j must be
less than n.

Solution 9.6.21 (USA TSTST 2015/5)

We show by induction on k that for any k, there exists an integer m such that ϕ(n) = m
has at least k solutions. The key idea is to take the first k primes 2 = p1 < p2 < · · · < pk.

Claim. Let Pk denote the product p1 . . . pk. Then there exist at least k solutions to ϕ(n) =
ϕ(Pk) such that all prime factors of n are from the set {p1, . . . , pk}.

Proof. For k = 1, the result is clearly true, so assume it till some k. Take any n such that
ϕ(n) = ϕ(Pk). Then ϕ(npk+1) = ϕ(n)ϕ(pk+1) = ϕ(Pk+1), since pk+1 - n.

Hence, we have at least k solutions to ϕ(N) = ϕ(Pk+1), and we just need 1 more. For
this, observe that

ϕ(Pk+1) = (pk+1 − 1)ϕ(Pk).
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Now comes the main argument: Since pk+1−1 < pk+1, hence all its prime factors are from the
set {p1, . . . , pk}, since these are the first k prime numbers. So we claim that N = Pk(pk+1−1)
works.

Indeed, if pk+1 − 1 = pα1
1 . . . pαkk , then

ϕ(Pk(pk+1 − 1)) = ϕ

(∏
i

pαi+1
i

)
=

(∏
i

pαii

)(∏
i

(pi − 1)

)
= (pk+1 − 1)ϕ(Pk) = ϕ(Pk+1)

and we are done.

Comment 9.6.8: If we want to explicitly see the numbers we get from the above
induction, we get

n1 = (p1 − 1)p2 . . . pk

n2 = p1(p2 − 1) . . . pk
...

nk = p1p2 . . . (pk − 1).

All these numbers satisfy

ϕ(ni) = ϕ(Pk) = (p1 − 1)(p2 − 1) . . . (pk − 1).

Solution 9.6.22 (APMO 2020/4)

The answer is all linear polynomials. First, we show these work. Let P (x) = mx+n. Define
si = a1 + · · ·+ ai.

Consider m + 1 numbers x1, . . . , xm+1 > 1 that are all congruent to n (mod m). Then
take the m+1 pairs sx1−1, sx2−1, . . . , sxm+1−1, . By the Pigeonhole Principle, two are the same
mod m, say sxi−1, and sxj−1. Then axi + axi+1 + · · ·+ axj−1 ≡ 0 (mod m), and hence

axi + axi+1 + · · ·+ axj ≡ axj ≡ n (mod m)

and so this works.

Now suppose degP > 2. Then we will construct a sequence {ai} such that for any i < j,
there does not exist a k such that

ai + ai+1 + · · ·+ aj = P (k).

We do this inductively, and suppose that you have added elements till ai. Let m be the integer
of smallest magnitude that hasn’t occurred in the sequence yet. The key is to set ai+2 = m
(not ai+1). Now, any sum of consecutive terms containing ai+2 will have ai+1. Hence, all
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possible sums would be in a fixed vicinity around ai+1, i.e. between I = (ai+1 − k, ai+1 + `)
for some fixed k, ` (since a1, . . . , ai are fixed).

Now we just want to choose an ai+1 such that no P (k) lies in I. Now, I has length k+ `.
However, since degP ≥ 2, hence P (x + 1) − P (x) depends on x (unlike the case deg = 1)
and hence grows arbitrarily large. So, eventually there would exist an interval of length k+`
which is completely skipped by P, i.e. no value in the interval would be of the form P (k) for
an integer k. So we choose ai+1 so that I becomes this interval. �

Comment 9.6.9: The fact that each integer appears in the sequence is guaranteed by
the fact that we are choosing the smallest magnitude integer not yet in the sequence.
Since ai can be arbitrary and we want each integer to appear exactly once (a weird
condition), it’s better to construct it inductively step by step rather than, say, find a
nice formula for an.

Solution 9.6.23 (USA TSTST 2016/3)

Firstly, suppose n is a sufficiently large prime p > 2 (we define ”sufficient” later). Pick

Q(x) = (2x2 − 1)2.

Now, consider the list L numbers 0, 1, . . . , p− 1 and delete a number x if Q(x) ≡ Q(x0) for
some x0 < x (i.e. the residue has appeared before). Since Q(a) ≡ Q(−a), the second half is
completely erased, meaning we only have the numbers 0, 1, . . . , (p − 1)/2 in L. We need to
show more numbers are deleted here so that at most 0.499p numbers remain.

We do this by using that fact that x2 ≡ y2 is also possible when x ≡ −y. Hence,
Q(a) ≡ Q(b) also holds when

2a2 − 1 ≡ 1− 2b2 (mod p) ⇐⇒ a2 + b2 ≡ 1 (mod p). (9.6)

By Theorem 8.5.1, we know this has p − (−1)
p−1
2 ≥ p − 1 solutions. However, we only

need to consider pairs (a, b) such that a, b aren’t already erased, so we have to consider
0 ≤ a < b ≤ p−1

2
. So we need to remove some of the p− 1 solutions.

If (a, b) 6= (0,±1), (±1, 0) is a solution to Equation 9.6, then so are (±a,±b), (±b,±a).
Further, at most one solution will have a ≡ b which is counted four times (as (±a,±a)).

Hence, the number of repeated residues in L becomes ≥ (p−1)−4−4
8

= p−1
8
− 1. Hence, the

number of numbers remaining in L is

p+ 1

2
− p− 1

8
+ 1 =

3p

8
+

13

8
.

For sufficiently large p, this quantity becomes at most 0.499p, and so we are done in the case
n = p for ”sufficiently large” primes p.
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Now, if {2, p1, . . . , pk} are primes not sufficiently large, then take N = 4p1p2 . . . pk and
set

Q(x) = N(2x2 − 1)2.

This works for n = 4, p1, . . . , pk. Now for a composite number n, take any prime factor p of
n. Then since polynomials are periodic mod p, hence we find at most 0.499p residues mod
p. This gives the result for n too.
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