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Notation:

N = the set of natural numbers,
Z = the set of integers,

Q = the set of rational numbers,
R the set of real numbers,

C the set of complex numbers.
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Chapter 1
Number Theory

1.1 Divisibility of Integers

In this section, we see some elementary properties of integers. The reader is fa-
miliar with properties of integers such as divisibility, greatest common divisor
(highest common factor), least common multiple, prime and composite num-
bers. In this chapter, we will give definitions and then proofs of the properties
which reader quite often have used without proof. Many of the proofs depend
on two principles (i) Well Ordering Principle, and (i) Principle of Mathemati-
cal Induction. We first state these two principles.

(i) Well Ordering Principle: Any non-empty subset of non-negative integers

ha$ a smallest element.
In other words, if S is a non-empty subset of non-negative integers-then

thereisaeSsuchthatagsforanysinS. .
Principle of Mathematical Induction is a logical consequence of the well

ordering principle.

/éi (a)) Principle of Mathematical Induction: If a subset S of positive inte-
gers contains 1, and contains n + 1 whenever it contains n, then S contains all
the positive integers.

(i (b)) Principle of Mathematical Induction(Strong Form): If a subset S of
positive integers contains 1, and contains n+1 whenever it contains 1,2,...,n,
then S contains all the positive integers.

Definition 1.1 An integer b is said to be divisible by a non-zero integer a if
there is an integer z such that b = az, and we then write a|b. In case b is
not divisible by a we write a { b. The property a|b may also be expressed by
saying that ‘a divides b’ or ‘aisa divisor of b’ or ‘b is a multiple of a’.

Note that 5 divides 10 as 10 = 5 x 2. But 5 does not divide 13. We may
write this as 5/10 but 5 { 13. If an integer is divisible by 2, we say that it is

an even integer, otherwise we say that it is an odd integer. Thus, 0,+2,+4 are
even integers while +1, £3, +5 are odd integers.

1
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Chapter 1. Number Theory

2 An Excursion in Mathematics

Theorem 1 Let a, b, c, m, z, y be integers.
(1) If a]b then albe for any integer c.
(#%) If a|b and b|c then alc.
(1i) If a|b and a|c then a|bz + cy for any integctszr and y.
(1v) If a|b, and b 5 O then la] < |b].
(v) If alband bla then a = +b.
(vi) If m # 0 then alb if and only if ma|mb.
Proof.

(1) If alb, then b = aq where q is an integer. Hence bc = a(qc) for any
integer c. Hence, a/bc.

(i) If a[b and b|c, then b = ag and ¢ = g, where g,q: are integers. Thus
¢ = (ag)q: = a(gq). Hence, alc.

(#7) If a|b and a|c, then b = ag,c = aq for q,q; € Z. Hence, bz + oYy =
a(9z + q1y). Hence, albz + cy. |

(iv) If alb’ b 7& 0, then b = aq, q % 0. Hence, Ib[ = [aq| == la”ql As
9#0,[q| > 1, hence |a| < |b].

(v) If a|b then |a| < |b]. Also, bja, implies 6] < |a|. Thus, la] = |b]. Hence
a = +}.

(vi) If a|b, then b.= aq. Suppose m # 0. Then mb — (ma)q. Hence ma|mb,
Convetsely, if ma|mb, then mp — mag. Since, m # 0, we geth = aq
that is, alb. ’

'I'heore:'n 2 (l?ivision Algorithm) Given any integers a and b with a # 0
there exist unique integers ¢ and 7 such that b = gq + n0Sr<iallfa 1 b,
then r satisfies the stronger inequality 0 < r < |al. ,

Proof. ansidcr, S = {b- aklb - ak 20, ke z) Clearly, b + labl € S.
ch'cc. Sis non-empty. By well ordFring principle, S has a Jeast element, say

—aq. If

0<r<|a |a| » & contradiction. Hence

Next we prove the uniqueness

of ¢ and r. Suppose p =
b = ag; + r; with 0 <1< g Ppo aq, + r; and also

» 0 < r2 < lal If r, # 7q, let T < rq.
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1. Divisibility of Integers 3

-

Then0 < r9 — ry < |a|. Butr2 =71 = a(g1 — g2)- Thus a|(rz — r1)- But this
contradicts (iv) of the theorem 1. Hence r, = 7 and so g2 = q1-

Example 1 Show that the squafe of any integer is of the form 4k or 8k + 1.

Solution. By division algorithm (take a = 2), any integer b is representable as
2g or 2q+1. If b = 2q, then b* = 4g?. Thus, b% is of the form 4k. If b = 29+1,
then b2 = 4q? + 4¢ + 1 = 4g(g + 1) + 1. Since g(g + 1) is divisible by 2, we
get that b? is of the form 8k + 1. | )

Example 2 Find all integers n such that n? + 1is divisible by n + 1.

Solution. Let n be an integer such that (n + 1)|n? ++ 1. Observe that nzz-»- 1=
(n+1)(n—1). Hence (n+1)|(n? 1) so that (n+ | [(n?+1) = (n" — 1)]
ie. (n+ 1)[2. Hence,n + 1 = %1, +2. Hence, n = -3, -2,0,1.

Definition 1.2 An integer d is called a common divisor of a and b in case d|a
and d|b. Let a,b be integers, not both zero. A positive integer g is said to
be the greatest common divisor of a and b if and only if the following two
conditions are satisfied: (i)gla and g|b and (i) if d|a and d|b then d|g. The
greatest common divisor of a and b is denoted by gcd(a, b) or (a, b).

In other words, if at least one of a and b is not equal to zero, the greatest
among their common divisors is called the greatest common divisor of a and
b. It can be shown that such an integer g is unique, if it exists. The existence
of g is proved in the following theorem. While, uniqueness follows from the
definition.

Theorem 3 (Bezout’s Theorem) If a,b are any integers, not both zero, then
ged(a, b) exists and there exist integers zo, yo such that ged(a, b) = azo + byo.

Proof. Consider, S = {az + by|z,y € Z, ax + by > 0}. S is non-empty
as a? + b%2 € S. By well ordering principle, S has a smallest element, say g.
Since, g € S, we can write g as g = azg 4 byg.

Now if d|a and d|b then d|azg + by i.e. d|g. Secondly, suppose g { a.
Thena =gg+1r, 0 < r < g. Hence r = a — gq = a(1 — gzo) + b(—qyo) and
r € S. This is a contradiction since r < g and g is the smallest element of S.

Hence, g|a. Similarly g|b. Hence by definition of gcd, we see that g is the ged
of a and b.

l?eﬁnitiqn 1.3 Two integers a, b which are not both zero, are said to be rela-
tively prime or coprime if (a,b) = 1.

Thus a and b are coprime if and only if their only common divisors are +1
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4 An Excursion in Mathematics Chapter 1. Number Theory

Example 3 Note that 9
15 are coprime, while
relatively prime. Furthe

and 16 are relatively prime integers. Similarly, 8 and
6 and 15 are not. Any two consecutive Integers arc
I any two consecutive odd integers are relatively prime.

Corollary 1 Let a, b be integers, not both zero. Then a, b are coprime if and
only if there are integers z, y such that qz + by =1.

Proof. Let a,b be coprime integers. Then (a,b) = 1. So, by the ‘Bezout‘:s
theorem there exist integers T,y such that az + by = (a, b) = 1. Conversely, if
for some integers z and Y, we have az + by = 1 and (a,b) = d, then d]a and

db so that d|(az + by) or d|1. Hence 0 < d < 1. So, d = 1, that is, x, y are
coprime integers,

Corollary 2 Ifa, b are coprime integers, then every integer n can be expressed
as n = ax + by for some integers z, y.

Proof. Let q,b be coprime integers. Then by Bezout’s theorem, there exist
integers u, v such that 1 =

au + bv. Hence n = a(nu) + b(nv) so that z =
nU, Yy = nv are as required.

Corollary 3 Ifd = ged(a, b), then ged (g, g =1,

Proof. Let (a,b) = d. Then dla and d|b. So @ = rd, b = sd for some integers
7, 8. Now by the above theorem there are integers z, y such that az + by =d.
Sordr + sdy =dorrz + sy = 1. Hence by Corollary 1, (r,8) = 1.

Example 4 Show that there are no integers a, b such that ged(a, b) = 3 and
a + b = 100.

Solution. Suppose there exist integers a, b such that ged(a, b)=3anda+b=
100. Then 3|a, 3|b. Hence, 3|a + b. Buta + b = 100 and 3 t 100. Thus, we get
a contradiction. Hence, there are no such integers

Example 5 If (a,n) = 1and (b,n) =1, then (ab,n) = 1.

Solution. As (a,n) = 1and (b,n) = 1, by Corollary 1, there are integers z, y
and u, v such that az + ny = 1 and bu + nv = 1. Hence multiplying these we
get ab(zu) + n(vaz + ybu + ynv) = 1. So (ab,n) =t by Corollary 1.

Or ez = 1 - ny,bu = 1 — nv. Hence, (ab)(zu) =1-n(y+v-
(ab)(zu) + n(y + v — yv) = 1. Hence, (ab,n) = 1.

Example 6 For any z € Z, gcd(a, b) = ged(a, b+ az).
Solution. For let (a,b) = d, (a, b+ az) = e. Then for some integers r, s, u, v,

yv). Hence,

(i) ar+bs=d (ii) au+ (b+az)v=e.

N

‘-u‘\‘

&
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.1. Divisibility of Integers 5

Now d|a and d|b so that d|e by (ii). Similarly, e|a and e|(b + az) so that elb.
Hence e|ld by (i). Sod = e.

Remark 1.1 Thus, if b = ag +r,0 < r < |a] then (a,d) = (a,7)-
Theorem 4 (The Euclidean algorithm) Given integers b and ¢c,c > 0, we

make a repeated application of the division algorithm to obtain a series of equa-
tions : '

b = g+ 71, 0<nr <ec,

c = T™q + T2, O<rp <,
r = T2Q2+ T3, 0<r3<ry,
rji—2 = Tj-1Gj-1 + 75, 0<rj <rTj-i1,
Tji-1 = T;4q;-

Then the ged(b, ¢) of b and c is r;, the last non-zero remainder in the division
process. Moreover, if (b,c) = bxo + Yo then the values of xo and yo can be
obtained by eliminating r;_1, ..., T2, 71 from the above set of equations.

Proof. If g = (b,c) then g|b and g|c. Hence, g|b — cqg. But, b—cqg = n.
Hence, g|r1. Now, gl¢, g|r1. Hence, g|r2. Continuing this way, we see that
g|ri for 1 < i < j. In particular, g|r;. Conversely, note that rj|rj-1. Hence,
rilrj-1gj-1 +rj ie r;|rj—2. Similarly, rj|rj—3. Continuing in this way, we
get that 7;|rj—2, -+ s Tj|r1,Tjle, T |b. Hence, r; is a common divisor of b and
c. Hence, r;|(b, ) i.e. T5|g. But, g|r; and both g and r; are positive integers.
Hence g = 1.

Equivalently, one can use Remark (1.1) to prove that g = r;. For
(b1 C) - (Clrl) — (T],Tz) == (rjj—],rj) = (TJ,O) =T;.

Remark 1.2

1. We note that in the above theorem, there is no loss of generality in as-
suming that c is positive for (b, c) = (b, —c) = (=b,¢) = (=b,—c) and
(b,0) = |b|, as b # 0.

2. Further, the values of zo and yo are not unique. For example, (2,3) = 1
and 1 = —1(2) + 1(3) and 1 = 2(2) - 3.

l | i ~
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6 An Excursion in Mathematics Chapter 1. Number Theory

Example 7 Find gcd of 4840 and 1512. Also find o, yo Such that

(4840, 1512) = 4840z, + 1512y0.
Solution. We have

4840 = 3(1512) + 304 ¢))
1512 = 4(304) + 296 (2
304 = _1(296)+8 _ 3)
296 = 37(8)+0 @)

The last nonzero remainder is 8, hence (4840,1512) = 8. Now to find xg, Yo
such that 8 = 4840z + 1512y, we write (3) as 8 = 304 — 296. Substituting
for 296 from (2),
8 = 304 — (1512 — 4(304)) = 5(304) — 1512
Substituting for 304 from (1), |
8 = 5(4840 — 3(1512)) — 1512 = 5(4840) — 16(1512)

so that zo = 5‘, Yo = —16.

Example 8 Prove that the fraction i

Inia = irreducible for every natural .

number n.

Solution. We want to show that the fraction ik is irreducible for every
14n + 3

natural number n, that is, we should show that (21n + 4,14n + 3) = 1 for
every natural number n. Now,

2In+4 = 1(14n+43)+(Tn+1)
M4n+3 = 2(Tn+1)+1
Tm+1 = 1(Tn+1)
Hence, by Euclidean algorithm, (21n + 4, 14n + 3) = 1. Hence, the fraction
ﬂ: i ; is irreducible for every natural number n. '

Definition 1.4 An integer p > 1 is called a prime number, or a prime, if it has
no divisor d such that 1 < d < p. If an integer is not a prime then it is called a
composite number.

Scanned by CamScanner



1.1. Divisibility of Integers ' _ 7

Note that 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 are prime numbers, while
4, 6, 8, 15, 20 are composite numbers.
Example 9 If p is a prime and p { a, then ged(p,a) = 1.
Solution. Let ged(p,a) = d. Thend|p and d|a. But p is a prime. Hence d = 1

ord = p. Since p{ a, we cannot have d = p. Thus d = 1.

Remark 1.3 From the above example, we get that if p is a prime and a is

p ifpla ° : S
F :
1 bt urther, we get that if p and g are

distinct primes then (p, ¢) = 1. Thus, p and g are relatively prime.

an integer then (a,p) =

Theorem 5 (Euclid’s Lemma) If (a,m) = 1 and m|ab then m|b.
Proof. Since (a,m) = 1, there exist integers z,y such that az +my = 1
Hence, abz + mby = b. Sincé, m|ab we get m|(abz + mby). Hence, m|b. =

Corollary 4 If p is a prime and p|ab then pla or plb.
Proof. If p|a then we are done. Otherwise, p { a. Hence, (p,a) = 1. Since,
plab and (p, a) = 1, by Euclid’s lemma, we get that p|b.

Euclid’s lemma can also be generalised for the product of n integers. This
proof is based on Principle of Mathematical Induction. Induction is on the

number of terms occurring in the product.

Corollary 5 If p is a prime such that plaiaz - - - an, then p divides at least one
factor a; of the product.

Proof. Let n = 2. If plaiaz and p { a;. Then p | a2 by Euclid’s lemma. Hence,
the result holds for n = 2. Assume that the result holds for the product of n
integers. Suppose p|a; - - - GnGn+1, then pl(a1az - - - @n)(@n+1)- Hence, either
plaiaz - - - an Or plant1. If p|an+1 then we are done. Otherwise, p|a162 * - * @n-
Hence, by induction hypothesis, pla; for some i, 1 < i < n. Hence, by princi-
ple of mathematical induction, we get the result.

Corollary 6 If a|m and blm and (a,b) =1, then ab|m.
Proof. Let a|m. Then m = an for some integer 7. Now b|an and (a,b) = 1.
Hence by the above theorem, bjn. Thus n = bk for some integer k and so

m = an = abk or ablm.

Example 10 Show that, if p is a prime then p|(?) for0 < 7 < p.

—
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8 An Excursion in Mathematics Chapter 1. Number Theory

!
Selution. Note that (p ) e et Hence, p! = (’:)r!(p — r)!. Note that

r] = rip—r)!"
plplandas,1 <r<p-1,pt rlandp{ (p- r)!. Hence, using Euclid’s

lemma, we get p|(?).
p—1
Thus, if p is an odd prime then p divides » _ (p ) ie. p|(2P — 2). Fur-
r
r=1

ther, we can use principle of Mathematical indu::tion and Binomial theorem!
to prove that p|(n? — n) for n € N and in fact for every integer n. This result

is called Fermat’s Little theorem.

Example 11 Prove that if p is a prime, then VP isan irrational number.

Solution. - Suppose /P is a rational number, say —E, where g, b are relatively
2
b @ a
prime 1““?8,‘?’?:;. Hence, p = o Thus, pb? = a®. Hence, pla’.
lemma, pla: Hence, p®la®. But a® = pb®. Hence, p|b2. Hence, plb, a contra-
diction. Hence, /7 is an irrational number.

Similarly, we car prove thatif pisa prime, then {/p is an irrational number,
where n is an integer greater than or equal to 2. More generally if a is a positive
integer which is not a perfect n-th power, then {/a is irrational.

Fermat Numbers. The integers F, = 22" +1, n 2 0, are called Fermat
Numbers. Fp = 3, F1 = 5, 2 =17, F3 = 257 and Fy = 65537 are
primes, but F5 = 4, 294, 967,297 is divisible by 641. Primes among Fermat
numbers are called Fermat primes. Gauss ( 1801) proved that if m is a Fermat
prime then a regular polygon of m sides can be constructed just using ruler and
compass. It is not known whether there are infinitely many Fermat primes. In
fact, Fy, Fi,...,Fy are the only known Fermat primes.It is known that F,, is

composite if 5 < n < 32.

By Euclid’s

Example 12
(i) Fn —2=FoF1-: - Fn-1, > I
(i) Any two Fermat numbers are relatively prime.

Solution. (i) (Induction on n) The result is true for n = 1. Assuming it true
forn — 1, we get
@+ 1)@ - 1) = Far(Fa-1 - 2)

F,-2=2" -1 =
Fo_1-Fn-2-"" Fp by induction assumption.

n
| Binomial Theorem (z + ¥)" = > (:)xryn-r

r=0
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1.1. Divisibility of Integers 9

Hence by induction (i) holds for all n > 1.
(ii) m < n. If d|F, and d|Fy,, then by (i), d|(F, — 2). Hence d|2 as
F,—(F,~2) = 2. Thus,d = 1 or2. As F,, isodd, d = 1. Thus, (Fim, Fn) = 1.

Lemma 1.1 Every integer n > 1 can be expressed as a product of primes (with
perhaps only one factor).

Proof. If the integer n = 2 then it is a prime, hence the integer itself stands as a
product with a single prime factor. Suppose the result holds for all the integers

ksuchthat2 < k <m.
If the integer n = m + 1 is a prime, the integer itself stands as a product

with a single prime factor. Otherwise n can be factored into, say, #1712, where
lI<n<napdl<n<nAs2<n <m2<n < m, by induction
hypothesis, n1,n2 can be written as product of primes. Hence, nin2 can be
written as product of primes. Hence, by induction, the resulg-halds for all the

integers n > 2. .

Remark 1.4 In this proof, we have used strong form of Principle of Mathe-
matical Induction.

We now state the following important theorem. The proof of this theorem
uses Euclid’s Lemma and is left as an exercise to the reader.

Theorem 6 (The Fundamental theorem of Arithmetic) Every positive inte-
ger n > 1 can be expressed as product of primes in a unique way except for

the order of the prime factors.

Remark 1.5 Fundamental theorem of Arithmetic implies that every integer
n > 1 can be written as n = p{'p3? ... p2", where p; # p; whenever i # 3. In

fact, one may assume that p; < p; whenever i < 7.

Notes.
1. A number n = pi'p3?...pe" is a perfect square if and only if each of
ai,as,...,ariseven. lfn=pip2...pr (i.e. ifeachof a;,az,...,a, is

equal to 1) then n is called a square-free integer. (Note that p;, p2, . .. pr
are distinct primes.)

2. If @, b are positive integers such that ab = ¢ and (a, ) = 1, then a and
b are both perfect squares.
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10 An Excursion in Mathematics Chapter 1. Number Theory

Proof of 2. Let ab = ¢? for some ¢ € N. Then the result clearly holds if one

of a,bequals 1. Henceleta > 1and b > 150 thatc > 1. Write a,b,c in
canonical form thus :

a—pll'--pm, b_...qil-..q:lﬂ‘ c__sfl...s’k."_
Then ab = ¢? becomes
d d 2k
pll"'pm""-qf . q:“:sll...sgkl".

Now note that since {a, b) = 1, the primes p; . . ., p,, ar€ all different from the

primes q; ..., gn. Hence by the unique factorisation theorem, it follows that
P1y-«.Pm;q1...,Qn is only a rearrangement of s;, ..., s, and that the indices
dy,...,dm,e€y,...,e, form a similar rearrangement of 2k;, ..., 2k,. Hence

each of d; and e; ;j 1s an even number and so both a and b are perfect squarcs

Similarly, if ab = ¢ for some ¢,n € N, and (a,b) = ¥ then ¢ = z" and
b=y" forsomea: 'yeN

3. Using unique factorisation we can express the gcd of two numbers in
terms of their prime factors. For this we,allow zero indices for the prime
powers so that the same set of primes can be used to represent both the
pgsmvc integers, say a, b. Thus let

a=p{--pg, b=pf---pf, (i)
where p;, ..., pn are distinct primes and d; > 0,e; > 0. Then

(a,b) = ged(a, b) = pPntdver} | pmin{dneal (i)

For example, for a = 819, b = 658,

a = 20.32.71.13'.47°,b=2'.30-71.130.472,
so that ged(a,b) = 2°0-8°-7'-13°.47°=7.

Definition 1.5 Let a, b be non-zero integers. An integer m is called a common
multiple of a and b in case a|m and blm. A positive integer  is said to be least
common multiple (Icm) of a and b if and only if the following two conditions
are satisfied: (i) a|! and b|{ and (ii) if a|m and b|m then I|m.

The least common multiple of a and b is denoted by [a, b].

In other words, the least integer among all the positive common multiples-
of a and b is called the least common multiple of a and b.

Scanned by CamScanner



11

1.1. Divisibility of Integers

First, it can be shown that the lcm of a, b is unique, if it exists. Secondly,
lcm|a, b] always exists. To prove this, express a, b as in (i) above. Then it is
easy to sce that the integer

'h - p'l““"{dlnel} . .p?u{d",eﬂ} (iii)
satisfies the properties (i) and (ii) above and so h = [a, b]. For example, for the

above factorisation of a = 819 and b = 658, we get
[a,b] =2!-32.7!.13" - 47! = 76986.

Finally, multiplying (ii)and (iii) and comparing the result with the factorisation
of the product ab, namely, p‘f""“ ... pdntenjt follows that

ab = (a, b)[a, b].

Example 13 The sum of two positive integers is 52 and their lcm is 168. Find

the numbers.: » = :
Solution. Let the positive integers be a and b and a < b. Let d = (a, b) so that
a=dm,b=dnand (m,n)=1.Thus(@)a+b=d(m+n) =52=4x 13
and (i) L.c.m. of a, b = dmn = 168 = 4x2x 7x3. But ((m+n)d, mad) = d,
since (m,n) = 1. Hence by (i) and (ii), d = 4. So m + n = 13 and mn = 42.

Hence, m =6,n=T7anda =dm = 24, b = dn = 28.

- —

" .
Theorem 7 There are infinitely many primes. »

Proof. (Euclid) Assume that there are finitely many primes, say 2 = p,,
P2, ,pr. Let N = p1pa .-+ pr + 1. Note that N > 1 hence N has a prime

factor. Clearly none of the p;’s divide N. Hence, the prime factor of N is is a
new prime, a contradiction. Hence, there are infinitely many primes.

(Kummer) Assume that there are finitely many primes, say 2 = p;, po, - - - , p;.
Let N = pyp2--- pr— 1. Clearly N > 2 hence N has a prime factor. None of

the p;’s divide N. Hence, this prime is a new prime, a contradiction. Hence,
there are infinitely many primes.

(Usi.ng Fermat Numbers, Polya) Let p; be a prime divisor of the Fermat number
Fi,i 2 0. Fori # j, (F, Fj) = 1, s0 p; # p;. This gives us infinitely many

primes {p; }:>o.
Example 14 There are infinitely niany primes of the type 4n — 1,

Solution. Assume that there are finitely many primes of the type 4n - 1, say
Pr=3,p2,- ,pr. Let N = dpypy--- p. — 1. Clearly N > 2 and is odd.
Moreover, none of the p;'s divide N. Further, since MV is of the typedn-1, N
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must have a prime factor of the type 4n — 1. Hence, this prime is a new prime
of the type 4n — 1, a contradiction. Hence

, there are infinitely many primes of
the lype 4n — 1. .
Thwnm 8 Given any positive integer n, there exist n consecutive composite
integers. '
Proof. Consider the n integers

M+D+2,(n+ 1)1 43,...,(n+ 1) +n,(n+ 1) +(r+1).

. - ; g ‘
Note that k divides (n + 1)! + kif2 < k < (n + 1)and (n+ 1)! + k > k.
Thus, every number of the sequence is a‘composite number. Hence, we get n

conseculive composite numbers. Thus, there are arbitrarily large gaps in the
sequence of primes. " e

Exampl¢15 Ifpisa prime greater than 3 then how‘.!h'at 2p+1and4p+1

cannot be primes simaltaneously. ’ Aa
Solation. Since p is\a prime greater than 3, p is either of the type 3k + 1 or | >
3k +2.If pisofthetype 3k + 1 then2p+1 =23k +1)+1=6k+3 =

3(2k + 1). Hence, 3|(2p + 1) and 2p + 1 cannot be a prime. Similarly, if p is
of the type 3k + 2 then 3 divides 4p + 1 and it cannot be a prime.

Exercise Set - 1.1

/Prove that no integer in the sequence 11, 111, 1111, ... is a perfect
square. ' ’

/ Show that for any positive integer m, (ma, mb) = m(a,b).
ia)=d-
e 4. Let d be any positive integer not equal to 2, 5 or 13. Show that one can

find distinct a, b in the set 2,5, 13, d such that ab — 1 is not a perfect
square (I.M.O. 1986).

. . 2
X Show that if d|a and d|b and d > O then (a ) _ (ab)

5. By using Euclidean algorithm find the gcd of (i) 7645 and 2872 (ii) 3645

and 2357. Also express the gcd as the linear combination of the given
numbers.

6. Find (a?™ + 1,a2" + 1). Hence, show that there are infinitely many
primes. (Due to Pélya.)
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1.1. Divisibility of Integers " 13

7. Let a, b, c be integers such that (a, b) = 1, ¢ > 0. Prove that there is an
integer z such that (a + bz,c) = 1.

8. Show that there are infinitely many primes of the type 6n — 1.

9. Show that product of three consecutive integers is divisible by 3! while
the product of four consecutive integers is divisible by 4!.

10. Suppose m,n are integers and m = n? — n. Then show that m? — 2m
is divisible by 24

' /{l A printer numbers the pages of a book starting with 1 and uses 3189
. dignts in all. How many pages does the book have? ; - -

12. Show that any integer divisible by 3 can be written as. g sum of cubes of .
- four integers. (]?:am;:\l};: 6=23+ (-1 +(- 1)3'*'08)‘ ' :

p_l “ . l“

13. Let p > 3 be an odd prime. Suppose kZ=:1 p zi'where (a.-rb)
Prove that a is divisible by p. :

14. Prove that if n > 4 then n,n + 2,7 + 4 cannot all be primeS' .

15. If 2 = p; < ps < ... < p, where p; are primes, show that thphumber |
P1p2 - - - Pn + 1 can never be a perfect square. :

. 16. Prove that, if n > 4, then the number 1! + 2! + 3! 4 ---n!is nevera”
' square. ’

17. The ged of two positive integers is 81 and their L.c.m. is 5103. Find the
numbers. .

18. Prove that there are infinitely many positive mtegers a such that 2a i isa
square, 3a is a cube and da is a fifth power.

19. If a, b are positive mtegers such that the number (a + 1) o+ (b+1)/a
is also an integer, then prove that ged (a,b) < vVa + b

20. If 2" — 1 is a prime, show that n is a prime.

21. If 2" + 1 is a prime, show that n is a power of 2,

22. Find all integers z and y such that (z,y) = 8 and [z, y] = 64
23. If (a,b) = [a, ] then show that @ = b.
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14 An Excursion in Mathematics Chapter 1. Number Theory

24. Show that if n is an odd integer, then 16[11“' +4n? + 11.

" 25. Find all integers which leave remainder 1 when divided by 3, remainder -
2 when divided by 4, ..., remainder 8 when divided by 10. -y

26. Show that an integer n > 1 is a compogfte‘number if and only if it has a
prime divisor d such that d < /n. ' '
27. 1f (a,4) = (b,4) = 2 then show that 4 divides a + b. -
. o
28. Show that there are infinitely many integers a, bsuch that (a,b) = 5 and
a+b=100. | \
29. Given any non-zero integers a,b and n, prove that there exist integers '5‘

k,! whose ged is 1 and for which nlak + bl. :
' B =

30. Let a, b, m,n be natural numbers, a > 1, and suppose that a, b have no

common factor. Prove that if a™ + b™ is divisible by a™ +b", then m is

" divisible by n.

1.2 Congruences

A congruence is a convenient statement about divisibility. The notion of con-
gruence was introduced by C. F. Gauss (1777-1855) in his famous book Dis-
quisitions Arithmeticae, written at age 24. It gained ready acceptance as a

fundamental tool for the study of number theory.

Definition 1.6 Let m be a non-zero integer. The integers a and b are said to be
congruent modulo m if and only if m|a — b, and written a = b (mod m).

Since, a — b is divisible by m if and only if @ — bis divisible by —m, we

will confine our attention to a positive modulus.
For example, 19 = 1(mod 6). We can also say that z is even if z

(mod 2) and z is odd if * = 1(mod 2). Further, if z is even then 72
(mod 4) and if z is odd then z* = 1(mod 4).

=0
=0

Theorem 9 Let a, b, ¢, d, z, y denote integers. Then,
I. a = b(mod m),b=a(mod m),anda—b= 0(mod m) are equivalent
statements.

2, If a = b(mod m) and b = c(mod m), then a = c¢(mod m).
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1.2. COllgruences . 15

3. Ifa = b(mod m) and ¢ = d(mod m), then

ax +cy = bz + dy (mod m).

4. If a = b(mod m) and ¢ d(mod m), then ac = bd(mod m). In

particular, if a = b(;nod ‘m) then a = b* (mod m) for every positive
integer k. _

5. If a = b(mod m) and d|m, then a = b(mod d).
Proof: ' . 1'0 . 7 .

1. Suppose a = b(mod m). Then, by definition, m|a — b. Now, mla b if
and only if m|b — a if and only if m|a — b - 0. Hence, a-= b(mod m), i
' =a(mod m),anda - b= 0(mod m) are eqmvalent statements.. B

2. Ha:b(modm)arﬁb-c(mod m), menma. banqub cH’ence
m|a — ci.e. a = ¢(mod m).

-

3. If @ = b(mod m) and ¢ = d(mod m), then m|a — b and mjc — “ &

Hence, m|(a — b)z and m|(c — d)y. Hence, m](a:c +cy) - (bxtdy) *
ie.

[
4

ar +cy = bz +dy (mod m).

-

4. m|(a —b) andm|(c—d) = m|[c-(a—b)+b-(c— d)] =
m|(ac — bd) = ac = bd (mod m).

Equivalently, we can take = cand y = b in 3 above to get the same
result.

5. If a = b(mod m) then m|a — b. But djm, hence, dla — bie. a = b
(mod d).

Theorem 10 Let f(x) denote a polynomial with mtegml coefficients. If a = b
(mod m), then f(a) = f(b) (mod m).

Proof: Assume that f(x) = cg + c1z + -+ + c,z™, where ¢;’s are integers.
Since, a = b(mod m), we get o = b? (mod m),...,a" = b™(mod m).
Hence, for every j,0 < j < n, we get c;a? = ¢;b’ (mod m). Hence,

Zc,a.J Zc,b‘ (mod m),

j=0 j=0
that is f(a) = f(b) (mod m).
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16 An Excursion in Mathematics Chapter 1. Number Theory

Theorem 11 Leta,b,z,y,m,my,...,m, be integers. Then,

m

l. ax = ay(mod m) if and only if z = y (mod m).

2. Ifax = ay(mod m) and (a, ) = 1 then z = y(mod m).

3. 2 = y(mod m;) fori = 1,2,...,r if and only if

T = y(mod [my,my,...,m,)).
Proof.
1. If az = ay(mod m) then ax — ay = mgq for some integer q. Hence, we
have -
SR (... 4
. @m) "7 (am)
o m Q a m
and thus - y). - = 1. Hence,
et cio o G (el
. m
we gctza—"“"—lﬂ(:r — y), thatis, z = y(mod (a,m))°
S m e Bl
Conversely, if z = y (mod G, m)) then 7%t |(z —y). This implies that

mla(z — y), thatis, az = ay(mod m).

2. If ax = ay(mod m) and (a,m) = 1 then z = y(mod -(Eﬂm—)). But
(a,m) = 1 hence we get z = y(mod m).

3. Ifr = y(mod mi) forz = 1,2,...,'rthenmi|a:—yf0ri = 1,2,...,?‘.
That is, £ — y is a common multiple of my, ..., m, and therefore z = Y

(mod [mq, ma,...,m]).

Conversely, if z = y(mod [m1,ma,...,m,]) then m;|[my, ... 1y

for1 <i <r. Hence,z =y(mod m;)fori=1,2,...,r.

Proposition 1 If b = c(mod m) then (b,m) = (c,m).

Proof. Since, b = c(mod m) we get b = ¢+ gm. Hence, (c,m)|b and hence,
(c, m)|(b, m). Also, ¢ = b — gm implies that (b, m)|c and hence (b,m)|(e, m).
As both (b, m) and (c, m) are positive, we get (b, m) = (c,m).

Example 16 Find the remainder when 137 + 143 is divided by 11.
Solution. We note that 13 = 2(mod 11) and 14 = 3(mod 11). Hence,

143 =3° =5 (mod 11). (1)
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E. Congruences

Also, 2° = —1(mod 11). Hence, 270 = 1(mod 11) and 27 = 8(mod 11).
Thus,

133 =2 =8 (mod 11).  (2)
Adding the congruences (1) and (2), we get

133 +143=8+5=2 (mod 11).
Hence, 2 is the remainder when 1372 + 143 is divided by 11.

Example 17 Show that a number is divisible by 3 if and only if the sum of its

digits is divisible by 3. *

Solution. Let n be a given number. n can be written as
. n=mno+10n; + -+ 10¥nk,

where 0 < ng,ny,...,nx < 9. Note that 10 = 1(mod 3).*Hence, for every
positive integer m 10™ = 1(mod 3). Hence,n = no+n1+---+nk (mod 3).
This implies that n is divisible by 3 if and only if the sum of its digits is divisible

by 3.
The above argument also works if we replace 3 by 9 i.e. a number is divis-

ible by 9 if and only if the sum of its digits is divisible by 9.
Example 18 If p and g are primes such that p = g + 2, prove that p? + g9 is a
multiple of p + g. ,
Solution. We note that as p and g are primes such that p = ¢+ 2, both p and g
are odd primes. Hence, ¢ — 1 is even. Consider
PP+¢=@+9—q)"+¢° (—q)? +q7 (mod p+ q)
= —¢%¢*-1) (mod p+q)

Now p + ¢ = 2¢ + 2 and 2|g — 1. Hence, p + g = 2(q + 1) divides g% — 1.
Hence, p” + ¢? = 0(mod p + g), that is, p? + ¢? is a multiple of p + q.

Example 19 If a, b are integers, p a prime, then show that
(a+b)? =aP + b (mod p). -
Solution. We note that
P _ P\ p- p o
(a+b)P = aP+(1)aP 1b+'”+(p__1)abp 1P
a” +b” (mod p)

I
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18 An Excursion in Mathematics Chapter 1. Number Theory

as (1), , (p'__' ,) are divisible by p. Thus, in particular,
(a4 1) =a” +1 (mod p).

Further, if @ = 1 then 27 = 2(mod p). Thus, by induction, we can prove that
n” % n(mod p) for every integer n. 2

2 w - "
Example 20" Prove that for any natural number n the expression A = 2903™ ~
803" — 464™ 4 261" is divisible by 1897,

Solution. Let n be a natral number. Note that 1897 = 7 x 271. Con- .
sider the expression A = 2003" — 803" — 464" + 961", Now 2003 = 803
(mod 7) and 464 = 26] (mod 7). Also, 2903 = 464 (mod 271) and 803 =
261 (mod 271). Hence, A is divisible by 7 as well as 271. Since (7,271) = 1,
we get that A is divisible by 1897.

Example 21 Let a be a rational number. Show thatif11 + 11v/11a% + 1 is an
odd integer, then it must be a perfect square.

Solution. As 11 + 11V/11aZ + 1 is an odd integer, 11a2 + 1 must be the
square of a rational number b of the form b = ¢/11 where c is an integer. Now
11a% + 1 = ¢?/112, hence a can have 11 in the denomingtor. Let @ = d/11.

Then 11d® + 112 = ¢, Hence 11 | ¢, i.e. b is an integer and 11a2 + 1 = 2.
2

Now ll—lgl-; +1=0bie. d? = 11(b*-1),so that 11 | d. Hence a is an integer.

If 11 + 11v/11a? + 1 is an odd integer, then 11a2 + 1 must be the square
of an even integer. Let 11a? + 1 = 4m?, so that 11a? = (2m - 1)(2m +1).
Now (2m — 1,2m + 1) = 1 hence, by Note 2 §1, either 2m — 1 = 1]¢2?
and2m + 1 = f2or2m —1 = e? and 2m + 1 = 112, In the first case,
f? — 112 = 2, s0 that f2 = 2(mod 11). This is impossible, as the only
squares (mod 11) are 1, 3,4, 5,9. Hence 2m — 1 = e? and 2m + 1 = 1142,

Hence
11+ 11V11a2 + 1 = 11 + 11(2m) = 11 + 11(11f2 - 1) = (11f)?,
which is a perfect square,

Example 22 Prove that 2P + 37 is not a perfect power (i.c. a perfect square,
cube etc.) if p is a prime number.

2This is called Fermat's Little Theorem.
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1.2 Congmnces 19

Solution. If p = 2, then 22 + 3% = 13 is not a perfect power.
p-1

Suppose that p is odd. Then 27 + 37 = (2+ 3)2(_1)::2;:—1-&3;:.
k=0
Now 3 = —2(mod 5). Hence, modulo 5, the sum

p—1 p-1 | /
Y (~1)kgrri-kgk = 3 (-1)k2P 5 (=2)F = p2P~" (mod 5).
k=0 ' ‘ k=0 " &
Hence, if p # 5, then 2P + 37 = 5n, where n # O(mo'd 5), so that 2P 4 3% is
_not a perfect power. Finally, 25 + 3% = 275 is not a perfect,power.

-
Example 23 Let f(m,n) = 36™ — 5", where m, n are natural numbers. Find
the smallest value of | f(m, n)|. Justify your answer.

Solution. We note that f(1,2) = 11. Further f(m,n) is odd, f(m, n)isnota
multiple of 3 and f(m,n) = 1(mod 5). Thus the only possible value less than
11 that | f(m, n)| can take is 1. We now show that | f(m,n)| # 1. Now

|f(m,n) =1 = 36™-5"=%1 = 36™ +1=5"

But modulo 5, 36™ + 1 = 5™ gives 2 = 0(mod 5), a contradiction and going
modulo 4, 36™ — 1 = 5" gives —1 = 1(mod 4), a contradiction. Thus, the

smallest value of | f(m,n)| = 11.
| [Exercise Set -1.2

1. Show that the square of an odd integer is = 1 (mod 8).
Show that the square of an integer is = 0 or 1(mod 3).
Find all primes p such that both p and p? + 8 are primes.
Show that the square of an integeris =0, 1, — 1(mod 5).
Show that if 2n + 1 and 3n + 1 are both perfect squares then 40|n.
If an integer n is coprime to 6 then show that n? = 1(mod 24).

Let n be an integer. Show that if 2 + 2V 28n? + 1 is an integer, then it
must be a perfect square.
8. If a = b(mod m™) then prove that a™ = b™ (mod m™*1),

aP — bP
9. If (a,b) = 1, thenshowthatgcd( oot ,a-—b) = lorp.

NS s WwN
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20 An Excursion in Mathematics Chapter 1. Number Theory

1.3 Theorems of Fermat, Euler, Wilson and Lagrange

Definition 1.7 If z = y(mod m) then y is called a residue of £ modulo m.
Asetz,,...,z, is called a complete residue system modulo m if for every
integer y there exists unique z; such that y = z; (mod m).

Definition 1.8 A reduced residue system modulo m is a set of integers r;
such that (ry,m) = 1, r, # r;(mod m) if i # j, and such that every z prime
to m, is congruent to some member r; of the set.

Example 24 Let m be any positive integer. Then {0,1,2,...,m — 1} is a
complete residue system modulo m. If m = p, a prime then {1,2,...,p—1} is

a reduced residue system modulo p. {1, 5} is a reduced residue system modulo

6 while {1,3,7,9} is a reduced residue system modulo 10. We also note that
{1,3,3% 3%} is also a reduced residue system modulo 10.

Theorem 12 Let (a,m) = 1. Letry,...,7, be a complete or reduced residue

system modulo m. Then ar, ..., ar, is a complete or reduced residue system
modulo m.

"éﬁniﬁon 1.9 The number ¢(m) is the number of positive integers less than
or equal to m and relatively prime to m.

Equivalently, ¢(m) is the number of elements in a reduced residue system
modulo m. For example, ¢(6) = 2, #(8) = 4,#(11) = 10 and ¢(p) = p— 1 if
and only if p is a prime.

Theorem 13 Forn > 1, Z ¢(d) = n.
dn
Proof. Let S = {1,2,...,n}. For every positive divisor d of n, let
Sq¢ = {m € S| ged (m,n) =d}.

Then, clearly, these sets Sz are pairwise disjoint and their union is S. Also

ged(m,n) = d if and only if ged(m/d, n/d) = 1. Hence the number of inte-

gers in the set S, is equal to the number of positive integers < n/d which are
n

relatively prime to n/d; i.e. equal to ¢(n/d). Hence n = dZ,,,: ¢(E). But as ¢

runs through all positive divisors of 1, so does n/d. Hence

> (%) =2 é(d =n.
d|n

d|n
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1.3. Theorems of Fermat, Euler, Wilson and Lagrange 21

Theorem 14 (Euler’s theorem) Let a, m be integers such that (a,m) = 1.
Then :
a®™ =1 (mod m). (5)

Proof. Let ry,r;, -+ ,T¢(m) be a reduced residue system modulo m. S.ince
(a,m) = 1, using Theorem 12, ary,arz, -+ ,arg(m) is also a reduced residue
system modulo m. Hence we get,

&(m) $(m) é(m)

H ar; = a®(™ H T = H ri (mod m).
i=1 i=1 i=1

#(m) - #(m) .
Thatis, m| [] ri(a®™ —1). Since, ( I ri» m) = 1, using Euclid’s lemma
' i=1 i=1

we get m|a®(™) — 1. Hence, the theorem. |
® / Theorem 15 (Fermat’s theorem) Let p be a prime and a be an integer. Then
a? =a (mod p). : (6)

Proof. If p | a then a” = a(mod p). If pt a then (a,p) = 1. Since,
é(p) = p — 1, using (5) we get a?~! = 1(mod p), hence a? = a(mod p).

Example 25 If n € N and (r,35) = 1, prove that n'2 = 1(mod 35).
Solution. Since n and 35 = 5 x 7 have no common factor, we see that 5 { n
and 7 { n. Hence by Euler’s theorem, n* = 1(mod 5) and n® = 1 (mod 7)
since 5, 7 are primes. Now

n? —1=m'"-1)(n®+nt+1) and n12—1 = (n® = 1)(n® +1).

S0, 5|(n'? — 1) and 7|(n'2 — 1) and s0 5 x 7 i.e. 35 divides (n'? — 1) since
(5,7) = 1.

Example 26 Find the last two digits of the number 7100 — 3100

Solution. To find the last two digits of a2 number means to find the remainder

when that number is divided by 100. Note that 100 = 25 x 4 and (25,4) = 1.
Also, 7 = 3(mod 4) and this implies that 7190 = 3100 (mod 4). Now

(7,25) = (3,25) = 1. By Euler’s theorem 72° = 1(mod 25) and 320 =

(mod 25). Thus, 720 = 320 (o4 25) and we get 7100 = 3100 (1,4 25).

Since, (25,4) = 1 we get that 7100 = 3100 mod 100). Tha o
dlglls of the number 71{}0 — 3100 are 00, ( ) s, the las two

Scanned by CamScanner
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Elfample 27 If p, q are odd primes such that 2p = q + 1, and a is relatively
pame to 2, p and q, prove that a>*~1) = 1 (mod 16pq).

Solution. Note that a is odd as a is relatively prime to 2. Now, a2?~1) _ | =
(aP=! —1)(aP=1 4 1). Since, p is an odd prime, p — 1 is even and a®~} — 1 is
divisible by 8. Also, a?~! + 1 is divisible byg. Thus,

a%(r-1) = (mod 16) (1).
Since, a is relatively prime to p, we get a?~! = 1(mod p). Hence,
@’V =1 (mod p) (2).
Since, a is relatively prime to gand g — 1 = 2p — 2 = 2(p — 1), we get
a*™Y =1 (mod ¢) (3).

Using the fact that 2, p and q are relatively prime in pairs and combining (1),
(2) and (3) we get a®(P=1) = 1 (mod 16py).

Eiample 28 Prove that 504|n° — n3, where n is an integer.

Solution. We note that 504 = 7 x 8 x 9. If n is even then 8|n® while if n is odd
then 8|n? — 1. Hence, for every n 8|n8(n? — 1). But n3(n2 — 1)|n3(n% — 1).
Hence, 8|n° — n3 for every integer n.

Now either 3|n or 3 { n. If 3|n then 9|n?. Hence, 9|n3. If 3 { n then (3,n) = 1.

This implies that (9,7) = 1. By Euler’s theorem, we get 9|n® — 1. Thus, in

either case 9|n® — n3.

Similarly, either 7|n or 7 { n. If 7|n then 7|n>. If 7 { n then (7,n) = 1. By
Euler’s theorem, we get 7|n® — 1. Thus, in either case 7|n° — n®.

Since, 7, 8 and 9 are relatively prime in pairs and each divides n® — n3 we get
that their product 504 divides n® — n®.

Definition 1.10 Let m # 0. If (a,m) = 1, an integer a’ such that aa’ = 1
(mod m), is called an inverse of a modulo m.

Example 29 The following table shows the inverses of 1, ..., 12 modulo 13.

numberl234567891011]2
invcrscl79108112534612

Observe that 11! = 1{(2)(7)]((3)(9)][(4)(10)][(5)(8)][(6)(11)] = 1(mod 13)
and hence 12! = 12 = —1(mod 13).
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Remark 1.6 Since (a,m) = 1, there exist integers b, ¢ such that ab+me = 1.
Hence, ab = 1(mod m). This shows that if (a,m) = 1, a has an inverse
modulo m. Further, if b and c are inverses of a (mod m) then m|a(b — ¢).
Using Euclid’s lemma, we get b = c(mod m). Thus, the inverse is unique

modulo m k3
Let b and ¢ be integers congruent (mod m) and b’ be the inverse of b

(mod m). Then cb’ = bb’ = 1(mod m). Hence, both b and c have the same
inverse modulo m. Hence, the integers congruent modulo m have the same

inverse modulo m. -

/ Theorem 16 (Wilson’s theorem) Let p be a prime. Then
(p—-1)!=-1 (mod p).

.

)

Proof. The result can easily be verified for p = 2 and p = 3. We assume that
p > 5. Now, given an integer 7 such that 1 < i < p — 1 there exists a unique _;
such that ij = ji = 1(mod p), 1 < j < p— 1. Moreoveri = j if and only if

i = lorp — 1. Hence, (p — 2)! = 1(mod p). Hence,
(p—1)!=p-1=-1 (mod p).

Remark 1.7 Note that n is prime if and only if (n — 1)! = =1 (mod n).

Theorem 17 Let p denote a prime. Then z° = —1(mod p) has solutions if

and only if p = 2 or p = 1(mod 4).
Proof, If p = 2 we have the solution z = 1. For any odd prime we can write

(p—1)/2
Wilson'’s theorem in the form H j(p = 7) = —1(mod p). But j(p—j) =
j=1
~42 (mod p). and we get
(p—1)/2
(-—1)(’“1)/2_ H j2= -1 (mod p).
=1

fz2 = —1(mod p).

Hence for p = 1(mod 4), we geta solution o |
3(mod 4). In this case, if for

Suppose p # 2 0rp # 1 (mod 4) thenp =
some integer z, we have z2 = —1(mod p), then

(z2)P~1/2 = ~1®=1/2 (mod p).

Hence zP—! = —1(mod p). Since (p, z) = 1 we get p|2, a contradiction.
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Theorem 18 (Lagrange’s Theorem)
.~ Ap2T+ Ap1. ()

(z=1)- (@@= (p—1) =27 = Ayz? " + -

Then, A,—; = —1(mod p) and p*|Ap_2.

Proof. Replace z by z — 1 in (2) and multiply both sides by z — 1. Hence, we

get
{(x-1)(z—-2)-(z— (p—1)}z—P)
= (2=1)P = Ay(m— 1P o = Apa(z = 1+ Apa (T~ DN
Hence, (zP~' = A;zP 2+ - — Ap_23+ Ap-1)(z — D)

A A

Expanding R.H.S. using binomial theorem and comparing the coefficients, we
get )

‘f?.-F.'A_i = p+A; Identity

=1
pA1+ Ay = (’2’)+(p1 )A1+A2

N ‘ » _9
pAz+ Az = (§)+(p21)A1+(p1 )A2+A3

: : _d g
pAp—2+Ap—-l = (}71—)1) +(§_2)A1+(§_3)A2+---+A -1

pAy_y = 1+A1+As+ -+ Ap

From this, we successively get p|A1,p|As, -+ ,p|Ap-2 and p|A,_; + 1. If we
put z = 0 in (2) then we get A,_; = (p — 1)!. Thus, we get (p — 1)! = —1
(mod p) (Wilson’s Theorem). If we put z = p in (2) then we get p2|Ap—2.

We also note that z7~! — 1 — {(z — 1) --- (¢ — (p — 1)) } is a polynomial
with integer coefficients such that its coefficients are divisible by p. If z is not
divisible by p then (x — 1) --- (z — (p — 1)) is divisible by p. Hence, we get
zP—1 — 1 is divisible by p and thus we get Fermat’s Little Theorem.

Definition 1.11 Let ry, ..., 7, denote a complete residue system modulo m.
The number of solutions of f(z) = 0(mod m) is the number of r; such that

f(r;) = 0(mod m).
3The proof of this theorem may be skipped for the first reading.
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Theorem 19 Let g denote (a,m). Then az = b(mod m) has no solutions
if g+ b. If g|b, it has g solutions z = (b/g)zo + t(m/g) (mod m), where
t=0,1,...,g — 1 where zp is any solution of (a/g)x = 1(mod m/g).

Proof. Suppose ar = b(mod m) has a solution, say z,. Then azg = b
(mod m) i.e. azg — b = gm for some integer q. Hence, azg — gm = b

which implies that g|b (where g = (a,m)) if az = b(mod m) has a solution.

Thus, if g { b then az = b(mod m) has no solution.

Suppose g|b. Since (a,m) = g there exist integers A, u such that Aa '+
pm = g. As g|b there exists g such that b = gq. Hence, g(Aa+ pm) = qg = b.
Thus, gAa = b(mod m). Hence, az = b(mod m) has a solution if g|b. It is
easy to see that if g = 1 then az = b(mod m) has unique solution.

Further, if zo is any solution of (a/g)z = 1(mod m/g) then (b/g)zo +
t(m/g),t = 0, 1;&.:. ++g — 1 are solutions of az = b(mod m).

Taeorem 20 (Chinese Remainder Theorem) Let m;, ms, ... m, denote r
positive integers that are relatively prime in pairs, and let a,,...,a, denote
any r integers. Then the congruences z = a; (mod m;), i = 1y...,7 have
common solutions. Any two solutions are congruent modulo mMyMa-- - M,

Proof. Let m = mym,...m,. Note that m/m; and m; are coprime. Hence
there exists b; such that (m/m;)b; = 1(mod m;). Clearly,

b, =0 (mod m;) for i # ;.
m;

r

m m : . | ;
. Define xy = ; ;n—jbjaj' Now —r;l-;bj = 1 or 0(mod m;) according as j = i
or j # i. Hence zg is a solution of the system of congruences.

If z¢ and yy are solutions of the system, then zp — yo = a;

a;
(mod m;) for each i. As m,, ... » My are coprime in pairs, we

§ — 0
et xg — 0
(mod m) as required. S

TR

. Example 30 Find all solutions of the system

=2 (mod4), z=3 (mod 5),z=1 (mod 7).
Solution. Here m; = 4, mp =5, my = 7 M=
M/m, = 35, Mz = M/mz = 28, M3 =
hence M| = 3(mod 4). M; = 3(mod 5),
(mod 7), hence M} = 6 (mod 7). Consider

2M\ M} + 3M, M} + 1M3M;
2x35x3+3><28><2+20x6=498578 (mod 140).

M/m3 = 20. M = 3(mod 4),
hence M; = 2(mod 5). M; = 6

mimamg = 140, M, =

To
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Z.
Hence all the solutions of the system are 78 + 140k, k EA 1.. For example, we
We note that there are many possibilities to choose = %S(xnod 140).
may choose M} = —1, M; = 2 and M3 = —1. Then xo =

Example 31 Find the last three digits of they100 th powers of the first 100
natural numbers.

Solution. Let m be a natural number and r be the last digit of m. Then m =
r + 10k for some integer k. Hence

100 x 99

m'% = (r 4 10)10 - r'% 4+ 100r%°(10k) + 3

= 1'% (mod 1000)

r%(10k)? + ...

[We can prove this as follows: (Exercise Set 1.2 Prob. No.8) *

mEr (mod 10) = ml0=,10 (o4 10%)
) =3 (mlﬂ)lﬁ = (TIO)ID (mod 103)
ie. mi% = 5100 (14 1000)]

(@) If r = 0, then 100 = .

®)If r = 1,3,7,9, then r2 = 1(mod 8), so r100 =

= 1(mod 8). Also,
¢(125) = 100 By Euler’s theorem, as (r,5) = 1, 7100 = 1(mod 125). Hence,
1% = 1 (mod 1000).

©If 7 = 5 then 2 = 1(mod 8). Hence, r1% = 1 (04 8) and 100 = g
(mod 125). Using Chinese remainder theorem, r1% = 625 (moq 1000).
d)Ifr =24,68, 500 = 0(mod 8). Since, (r, 5) = 1 we get r100 — 4

(mod 125). By Chinese remainder theorem, 1% = 374 (mod 1000).

Thus in the above 4 cages, the last 3 digits of m!00 gpe 000, 001, 625 and
376 respectively.

Definition 1.12 Let a, 1n be integers such that (a, m) = 1. An integer n is
called the order of ¢ modulo m if n, is the small

est integer such that g" = 1
( m_od ™). An integer q relatively prime to m is called a primitive root modulo
m if order of ¢ modulo m is ¢(m).

For €xample, order of 2 modulo

: 7 is 3 while the order of 3 modulo 7 is 6.
Thus, 3is a Primitive root modulo 7.

: o integers 1,2, 4, pe, 2p® (p an odd prime) are the only integers
which have a primitive root.
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Example 32 Find all pairs of prime numbers (p, q) satisfying the condition

that pg divides 27 4 29,

Solution. Let us assume that p, ¢ are odd primes such that pq|2P + 29. Let m
. and n denote order of 2 modulo p and modulo q respectively and m = 2%m,
- andn = 2°n; where 2 { m; and 2 §%;. We have 2P = —29 (mod pq). Hence,

we get 2P = —2(mod g) and 29 = —2(mod p). Hence, we get 27~! = —1

{mod ¢) and 29-! = —~1(mod p). But m|p — 1 and n|g — 1. We may assume
.thata 2 b. Hence, we get

V.

(2P7H)™ = (-1)™ = ~1 (mod g).

But n|p — 1. Hence (2°-1)" = ] (mod gq) which implies that ¢(2, a contra-
-~ diction. Hence, at least one of p and g equals™2. Suppose p = 2 then it is easy
toseethatq =20rgq = 3. Similarly, if ¢ = 2.then p = 2 or p = 3. Hence, all

pairs satisfying the given condition are (2,2),(2,3) and (3, 2).

Exercise Set - 1.3
_¥Find the remainders when 2°0 and 41% are divided by 7.
A Find the units digit of 310,

A7 Show that 11|(5° — 319). More generally, if p is a prime such thatp { a
and p t b, then show that p|(a?~1 — pp-1). -

/ Prove that (i) 39(53'% + 10353) and (i) 7/(111333 + 333111y,
/ If p and ¢ are distinct primes, show that p?1 + ¢! = 1(mod q).
/6./ Find the remainder when 7200 4 11800 ig divided b;' 101.
/ Show that 89(2*4 — 1) and 97|(248 — 1).
8. Show that there are infinitely many primes of the type 4n + 1.
9. Show that there are infinitely many primes of the type 6n + 1.

10. Show that if a prime p divides an integer of the form 16a% + 1 then P
1s of the type 8n + 1. Hence, or otherwise show that there are infinitely
many primes of the type 8n + 1.

n-3
11. Show that Z r(r)! is divisible by n if and only if n is prime.

r=]1
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12. Prove that if p is a prime and a, b are any positive integers, then

o (*)=2 mod p),  (i)(*) =2 (mod %),

@ (3)=() s w(3)= () i

13. Solve the following equations in Z : (i)y? = 2*+7, (ii)y® = 41z +3.

14. Prove that for each positive integer n there exist n consecutive positive
integers none of which is an integral power of a prime number.

IS. If pisaprimeand 0 < r < p, prove that (p—r)!(r =1)!+(-1)""1 =0
(mod p). Show also that 18! = —1 (mod 437).

16. Show that 15 + 25 + ... 4 1005 is divisible by 10100, howcver it is not
divisible by 3.

17. Let (a,b) = 1. Show that there exists an integer [ such that &’ + %' = 1
(mod ab).

18. Prove that if p > 5 is a prime, then p* = 1(mod 240).

19. Prove that if p is an odd prime different from 3 and 7, then p% =
(mod 168). Is it true that p® = 1 (mod 504)?

20. Prove that if for integers a and b we have 7|a? + 42 then 7|a and 7|b.

1.4 Greatest Integer Function

For real z, the symbol [z] denotes the greatest integer less than or equal to z.
Thus, we note that (1] = 3, [e] = 2, [-71] = —4.

Theorem 21 Let x and y be real numbers. Then we have -

(1) [f]<z<[z]+1landz-1<[z]<z,0<z—[2] < 1.

(it) Ifz >0, [z] = Z 1

1<i<z
(éi¢) [z + m] = [z] + mif m is an integer.

() 2]+ [y < [z +y) < [z] + [y] + 1.
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if z is an integer,
otherwise.

(v) [&] + [-2] = {(-)-l

(vi) [[E‘l] = [-'%] if m is a positive integer.
(vii) T — [z] is the fractional part of z and is denoted by {r}.
(viit) —[—=z] is the least integer > z.

(i) [z + 0.5] is the nearest integer to z. If two integers are equally near to z,
[z + 0.5] denotes the larger of the two.

" (z) If a and b are positive integers, [b/a] is the number of integers among
1,2, ..., n that are divisible by a. Thus, b = ag + r,0 < r < a can also

be written as
b=al|-|+T.
a

Example 33 For every positive integer n, show that
[VA+vVn+1) = [Vin+1] = [Vin + 2| = [Vdn +3].

Solution. Note that (v +vn+1)2=2n+1+2y/n(n+1)andasn > 1,
n < v/n(n + 1) < n+1. Consequently dn+1 < (v/n++/(n +1))? < 4n+3,

which gives
Vin+1<vn++(n+1)<vdn+3. ()]
Also, there always exist an integer & such that

K <4n+1< (k+1)4
Since a square cannot be congruent to 2 or 3 (mod 4), we have

K2<dn+1<4n+2<4n+3< (k+1)3%
ie. k<Vin+l<Vin+2<vin+3<(k+1). (10)

Combining (9) and (10), we get the required resulit.
Theorem 22 (de Polignac’s Formula) Let p be a prime. Let e be the largest
exponent of p such that p® divides n!. Then e = Z [g] :

i=1

Proof. Induction on n or one can also prove this using elemenary counting
principles.

Scanned by CamScanner



30 An Excursion in Mathematics Chapter 1. Number Theory

1.5 Arithmetic Functions

Definition 1.13 A function f : N — C is called an arithmetic function.

For example, .

d(n) = the number of positive divisors of n, '

o(n) = the sum of positive divisors of n, ‘ i,
ox(n) = the sum of kt* powers of positive divisors of n,

¢(n) = the number of positive integers < n and relatively prime to n.

w(n) = the rﬁgmbgz; of distinct primes dividing 7.

Proposition 21f n = p}ip3? ... p* ‘then d(n) = (a;+1)(az+1). .. (ax+1).

Proof. If d is a divisor of n, thend = p%'p5...p* where 0 < b; < a,

1 < 1 < k. For each i, we have a; + 1 choices for b; and so*
d(n) = (a; +1)...(ax +1).

_Deﬂnition 1.14 An arithmetic function f is said to be multipﬁéat?ve if f is not
;dentically zero and f(mn) = f(m)f(n) whenever m and n are coprime i.e.
m,n) = 1.

-

For example, f(n) = n, f(n) = d(n) are multiplicative functions.

Theorem 23 If f(n) is multiplicative, then so is F'(n) = Z f(d).
din

Definition 1.15 The Mo6bius function x(n) is defined as follows:

1 ifn=1,
pn) =<0 if a%|n for some a > 1,
(-1)* ifn=p;...pk, p;being distinct primes,

Thus, ;(p) = —1, where p is a prime, u(6) = 1, 4(24) = 0.

Example 34 Find Y (u(n!) i p(1!) + p(2!) 4 u(3!) +-- - .
Solution. We note that 4|n! if n > 4. Hence, u(n!) = 0if n > 4. It follows

that ) (u(n!) = p(1!) + p(2) + p(3) = 1.

Theorem 24 (Mibius Inversion Formula) If F(n) = Z £(d) for every
’ din

- n
positive integer n, then f(n) = Z p(d)F (E ), for every positive integer n.
din
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Note. The converse of this is also true.

1 1 a1 .G a
Theorem 2§ ¢(n)=n(1— 'I-J—) (1— ;k‘) ,WthCﬂ:pl'pz:...pkh.
1

Proof. Since Eé(d) = n we have, by Mobius inversion formula,
© o din '

o(n) = Y p(d)- (n/d.). fioes, 2 Ei_‘%‘ﬂ
g -

n
dln

Now u(d)/d is a multiplicative fanction. So #(n)/n is a multiplicative
function. Thus ¢(n) is a multiplicative function. For a prime p-

06 = Sua(%) = Luen (%)
- 2, HE
= WP +ulp = 9t = = 5 (B20)

p
1 1
— . i i POy 1 s s
Hence ¢(n) n (1 p1) ( pk)

Remark 1.9 The multiplicativity of Euler’s totient function can also be es-
tablished using Chinese Remainder theorem and also by elementary counting
method. We give a proof by elementary counting method.

Proof. Let us write the numbers from 1 to mn in ann x m array.

1 2 m
m+1 m+ 2 2m
mn—1)+1 m(n—-1)+2 mn

Circle those numbers in the first row which are relatively prime to m. Since
(m,n) = 1 and any two elements in the same column differ by multiple of .
™ we get that these are the only elements from 1 to mn which are relatively
prime to m. Thus, we get ¢(m) such columns.

Now,if 1 < r Smand (r,m) = 1,thenr,r+m,..

complete residue system modulo n. Hence, out of these

+»T+m(n—1) forma
are relatively prime to n. But these

elements exactly, ¢(n)
elements are relatively prime to m also.

L]
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Hence, there are exactly ¢(m)@(n) elements less than or equal to mn which
are relatively prime to both m and n, hence to mn. Thus, we get ¢(mn) =

¢(m)é(n).

Example 35 Let o(n) be the sum of all positive divisors of a positive integer
n (including 1 and n) and @(n) the number of positive integers less than n and
prime to n. Prove that o(n) + ¢(n) > 2n.

Solution. Since o(1)+¢(1) = 2,letn > 1.Letl =d; < dz < --- < dix = n,
be all the divisors of n. Note that

n
di+-+dp=0(n), - =ds_1, - = di2, o gy =

The number of positive integers < n and divisible by d; is / d; /So, the number
of positive integers < n and 'not coprime with n is

Nn—¢n) <o+ — 4t =dy + -+ dy = o(R) —

Exercise Set - 14

1. How many zeros are there at the end of 400! ?
2. Show that n is a perfect square if and only if d(n) is odd.

3. There are n students standing in a row as per their roll numbers 1,...,n.
The drill-master asks all the students to sit down. Then he asks every
second student to stand up. Next he asks every third student to change
his position from standing to sitting and vice-versa. Then he asks every
Jourth student to change his existing position and so on. Finally, he asks
the nth student to change his existing position. Find which students are
found in the sitting position at the end of this drill. '

4. If n = p*p3? ... pg*, then show that o(n) and oy (n) are multiplicative
functions and hence show that

a;+1 k  k(ai+1)
pa‘ -1 - ] =1
a n —-———-, ka(‘n) — ———

i=1

5. A natural number n is said to be perfect if o(n) = 2n. Prove the fol-
lowing theorem of Euclid: If 2¥ — 1 is a prime, then 25~1(2% - 1) is a
perfect number. (This is the case whene.g. k = 2,3,5,7,13,17,19).
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Conversely, prove that cvery even perfect number is of the form
2%=1(2% _ 1), where 2* — 1 is a prime (Euler). ( No odd perfect numbers

are known).

6. Prove that forn = 1.2,3, ...

2 (5] () Pt =

7. Let {an)>_, be a sequence of positive integers defined by Z““
din
2" for every,n € N. (Forexample, a; = 2,a; +a2 = 22, a;+a3 = b
Prove the following statements: _

(a) If p, q are distinct primes then pq|ap,. .
(b) For every prime p and positive integer m, p™ lapm .

1.6 Pythagorean Triples

If (z1,y1, 21) is a solution of 22 + y? = 2? in positive integers then the triple
(21,1, 21) is called a Pythagorean triple. If the gcd of 1, 1, 21 is 1, then such
a triple is called a primitive Pythagorean triple. For example, (3.4,5), (5,12,13),
(8,15,17) are primitive Pythagorean triples.

Theorem 1 A primitive Pythagorean triple (1, y1,21) with y; even is given
by z; = r2 — %, yy = 2rs, 2; = r* + s* where r and s are arbitrary positive
integers of opposite parity with r > s and (r,s) = 1.

Proof. Since the gcd of 21, ¥1, 21 is 1, then x;, y; cannot both be even. If z,, ¥,
are both odd then z2 = 1 (mod 4) and y? = 1 (mod 4), sothatz3+yf = 2§ =2
(mod 4), a contradiction. Hence T, y; cannot both be odd. We assume that y,
. iseven and z; is odd. Now, y? = 2} — 2% = (21 + 1) (=1 — x1)- So

(11/2)% = y3 /4 = [(21—=1)/2][(21+21)/2]- Now since the g.c.d of 21, y1, 21
is 1, we have ((z1 — z1)/2,(z1 + 21)/2) = 1 and hence

(z; — 21)/2 = s? and (2, + x1)/2 = r? for some posilive integers r, s.
Obviously (r, s) = 1; since the g.c.d of =, ¥, 2; is 1, we get that one of r, s is
odd and the other is even. Hence we get that the integers ,, ¥, 2; must be of
theformz; =r?2—s2,y; =2rs, 2y =r’+s?withr > s> 0, (r,s) = 1and
r, s are of opposite parity. Conversely, if integers r,, y;, z; are of the above
form, then (z;,¥1, 21) is a primitive Pythagorean triple.
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Example 36 If (z,y, z) is a primitive Pythagorean tri_ple then show that one
of z,y is divisible by 3. Further, show that zyz is divisible by 60.

Solution. By the above theorem we have (assuming y even) £ = r? — g2
y = 2rs, 2 =r? + 82, If 3|r or 3|s then 3|y. If 3{ r and 3 { 5 then by Fermat’s
theorem r2 = 1 (mod 3) and s = 1 (mod 3). Thus z = r? — 5% = 0 (mod 3)
ie. 3|z o

Since r and s are of opposite parity 4|y. If 5|rs then 5|y. If 5 { rs then
r* = 1(mod 5) and s* = 1(mod 5). Hence, zz = r — s = 0(mod 5).
Since, 3,4, 5 are pairwise coprime, their product i.e. 60 divides zyz.

Example 37 Let a, b, c be integer sides of a right-angled triangle, where

a < b < c. Show that ab(b? — a?) is divisible by 84.

Solution. Leta = zt,b = yt and ¢ = zt where (z,y,2) is a primitive
Pythagorean triple and ¢ is a positive integer. We may assume that y is even,
hence we get z = 12 = §2, y = 2rs, 2 = 2 + 52 whesde r and s are arbi-

trary positive integers of opposite parity with 7 > s and (15 $h= 1. Note that
84 = 4 x 3"x 7. Hence,

zy(z? —y?) = 2rs(r? - s%)[(r? - s%)% — 4r%s?
= 2rs(r® — &®)[r* + r2s? + %) — 7r?s?]
= 2rs[(r® — 5%) — 7(r? — 5%)r%s?
is divisible by 4 as one of r and s is even. Either rs is divisible by 3 or otherwise

r? = s2 = 1(mod 3). Hence, 3|r2 — s2. If 7{ rs then r® = 8 = 1(mod 7).

Hence, 7|zy(z? —y?). Since, 3,4 and 7 are relatively prime in pairs, we get the
required result.

1.7 Representation of a positive integer

Let n be a positive integer, bbe any positive integer > 1. Then n can be written
uniquely as

n=ngb*+n,_ 10" 1+ .. +nb+n (11)
where 0 < n; < b, n, # 0. We also write (11) as

n=(ﬂ..na—-1,---,nl:n0)b (]2)

(11) and (12) are called a digital representation of 7i in base b. The n; are called
the digits. The above n may also be written (for k > s) as,

n = (N, ng-1,...,n2,n1,np), (13)
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= = = = (. We may thus write
enNE = Ngp—1 = -+ Net1 .
:t:rf wimus:'tak .np)s, With n; = 0 foreveryi > s. We have the following

conventions:
Binary representation : base 2 Decimal representation : base 10

Ternary representation : base 3 Duodecimal representation : base 12
Octal répresentation : base 8 Hexadecimal representation : base 16.

Thus,

n=210 = 2x102+1x10"'+0x10°=(210)0.
- 1x5%+3x52+2x5=/(1320)s.

To convert 210 = (2 1 0);0 to base 2, we divide 210 by 2, and note the
remainder, and repeat the process with 210 replaced by the quotient. Continue
the procesgutill we get the quotient to be zero. Then starting at the bottom, the
rémain‘(i&% give us the binary digits for 210, read from left to right. Thus we
have the following table.

n = 210

divisor quotient remainder
105 0
52 1
26 0
13 0
1
0
1
1

6

NN

3
1
0

O —

Hence (210),9 = (11010010)3. Check:

(11010010); = 1x274+1x2%+1x2441x2!
128 + 64 + 16 + 2 = 210.

The same procedure works for any base b. Note that for representation to
base b, the ‘digits’ are the numbers 0,1,...,b — 1. Thus in base 2 the digits
are 0, 1 and in base 5 they are 0, 1, 2, 3, 4. If b > 10, then we have to use
new symbols to designate the digits > 10. Eg. if b = 12, the digits are
0,1,...,10,11. The new digits 10 and 11 may be designated by symbols such 1
V4L
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as ¢ and e or they may be underscored. Thus (1 t)12 = (2210 0r (L1 1)z =
(1 3 3);0. When hexadecimal representation is uscd-, we denote the numbers
10,11,12,13,14and 15by A, B,C, D, E, F respectively.

Note. We have 0 = (0), and 1 = (1) for any base b.

Exerdise set- 1.5

1. Show that if 22 + y? = 22, then the following are equivalent:
(i) ged of x4,y 2y is 1 (i) (x1,21) = 1 (i) (y1,21) =1
V) (z1,21) =1 W) (zr,m) =1, (v, 21) = L, (z1,21) = L.

2. If (z,y, 2) is a pythagorean triple such that each z, y, z can be written as
sum of two squares then show that 180|zyz.

3. Verify the following: (i) (556)10 = (421 1)s
(Ii) (5 5 ﬁ)g = (4 5 6)10 (Ill) (1 37 6)8 — (5 3 t)lg.

4. Show that every positive integer is congruent modulo b — 1 to sum of
its digits in base b. Show further that if n = (n,,ns—1,...71,70)s,

thenn = ng —ny +na... + (-1)°n, (mod (b + 1)). Hence, derive a
divisibility test for 11.

3. Noting that 37 divides 999, devise a test for divisibility by 37. Noting
that 1001 = 7 x 11 x 13, devise a test of divisibility by these primes.

6. Let n be a five-digit number and let m be a 4-digit number formed from n
by deleting its middle digit. Determine all n such that n/m is an integer.

7. Prove that sum of all the n— digit integers (n > 2) is
49499...95500...0 [digit 9 (n — 3) times and 0 (n — 2) times.]

8. Prove that a triangle with sides of lengths 5,5,6 has the same area as the

triangle with sides 5,5, 8. Find all other pairs of noncongruent isosceles
triangles, with integer sides, having equal areas.

9. Show that the highest power of a prime p that divides 7! is
(n— sum of the digits of » when 7 is written in base p)/(p-1).

10. Find all the right-angled isosceles triangles with integer sides.

11. %ctcnnine all three digit numbers NV, such that N js divisible by 11 and
i is equal to the sum of the squares of the digits of N,
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12. Find the smallest natural number n with 6 as the last digit in its decimal
representation and such that if the last digit is erased and kept in front
of the remaining digits, the resulting number is four times as large as the
original number n.

13. When 44444444 {5 written in decimal notation, the sum of its digits is A.
Let B be the sum of the digits of A. Find the sum of the digits of B.

14. A divisor d > 0 of a positive integer n is said to be a unitary divisor if
(d,n/d) = 1. Suppose n is a positive integer such that the sum of its
unitary divisors is equal to 2n. Prove that n cannot be an odd integer.
(Note that 1, 3, 4, 12 are the unitary divisors of 12.)

n
y i, :
15. Let n > 2 be an integer. Show that E T is not an integer.
k=1

16. Consider the set {1,2,...,100}. Is it possible to split this set into three
groups such the sum of the elements of the first group is divisible by 100,
the sum of the elements of the second group is divisible by 201 and the
sum of the elements of the third group is divisible by 302.

17. Consider the set {1,2,...,100}. Is it possible to split this set into three
groups such the sum of the elements of the first group is divisible by 102,
the sum of the elements of the second group is divisible by 203 and the
sum of the elements of the third group is divisible by 304.

18. For each real number 7, [r] denotes the largest integer less than or equal

to 7. Indicate on the (z,y)—plane the set of all points (x,y) for which
[z]? + [y]* = 4.

19. Find all the real solutions of the equation
[z] + [2z] + [4z] + [8z] + [16z] + [32z] = 12345.

20. Find all real solutions to the equation 422 — 40[z] + 51 = 0. Here, if x

is a real number, then [z] denotes the greatest integer that is less than or
equal to z.

21. Let p and q be distinct odd primes. Show that

(p-1)/2 [ ;

> (4] b3 [ga_] _@-1@-1)

J=1 p ji=1 q 4
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22. There are ten bags with coins. Some of them con_lain O{IIY counterfeit
coins, each of which is 1 gram lighter than a genuine coin. One oI: the
bags is known to be filled with the genuine coins. Using oqu one wc!gh-
ing on a balance with one pan and an arrow showing showing the weight

on the pan, determine which bags are “counterfeit” and which are not.

Find all the natural numbers N such that the reduced |€51due §ystern
consisting of least positive residues modulo N form an arithmetic pro-

gression (I.M.O. 1991).
24, Find all integers r # 3 such that r — 3|z> — 3.

25. Prove that their exist infinitely many positive integers n such that an?+1
is divisible both by 5 and 13.

26. Find two least composite numbers 2 such that n|2® — 2 and n|3" — 3.

23.

27. Find the least positive integer n such that 22" — 2 but n not divides
3" - 3. '
28. Find least integer n such that n not divide 2" — 2 but n|3™ — 3.

29. Prove that :

(a) every positive integer has at least as many divisor of the form 4k +1
as divisor of the form 4k + 3;

(b) there exist infinitely many positive integers which have as many
divisors of the form 4k + 1 as divisors of the form 4k + 3;

(c) there exists infinitely many positive integers which have more di-
visors of the form 4k + 1 than divisors of the form 4k + 3.

30. Let p be an odd prime. Show that there exits an integer = such that.
78 = 16 (mod p).
Solutions to Exercise Set-1.1

1. A typical term 11...11 is of the type 4k + 3. The perfect squares are
either of the form 4% or of the form 4k + 1. Hence, the number 11 ...111

cannot be a perfect square.

2. Note that

(ma, mb) = least positive value of maz + mby
= m(least positive value of az + by) = m(a, b).

Scanned by CamScanner



1.7. Representation of a positive integer 39

3. Note that d - (-3, 5) = (a, b). Hence, we get the required result.

4. Suppose 2d—1 = z?,5d—1 = y? and 13d— 1 = z2. Since, 2d—1 = z?
we get that d must be odd. Hence y and z must be even. Also, z% —y? =

( - . z+
(2-y)(=+y) = 8d. Hence, (2 ; ) (2 5 v _ 2d. Now either £_2__yl
(z=y) must even. Moreover, these two numbers differ by y, an even
number. Hence their product 2d must be divisible by 4. Hence, d must
be even, a contradiction. Hence, one can find distin¢t a, b € {2, 5,13, d}
such that ab — 1 is not a perfect square.

or

5. (7645,2872) = 1 = 3543(2872) — 1331(7645) and (3645, 2357) = 1.

6. Note that z + 1|z?* — 1 if k is a positive integer. We may assume that

m < n.Putx = ¢®” and k = 2"~™. Hence, a?” + 1|(a?")?" " — 1.
+

= " 1 if adséven,
Hence, we get that (a®” +1,a%" +1) = ¢

2 if ais odd.

Let a be even and p,, denote the prime dividing a?" +1. Then as PmsPn

are distinct primes, we have (p,,p.) = 1 whenever m # n. Hence,
there are infinitely many primes.

7. Let a, b, c be integers such that (a,b) = 1, ¢ > 0. Let P denote the
product of primes common to both a and ¢ and P = 1 if there are no
primes common to both. Let Q denote the product of primes common to
both b and c and @ = 1 if there are no primes common to both. Let R
denote the product of primes which divide ¢ but do not divide aband R =
1 if there are no such primes. Note that (P,Q) = (P,R) = (Q,R) = 1.
It is now easy to see that (e + bQR, c) = 1.

8. Assume that there are finitely many primes of the type 6n — 1, say p; =
%P2, - ,pr.Let N = 6pypa--- pr — 1. Clearly N > 2 and 2, 3 and
none of the p;’s divide N. Moreover, since N is of the type 6n — 1,
N must have a prime factor of the type 6n — 1. Hence, this prime is a

new prime of the type 6n — 1, a contradiction. Hence, there are infinitely
many primes of the type 6n — 1. |

9. If k, k+1, k+2 are consecutive integers, then at least one of them is even

and one of them is divisible by 3. If there are four consecutive integers,
then there are two even integers and one of them is divisible by 4 as well.
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10. Sincem = n? - p = nn—1)and m - 2 = (m~2)(n+1) and
m? —2m = (n- 2)(n~1)n(n 4+ 1) . Hence, m? — 2m is product of 4
consecutive integers and hence 24|m(m — 2).

L1. It can be easily seen that the book has more than 1000 pages. Suppose
the book has 999 + z pages. Then, we get the equation 9 + 2(90) +
3(900) + 4x = 3189. Hence, 7 = 75. Hence, the book has 1074 pages.

12. Note that 6k = (k + 1)3 + (k — 1)3 — k3 — &3 and §k — 15 = (2k)° -
(2k + 1)° + (k - 2)3 = (k + 2)3.
p-1 p-1/2

13. Let p > 3 be an odd prime. t - = 4 . Hence,
p an odd prime. Note hat;;k kzzl Kp—%)

the numerator is divisible by p.
Challenge. Show that the numerator is divisible by p?

14. Note that if n > 4 then 3|n(n + 2)(n + 4).

15. Since 2 is the only even prime, the product a = p;ps - - - p,, is of the form
@ = 2k where k is odd. Butif a + 1 = 2, then g2 and hence q is odd
and so a = (g + 1)(g — 1) is divisible by 4. This is a contradiction. So
a + 1 cannot be a square,

16. The units digit of the square of an integer must be one of 1,4,5,6,9. But
when n > 4, the number a = 5! + --.n! is divisible by 10 and so the
units digitof b = 1! + 2! + 3! + 4l + q = 33 +ais 3..Hence b is not a
square. '

17. Leta < band a = 81m, b = 81n so that by data (m,n) = 1. Also, then
l.c.m. of a,b = 81mn = 5103 = 81 x 63, so that mn=63=7xg9,
But (m,n) = 1. Hence we may take m = 7, n = 9. Thus 2 =8lm —
967, b = 81n = T729. .

18. Let a = 2*3¥5%b where b is coprime to0 2,3 and 5. Then given conditions
imply that (i) z + 1, y, 2 are divisible by 2 and (ji) r, y+1, 2 are
divisible by 3 and (iii) =, y, z + 1 are divisible by 5. so by trial, the
smallest values of z, y, z are 15, 20, 24 respectively. Also, for any integer
n, b = n3 is a square, cube and a fifth power. Hence, we may take
a= 215320524.“30-

19. Let (a,b) = dsothata =dm, b =dn and (m,n) = 1. Thep

atl +b_t-1 = ¢, an integer. This implies Lhata2+a+b?+b=abc
b a
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or (a+b)2+a+b = abc+2abor d(m? +n?)+m+n = dmnc+2dmn,
s0 that d divides m + n and so d < (m + n) as all numbers are positive.
Hence, d? < d(m + n) = a + b, as was to be proved.

20. If n is composite then n = n;n, where n; > 1 and n, > 1. Hence,
2™ —1>1land2™ —1|2" - 1.

21. If n = 2%n,, where n; is an odd integer greater than 1 then 2% 412" +1,
a contradiction. |

>

r=8andy =64orz=64andy =8.

8

. Suppose (a, b) = d. Then d|a and d|b. Since, (a,b) = [a, b], we get that
a|d and b|d. Hence, a = +d and b = +d. Hence, a = =+b. )

24. Note that n® +4n2+11 = (n? +4n2 - 5)+16 = (n2+5)(n%—1)+16.
Since, n is odd 8|n? — 1 and 2|n? + 5.

25. z is a solution if and only if z + 2is divisible in 3,4,...,10. Henee,
smallest positive solution is given by [3, ..., 10] — 2 and all solutions are
givenby [3,...,10] -2+ k- [3,...,10], where k € Z.

26. Suppose an integer n > 1 is a composite number. Then n = ab where
both a and b are greater than one. Suppose both a and b are greater than
v/n. Then ab is greater than n, a contradiction. Hence, one of a and b
is smaller than or equal to v/n. Hence,it has a prime divisor d such that

d < n.
27. a = 4k + 2,b = 4l + 2. Hence, (a + b,4) = 4.

28. Take @ = 5 — 100k, b = 95 + 100k. Now e + b = 100 and (a,b) =
(a,a + b) = (5 — 100k, 100) = (5,100) = 5.

29. Let d = (a,b) and let a = a’d and b = ¥'d so that ged(a’,d') = 1.
Hence there exist integers x, y such that

adz+by=1 (14)

So, on multiplying this equality by dn, we get a’dnx + b'dny = dn, or
anz + bny = dn. But since ab’ = a’b = a’b'd, this can be rewritten as

a(nz —b)+bny+a')=dn or ak+bl=dn, (15)
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where k = nz — ¥ and [ = ny + a’. Now the g.c.d. of k, Lis 1. For, if ¢
is the g.c.d. of k and [, then c also divides

ol-ky=nzy+a'z-nzy+by=adz+ by,

so that by (14), ¢ divides 1; hence ¢ = 1. Thus by (15), k,{ are the
required integers. ]

.

Solutions to Exercise Set -1.2

. Note that b = 2q + 1 for some integer g. Hence, b = 4g(q + 1) + 1.
Since 2|q(g + 1), we get that b2 = 1(mod 8).

. An integer b can be written as 3q or 3¢ & 1. If b = 3q, then * = 0
(mod 3). If b = 3¢ % 1, then b> = 1(mod 3). Hence, the square of an
integer is = 0, 1(mod 3).

. If p # 3 then 3 { p then p? = 1(mod 3). Thus, 3|p? + 8. Henée, p = 3
is the only prime.

. An integer b can be written as 5q or 5¢ = 1 or 5¢ &+ 2. If b = 5¢q, then
b> = 0(mod 5). If b = 5¢ + 1, then b2 = 1(mod 5). If b = 5g + 2,
then b2 = —1(mod 5). Hence, the square of an integeris = 0, 1, — 1
(mod 5).

. Put2n 4+ 1 = a? and 3n + 1 = b2. Since, 2n + 1 is a perfect square then
n is divisible by 4. Hence, 3n + 1 = 1(mod 8). Hence, 8|n. Since, the
square of an integeris =0, 1, —1(mod 5). Weget2n+1=0, 1, —1
(mod 5)and3n+1=0, 1, —1(mod 5). If 224+ 1 = 0(mod 5) then
3n + 1 = 2(mod 5), a contradiction. If 2n + 1 = —1(mod 5) then
3n + 1 = 3(mod 5), a contradiction. Hence, 2n + 1 = 1(mod 5) and
5|n. Since, (8,5) = 1 we get 40|n.

Challenge. Show that if 3n + 1 and 4n + 1 are both perfect squares then
n is divisible by 56.
. Since, (n,6) = 1, n? = 1(mod 8) and n? = 1(mod 3).

. We note that 2 + 2v/28n2 + 1 is an even integer. Hence, 28n2 + 1 is
a perfect square of an odd integer, say m. Now 28n2 = m?2 -1 =

(m-1)m+1)ana7n? = (25) (757 - Hence, 2

1
2 ) = 7a?

m+4+1

s 8 P
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‘.

If “n}-‘-,.-t-l = 7a? and m;l = b then b® = —1(mod 7), a contra-
diction. Hence, m; : = Ta? and m;—l = b2, Hence, 2 + 2m =

2+ 2(2b% - 1) = 4?, a perfect square.

8. Note that a™ = b™ = (a — b)(e™~! + a™~2b 4 - - - + ab™~2 4 pm=1),
Sinceya = b mod m",a =b mod m. Hence, a™~'b = b™ mod m
and a™ ! 4 @™ 4 ... 4 @b™2 4 P = mp™ = O(mod m).
Hence, a™ — b™ is divisible by m"+!.

af - b

| 9. Note that
a-—b

p—-1
Za‘b”‘l" =.pb"~! = pa?~! (mod a - b). It
1=0
Gp _— bp o i) —l ¥
follows that the ged pumral b ) divides paP~! and pb®~!. Since
a and b are coprime the ged is 1 or p.

S T

Solutions to Exercise Set - 1.3

1. When 2% is divided by 7 the remainder is 4. Note that 41 = —1(mod 7)
Hence, 41% = —1 = 6(mod 7)

2. The unit’s digit of 3190 js |,

3. Observe that a?~! = 1(mod p) and *~! = 1(mod p).

4. (i) Note that 53 = —1(mod 3) and 103 = 1(mod 3). Hence,
(53)'® = —1 (mod 3) and (103)** =1 (mod 3).

This shows that (53)1%3 +(103)53 = 0(mod 3). Also, 53 = 1(mod 13)
and 103 = —1(mod 13). Hence, (53)'% = 1(mod 13) and (103)% =
—1(mod 13). This shows that (53)!% + (103)%3 = 0(mod 13). But
(3,13) = 1. Hence, (53)%% + (103)%3 = 0(mod 39).

Also, 111 = 3(mod 6). Hence, 333!!1 = 43 = 1(mod 7).

(ii) Note that 111 = —1(mod 7) and 333 = 4(mod 7). Also, 111 = 3
(mod 6). Hence, 333'! = 43 = ] (mod 7).
5. Note that p, g are primes, hence using Euler’s theorem we getp?=l =1

(mod g) and ¢*~! = 1(mod p).

6. Use Euler’s theorem and note that

101 is a prime. Hence, 72 = |
(mod 101) and 118% = 1 (mod 101

). Hence, the remainder is 2.
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I

1. Note that 2'! = 1(mod 89) and 2% = (2!2)? = (~22)? (mod 97).

8. Assume that there are finitely many primes of the type 4n + 1, sa

Prp2cc o pr. Let N = (2pipy-+- p)2 + 1. Clearly N > 9 and jg
odd. Moreover, none of the p;'s divide N. Since N is of the type k? 41,
N must have a prime factor of the type 4n + 1. Hence, this prime is ,

new prime of the type 4n + 1, a contradiction. Hence, there are infinitely
many primes of the type 4n + 1.

Assume that there are finitely many primes of the type 6n + 1, say
Pr.p2,--- .p,. Let

N = (2‘31’1172"' Pr)2+(2'3p]p2'“ p,-)+l.

Clearly N > 2 and is odd. Moreover, 2, 3 and none of the p;’s divide
N. Since N > 1, N hasa prime factor, say p. Moreover, p > 3and p
(2:3p1p2- -+ pr)—1.Now, p|(2-3p1pa - -~ p,)3—1. Suppose p = 6k-1,
then ((2-3p1py - -+ p)®)* = 1(mod p). Using Fermat’s little theorem,
we gel p|(2 - 3pypa--- p,)? — 1. hence pl(2 - 3p1p2--- p;) + 1. This
implies that p|(2-3p,p, - - - p,)2. a contradiction. Hence, this prime is a

new prime of the type 6n + 1, a contradiction., Hence, there are infinitely
many primes of the type 6n + 1.

10. Note that a prime p divides an integer of the form 1624 + 1 then we ob-

serve that p = 1(mod 4). If p = 8k + 5 then ((2a)%)2%+1 = (2q)P-1 =
—1(mod p). Hence, by Fermat’s little theorem, we get p|2. a contradic-
tion. Hence, p is of the type 87 + 1. There are infinitely many primes of
the type 8n + 1 can be proved as in the earlier cxample.

n—3 n—3
11. Note that Zr(r)! = Z(r+ D= (r)! = (n—2)! - 1. Using Wilson’s

r=1 r=1
Theorem, we get that (n — 2)! — 1 is divisible by n if and only if n is
prime.

2 = /p\( p
12. Note that (:) =2+§(r)(p—r = 2(mod pg)aspl(f) for

1 < r < p— 1. Also. note that -

()5 () wammrsrsrs

ridedre=ph
(i‘;) = (:) (mod p?).
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Challenge. Show that if p > 5 is a prime then

(r‘:’) =2 (mod p*) and (ﬁ) = (Z) (mod p°).

13. (i) Suppose y2 = z3 + 7. Hence, y2 + 1 = z3 + 8. Hence, = must be
odd and y must be even. Moreover, y? + 1 = (z 4+ 2)(z? - 2z + 4) =
(x+2)((x = 1)2+3). Now, (z — 1)% 4 3 is of the type 4n — 1 and hence
it has a prime factor p of the type 4n — 1. Hence, y? = —1(mod p). But,
p = —1(mod 4), a contradiction.

(ii) Let (z, y) be a solution of y? = 412+ 3. Then y? = 3(mod 41). But
3 is not a square modulo 41. Hence, there are no such solutions.

14. Letpy,...,pn,q1,...,qn denote 2n distinct primes. Consider, the sys-
tem of congruences given by, z = —r(mod prg,) for1 < r < n.
Since, (prgr,psqs) = 1 by Chinese remainder theorem, this system has
a common solution. Hence, for each positive integer n there exist n con-

secutive positive integers none of which is an integral power of a prime
number.

I5. if pis a prime and 0 < r < p, we have by Wilson’s theorem (p — 1)! =
p-rp-(r-1))p-(r—2))---(p—1) = —1(mod p). Hence,
(p—7r)(r—1)! x (-1)""! = —1(mod p). Thus,

P-mr-1)+(-1)""'=0 (mod p).

Note that 19 and 23 are primes and by Wilson's theorem 18! = -1

(mod 19) and by the above result, 18! x 4! = —1(mod 23). Hence,

18! = —1(mod 23). Since, (19,23) = 1, we get 18! = —1 (mod 437).

16. Let M = 1% + 2% + ... + 100°. Note that 101|r% + (101 — r)® for
50

1 < r < 50. Hence, 101| Z r® + (101 - 7). Hence, M is divisible

r=1
by 101. Also, 100|r® + (100 — r)3 for 1 < r < 49 and 100|50° and
100{100°. Hence, M is divisible by 100. However, 3|7° + (99 — r)® for
0 < r < 49. Hence, 15 + 25 + ... + 995 is divisible by 3. But 100° is
not divisible by 3. Hence, M is not divisible by 3.

. 17. Note that (a,b) = 1. hence, by Euler’s theorem, a®*®) = 1 (mod b) and
b¥®) = 1(mod q). Let {p(a)p¢(b)} = . Hence, o' = 1(mod b) and
b = 1(mod a). Since, ala and bjb, we get a’ + b' = 1(mod @) and |
a' + ¥ = 1(mod b). Since, (a,b) =1,a' + ' = 1(mod abd). 1

»
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18. Observe that 240 = 3 x5 x 8. If pis a En'ime gfcatef-lflan 5, :ihen
(p,3) = (p,5) = (p,8) = 1. Hence, by Euler’s Llu'.Ot'Cf'n;:;o2 = 1(m4o _3) 1
which implies that p! = 1(mod 3). Also, by El;ler S thezfarem p'=11
(mod 5) and p? = 1(mod 8). Now p* — 1 = (p* - 1)(p* +1). S_lnce
8|p? — 1 and 2|p? + 1 p* = 1(mod 16). Since, 3,9, 16 are relatively
prime in pairs, we get p* = 1(mod 240).

i fro
19. Note that 168 = 3 x 7 x 8. If p is an odd prime different from 3 and
7, then p? = 1(mod 3), p?> = 1(mod 8) and p® = 1(mod 7). Since,
3,7, 8 are relatively prime in pairs, we get p® = 1(mod 168).

It is easy to see that p® = 1(mod 504).
Solutions to Exercise Set - 1.4

1. We want to find the number of zeros at the end of 400! in tlfe decimal
expansion i.e. the highest power of 10m which divides 400!. Since, lq =
9 X 2, we will find the highest power of 5 and highest power of 2 which

divides 400! and take the least among the 2. Hence, the highest power of
10 which divides 400! is 99.

k
. Note that n = [T p{* is a perfect square if and only if each a; is even if

i=1
k
and only if d(n) = [] (1 + o;) is odd.

i=1

3. The k-th student has to change his position at the d-th
if d is a divisor of k. Hence, the students whose roll nu
squares are in sitting position at the end of the drill.

4. Note that o(n) = -, d and o*(n) =
o*(n) are multiplicative functions. Hence,

stage if and only
mbers are perfect

2_ajn d*. Hence, a(n) and
the required resut,

5. Sppose firstthatp =2 — 1isa prime number, and n, — 2k-—1(2k -1).
To show n is perfect we need only show o(n) = 2, Since o is multj-
plicative and o(p) = p + 1 = 2% we know o(n)

= O'(Qk -1 a =
(2% - 1)2k = 2n. This shows that n is 3 perfect number, 4(p)

On the other hand, suppose n is any even perfect p
2%~!m where m is an odd integer and & 2 2. Again o is multiplicative
so 0(257'm) = o(2¥~").0(m) = (2% - 1).a(m). Since n is perfect
we also know that o(n) = 2n = 2*m. Together these two criteria give
2km = (2* —1).sigma(m), so 2% — 1 divides 2%, hence 2% — | divig

umber and write n as
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b
L ]

m, say m = (2¥ — 1)M. Now substitute this back into the equation
above and divide by 2 — 1 to get 2 M = sigma(m). Since m and M
are both divisors of m we know that 2 M = o(m) > m + M = 2%M,
s0 o(m) = m+ M. This means that m is prime and its only two divisors
are itself (m) and one (M). Thus m = 2*¥ — 1 is a prime and we have
proved that the number n has the prescribed form.

- .

6. Note that [3:]"= [g] + [a:-; 1]- Hence,

ol
ny _ [0 3, n+-', - '
ERENSE
3 8 8

Adding these equations, we get the required result.

7. Let {(a,)0>, be a sequence of positive integers defined by Z ag=2"
din

for every n € N. We note that a; = 2 and if p is an odd prime, then
ap = 2P —2.If p, g are distinct primes then ayq = 2P7 —(a; +ap +ay)-
Using Fermat’s little theorem, it is easy to see that pgla,,. It is easy to
show that for every prime p and positive integer m, a,m = Al
If p = 2 then 2™|227 ~1 as well as 2™|22" Hence, 2™|agm. If p is an
odd prime, then using Euler’s theorem, we get p™|a,m.

Challenge. Show that n|a,,.
Solutions to Exercise Set -1.5

2. We have already proved that 60|zyz. Hence, 3 divides one of z,y, z.
Since, each of z,y, z is a sum of two squares, if 3 divides one of z,y, 2
then 9 also divides it.

3. Since we are not conversant with calculations in base 8, we first convert

(1 3 7 6)g to base 10 to obtain (7 7 6)10 and then convert the base 10
representation to base 12.
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4

10
13.

1S.

21.

Problem. This is a problem for those who know Anaj
sider the unit circle (i.e. z° + y2 = 1) and consider
passing through (—1,0). Find the point of intersectiop
cle excluding (—1,0). What can you say about the
number? See that this point is a point having both th
numbers. Are you familar with this point?

=
Ifn = (RysMaeis- .. N1, No)s, then i = ngb* +ne10° 7 42 obnybing
and

n = ng4Ne_y+-+n+ny (modb-1)
= (=1)'ng+(=1)6s = Ing_y + -+ = m +ng (mod b+ 1).

n = 103N, where 10 < N < 99.

There are no such triahgles.

-

Let N = 4444%Y The maximum number of digits in NV < 4444 x4 =
17776. Hence, the maximum possible value of A is 17776 x9 = 159984,
Similarly, the maximum possible value of Bis45 and sum of digits of
B < 12. Observe that N = A = B(mod 9) and 4444 = 7(mod 9).
Since, 7 = 1(mod 9), we get 444444 = 7444 = 7(qod 9) as
4444 = 1(mod 3). Hence, the sum of digits of B = 7.

We know that there exists ! such that 2len < 2/+!. Now, we take the

1 . B o
lcm and do the addition. All the terms except o1 are even while — will

be odd. Thus, numerator is odd and denominator is even. Hence, the
given sum is not an integer.

1
2k -1

Challenge. Show that ) is not an integer.
k=1

Let S = {(z,9)lz,y €N, 1<z < (p-1)/2,1 <y < (- 1)/2}.
We note the set S can be partitioned into two sets S and S, according’
as q{-; py or gz < py. Note that there are no pairs in S such that gz =
Y. set S; can be described as the set of all pairs (z,y) satisfying

(p-1)72 . | :
1<z<(p-1)/2,1 <y <qz/p.Then S, has E [Q-ZJ elements.

-
(a=1)/2 [ . :

Similarly S has Z %] - Hence, we get the required n-:sult.

i=1

ytical gcometry, Con-
a line having slope m;
of the line and the cir-
point if m is 4 rational
€ coordinates a5 rational

hdd
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i Chapter 2
Algebra

“
Y |

5-2.1 Polynomials

- We denote the set of rational numbers by Q. Thus,
m -
Q= {;Im,n are integers, n # 0} ,

Also, we denote the set of real numbers by R and the set of complex numbers
by C. Let F denote any one of the sets Q, R, C. If n is a non-negative integer,
"then an expression of the form

f(x) =agz™ + a1z ' + ...+ an—1T + an, 1

where ag. @y, . . . , @y are in F (or in Z), is called a polynomial in x with coeffi-
cients ag, . . . , an. We express this by saying that f(x) is a polynomial over F
(or Z). If f(z) is a polynomial over Z then f(z) is called a polynomial with
integer coefficients. Similarly, we can define a polynomial with real or rational
coefficients. If all the coefficients are zero, then f(z) is catled the zero poly-
nomial and is denoted by 0. If ap # 0, then f(z) is called a polyfiomial of
degree n and ay is called its leading coefficient . The polynomial is said to be '

p monic if its leading coefficient is 1. If n = 0 and ag # O, then f(z) = ap isa
polynomial of degree zero. We do not define the degree of the zero polynomial.
Two non-zero polynomials are called (identically) equal if the coefficients of
respective powers of x in them are equal.

Theorem 1 (Division Algorithm) Let f(x) and g(r) be polynomials with co-

efficients in F and let g(x) be non-zero. Then there exist unique polynomials
g(x) and r(z) with coefficients in F such that,

f(z) = q(z)g(x) + r(z), (2)

where r(z) is either the zero polynomial or a non-zero polynomial of degree
less than the degree of g(z).

49
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Here g(z) is called the quotiens and r(z) the remainder, obtaim?d on f:li'viding
f(z) by g(z). If r(z) is the zero polynomial, we say that f(z) is divisible by

g(z) over F or that g(z) is a factor of f(x) over F. _
We note that if f(z) and g(z) are over Z i.e. if they have integer coeffi-

cients, then g(z) and r(z) are, in general, over Q. But if the leading coefficient
of g(z) is 1 or —1, then ¢(z) and r(z) also have integer coefficients. \

Theorem 2 (Remainder Theorem) Let a € F. If f(z) is a polynomial, then
the remainder after dividing f(z) by z — a is f(a).
Proof: Since the degree of g(z) = z — a is 1, by (2) we get,
f(z) = (= - a)a(z) +,
where r is independent of z. Hence putting = = a we get f(a) = 7. _

Definition: Let ¢ € F. Then a is said to be a root of a polynomial f(z) (or of
the polynomial equation f(x) = 0) if f(a) = 0.

Theorem 3 (Factor Theorem) A number a is a root of a polynomial f(z) if
and only if z — a divides f(z). |

Proof We have f (%) = (z — a)g(z) + f(a). Hence a is a root of f(z) if and
only if f(a) = 0if and only if = — a divides f(z) (by theorem 2).

We now state the following theorem without proof.

Theorem 4 (Fundamental Theorem of Algebra) If f(z) is a polynomial of

degree n > 1 with complex coefficients, then f(z) has at least one complex

root. : '
4

We can restate the Fundamental Theorem of Algebra as follows:

- Theorem 5 If f(z) is a polynomial of degree n > 1 with coefficients in C
then f(z) has exactly.n roots, not necessarily distinct, in C. Further. if these’
roots are by, b, . .., b, then f(z) has the factorization S

f(fl?) =ao(.’£—bl)...(9.':—bn), 3)
where a is the leading coefficient of f(z).

Theorem 6 Let f(z) be a polynomial, as in (1), having intes '
, g integer coe
and degree 1. > landa?’# 0.Letp # Oand g > UbEintherswgil:;:rtn:
common factor. Then if ~ is a rational root of f(z), then p divides o and ¢
n

q
divides ao. If ap = =1, then every rational root of f(z) must be an ;
must divide a,,. an mteger and
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Proof: Let 5 be a root of f(z). Then f(s) =0i.e.

Gn(g)n + G1(§)n_l +...4a,=0
or  —plagp™ ' +... 4+ @n_1¢""!) = ang" 4)
and agp” = —q(a1p" "' +... + a.q""}). (5)

By (4), plang™ and so p|a,, since p and q are coprime. Similarly (5) shows that
qlao.

Note 1. If f(z) has integer coefficients and a is an integer root of f(z) and m
is any integer different from a, then a — m divides f(m).
Proof: On dividing f(z) by z — m we get

a -

£(z) = (&~ m)a(a) + f(m),
where () has integer coefficients. So for z = a, we get
0= f(a) = (a —m)a(a) + f(m) or f(m) = ~(a—m)q()
Hence (a — m) divides f(m).

Example 1 Let f(x) be a polynomial, as in (1), having integer coefficients and
let £(0) = 1989 and f(1) = 9891. Prove that f(z) has no integer roots.

Solution : If a is an integer root, then a # 0 as f(0) # 0. Also a must be odd
since it must divide f(0) = a, = 1989. Buta # 1 as f(1) # 0. So taking
m = 1 in Note 1, we see that the even number (a — 1) divides the odd number
f(1) = 9891, a contradiction.

Example 2 Find all polynomials p satisfying p(z + 1) = p(z) + 2z + 1.

Solution. Observe that p(z) = z2 satisfies the given condition. We substitute
p(z) = f(x) + z%. Hence, the given condition gcts transformed to

flz+1) = f(z).

Since, p(z) and z? are polynomials, f(z) is also a polynomial and since
f(z + 1) = f(x) for all z, we get that f(z) is a constant polynomial. Hence,

p(z) =2 +c.

. 4
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'; Note 2. The roots of the equation ar? + br + ¢ = 0, a # 0 are given by

-b+ V5% — dac ~b— V&% - dac
e 2a S 2a

Let us denote the expression b — ac, i.e. the quantity under the radical
sign, by the letter A (delta of the Greek alphabet). Then

2a 2a

2 _
We also note that (a — 8)? = b_z-lat_r = A Hence, it is clear that whether
the roots will be real or complex, equal or unequal depends on A. Thus A =
b? — dac discriminates the nature of the roots of the equation. Hence, A is
called the discriminant of the equation.

The nature of the roots of the quadratic equation ax? + bz + ¢ = 0,a,b,¢ € R
is decided as follows:

1. If A > 0,VA is real and VA # 0. Hence the roots —— —— ;af— and
-b—- VA b>—4dac A

. are real and distinct. Note that (a — 8)? = —— = —
a a a
Thus, conversely, if the roots are real and unequal, then A > 0.

In particular, suppose a, b, c € Q i.e. a, b, c are rational numbers, a # 0.

Now, if A is a perfect square of a rational number, say A = k? then

: btk
the roots are rational, namely m— On the other hand if A is not

a perfect square of a rational number, then VA is irrational and so the

\/Z-—b\/Z

—b
roots are irrational and they are %a de T g = T 1.e they are

—-b
always of the form m+\/r_zand m—+/n, wherem = - andn = Ada?

are rational numbers. Thus, if @, b, ¢ € Q then the roots m + \/n and
1n — /1 always occur in pairs.

b+ VA b

. If A = 0 then the roots — = are real and equal. Conversely,
it is easy to see that if the roots are real and equal, then A = (.

N

n and the roots are complex numbers. Let
3. If A < 0.V/A is imaginary Pumber

A = —k? where k > 0. Hence the roots —2— + 551 and — %0 " g ie.
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they are complex conjugate numbers of the form n+it and m—it, where
b? — dac A

a? a?’

-b
m=o—~andt = k2a are real numbers. (a — 3)? =
Thus, conversely, if the roots are non-real, then A < 0.

Note 3-- If f(x) has real coefficients and if ¢ = a + ib (where a,b € R and
b # 0) is a complex root of f(z), then the conjugate & = a — ib of cis also a
root of f(z).

Proof: On dividing f(z) by g(z) = (z — ¢)(¢ - ¢) = (z — a)? + b?, we get
f(z) = (z - c)(z — T)g(z) + ez + d, (6)
where ¢(z) and ez + d have real coefficients. Now
f(c)=0=e(a+1ib) +d andso ea+d =0 and eb=0.

This gives € = 0 as b # 0. Hence d = 0. So by (6), f(¢) = 0.
Note 4. It can be shown that every polynomial of odd degree n with real
coefficients has at least one real root.

Note 5. If a real quadratié surd a + Vb is a root of a polynomial f(x) with
rational coefficients, then a — v/b is also a root of f(z).

An expression in variables a, b, . .., is said to be symmetric in a,b...ifitis

unchanged under all permutations of a, b, . . ..
Thus a + b and a/b+ b/a are symmelric in a, b but a — b is not symmetric.

The simplest symmetric polynomials in a, b and c are the following : a + b+
¢, ab + ac + be, abe. These are respectively the sum of products of a,b,c
taken one at a time, two at a time and three at a time. The first two of these

are usually denoted respectively by 3" a,_ ab. These three polynomials are
called elementary symmetric polynomials in a,b, c. Similarly the elementary

symmetric polynomials in a, b, ¢, d are
Za=a+b+c+d, Zab=ab+ac+ad+bc+bd+cd,
Zabc=abc+abd+acd+bcd and abcd.

We have

Theorem 7 (Newton) Every symmetric polynomial in a;,a2,...,8a with in-
teger coefficients (coefficients in F) can be expressed as a polynomial in the
clementary symmetric polynomials in a1, @2,...,0n with integer coefficients

(respectively with coefficients in F).
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. 2_
For example, a2 + b2 + ¢ = (a+b+c)? ~2(ab+ be+ca) = (2a)’~23 ab

and
a®+b%+ ¢ (a + b+ c)(a® + b% + ¢ - ab— bc — ca) + 3abe

(a+b+c)((a+b+c)? - 3(ab+ bc + ca)) + 3abe

Now consider the cubic equation f(z) = 0, where

flz) = apzr’ + al:t:2 + axz +as, a9 # 0.

Let a, 8, be its roots. Then by (3),
f(z) = ag(z — a)(z - B)(z — 7). Hence, )

aoz® + 122 + agz + a3 = aglz3 - (Z a)z? + (Z aff)z — aBy].

Hence equating coefficients of various powers of z on the two sides we obtain

aQ az as 7
a=-——, af = —, afy=-—. )

> > af o |
These give the values of the elementary symmetric polynomials of the roots

of f(x) in terms of its coefficients. Similarly, for a fourth degree polynomial
f(z) with roots a, 3, v, § we have '

Ta=-2, Yas=2, Sasy=-2, ofri=t  @®

Example 3 Find the roots of 423
is the negative of another.

Solution. If the roots are a, 5, ¢, wehave b = —q_s
—a® + ac — ac = —9/4 and —a2¢ = —9. Hence
Hence, the roots are +3,4.

—162% — 92 + 36 = 0, given that one root

2y. Soby (7),a—a+c = 4,
C=4mda=3/2 = -3

Example 4 Leta,b,ceR,a # 0, such that

; aand 4a + 3p 4+ 2, have the same
sign. Show that the equation az2 + bz + ¢

= 0 cannot have both roots in the
interval (11 2)‘
Solution. Let a, A be roots of the given quadratic equatiop We have
da + 3b + 2¢ LI
0< - = 4+3E+2E=4"3(Q+5)+20'ﬁ

= (@-DB-2+@-2p-

If a, B both belong to (1, 2) then each term of

be the sum wil] be Negative, which
is a contradiction,
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Example S Consider all lines which meet the graph of y = 2z +7z°+3z -5
in four distinct points, say (z1,y1), (2, ¥2), (z3,¥3), (z4,y4)- Then, show that

T+ T2+ 3474 . . .
1 is independent of the line and find its value.

Solullo:l. Let y = mz + c be any line which intersects the graph
Yy -: 22% 4+ 723 + 3z — 5 at (x;,i), 1 < i < 4. Then z; are roots of mz + ¢ =
2z% + 723 + 3z — 5. (Note that z;’s are distinct as z; = z; would imply
¥ = y;.) The above equation reduces to an equation of degree 4, namely
2z 4+ 7z% 4+ (3 — m)z — 5 — ¢ = 0. Hence,
Ty +22+23+7T4 __Z
4 8
Example 6 The product of two of the four roots of z% — 20z3 + kz? + 590z —
1992 = 0 is 24. Find &. .
Solution. Let the given equation be written as f(z)
of the equation be ry,72,73,74 With 7172 = 24. Now 1727374
rars = —1992/24 = —83. Also,
fz) = (z—r1)(x—r2)(z—r3)(T—T4)
(z® —cx + rir2)(z® — dz + T3r4)
(z? — ez + 24)(z® — dz — 83),
with ¢ = ri + r9,d = r3 + r4. Comparing coefficients of 22 and = we get
c +d = 20 and 83c — 24d = 590. This gives ¢ = 10,d = 10. Comparing
coefficients of z2, k = cd — 83 + 24 = 100 — 83 + 24 = 41.
Example 7 If a and (3 are roots of z2 +pz +¢q = 0, where p and g are integers
with g|p?, then show that : L
(i) a™ + @™ is an integer (n21),

(ii) o™ + B is an integer divisible by q (n > 2).

= 0, and let the roots
= —1992, so

Solution. Since a, 3 are the roots of z2 + px +q =0, we get
a-+ ﬁ = —-Db
af = 4q.

Note that o = —pa — g. Forn 2 2, multiplying tl:l_lf equalrigr; by a"~2, we
geta™ = —pa™ ! — ga™~2. Similarly, 8" = —ppA™~! — gA™*. Hence,
_pla™t + B — gl + 777D

(-p)?—2¢=p"-2. (12)

9)
(10)

a"+ 0" =
Also forn =2, o + B2
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1. By (9) and (12), a + 3 and a? + 32 are both integers. Hence, by (11), it
follows by induction on 2 that o™ + 8" is an integer for n > 1.

2. Since ¢|p. (12) shows that g|(a? + /32). Further,
@48 = -pla? + 5 - gla + )

and so g[(a® + %). Hence, by (11), it follows by induction on n that
g/(a™ 4+ 8™) forn > 2.

Example 8 Find all integers u such that the equation z3 — 3z + a = 0, has
three integer roots.

Solution. Let the integer roots of the given equation be a, 3,~. Then

a+f+v=0,a8+py+va=-3,a8y = —a. (13)

Hence, a? + 32 +7=(a+B8+7)° - 2(af + By + ya) = 6. (14)

S0, 0 < a?,8%,4% < 6 and 5o the solutions of (14) are essentially the
following :

a=2,0=-1,y= —1 (15)
and a=-2=1v=1. (16)
Both these sets satisfy (13). Hence the required values of q are a=-22

corresponding to the roots in (15) and (16) respectively.

Example 9 Let p(z) = an2™ + an_12™! + ... 4 g be & polynomial of
degree n with real coefficients Qg;...,an such thata, =1 apnd af =) Ford o=
0,1,...,n — 1. Suppose that all the Ioots ¢y, . ..., ¢, of the equation p(z) =0
are integers. Findc? + 2 + ... + c2. Hence find all such polynomials p(z)

Solution. Since p(z) is a monic polynomial and ay =
root c; = +1. Therefore 3 ¢? = n. Forn — 1, p(x)
are the required polynomials. So let n 2 2. Now

(an)2 = ZC?+2zcsc,-.Hencc, (:‘%:1)2=n+2(3_'3_:2)‘

i<)

*1, we have that each
=ZT+Lorp(z) =gz

Hencel=n:l:2.i.c..n=1:t2sothatn=3asn?_2.Therefurc

p(:r)=.z'3+az2+ba:+c, whcrea2=b2=c2

= 1,
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As —@ = ¢ + ¢ + ¢3 = 1, and each ¢; = %1, it follows that

Pa) = (z - 1)z - ) +1)=a® =22 — 241,
pr)=(x+1)(z+1)(z-1)=a3+22 -z - 1.

We also note that in these polynomials all coefficients are +1. Hence these are
the required polynomials.

Example 10 Find the remainder when (z + 1) is divided by (z — 1)3.
Solution. Dividing (z + 1)" by (x — 1)® we get

(x+1)" = f(z)(z - 1)° + Az? + Bz + C.

Putz — 1 =yorz =y + 1. Hence,

W+2)"=fly+1)y* + Aly+ 1)+ By + 1)+ C.

Using Binomial theorem, we get

n 2 n(n"' 1) n——2) n—1 n
——19 ") 4+ 2
e (2 +y(n2n) o
=fly+ )y’ +AyY* + A+ B)y+ A+ B+C
Now, equating coefficients of y2,y!,4° we get
A=nn-1)2"32A4+B=n2""!' A4+ B+C = 92",

Solving these equations, we get

A=n(n-1)2""% B=n(3-n)2""2% C=(n?-5n+8)2 3,

Hence, the remainder is
n(n - 1)2"732% + n(3 — n)2" 2z + (n? — 5n + 8)2"~3,
Example 11 Suppose a, b, ¢ are rational numbers and all the roots of

:r‘—a:rz+b:r+c=0

are rational and distinct. Let p, q, T,

. Y —3p 4o 8 be these roots. Prove that the number
a+pq)— +q

is the square of a rational number.
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Solution. Using the relations between roots afd coefficients we have

p+q+r+s=00rp+qg=—(r+s), pg+pr+ps+qr+qs+rs=—gq,

Hence substituting for a and p + g,

4(a +pg) - 3(p + g)*
4(-(pg+pr+ps+qr+qs+rs) +pq] = 3(r + 5)? a
4-(p+q)(r +8) — 8] — 3(r + 5)?

A(r+ )’ —drs - 3(r + 5)% = (r — 5)?,

which is the square of the rational number r ~ 8.

Example 12 For any positive’integer 7, prove that there exists a polynomial
Plz) of degree at least 8n, such that -

s (2n41)?

L > IP(k)|<|P(0)|-b 3 (18)

k=1
Solution: Consider the polynomial

(2n+1)? "

P@) = ] =-#

k=2

(#=2)(z~3):- (2 — [4n® + 4n))(z - [2n + 1]?),

(19)
Clearly, *

|P(0)| = (4n? + 4n + DL |P(1)] = (4n2 + 4n)!
and P(k) =0 for 2<k < (2n+1)2.

So (18) holds because then
(2n+1)? :
D |P(K)| = (4n + 4n)! < (42 + 4n + 1)t = |P(0)|.
k=1

Also, since the degree of the polynomial in (19) is d = 45,2

. : +4n = 4n(n
and since either n or n + 1 is an even integer, (n+1)

we see that d > 8p.
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21.1 Complex Numbers

Consider a complex number 2 = z + iy, where z,y dre real. Then the real
pumber r = +./z2 + y2 is called the modulus of z, denoted by |z|. Clearly
r=|z] > 0and r = 0if and only if z = 0. Let z # 0 and let 8 be any angle
such that

(20)

T .
cosf = - sinf =

=<

Then 8 is called an amplitude or argument of z. Clearly, the angles 6 =% 2,
6 + 4r, .. . also satisfy. (20). But there is a unique angle 8o which satisfies (20)
and is such that —7 < 6y < 7. 6y is called the principal argument of z. Note
that z = x + iy = r(cos@+ isin §) and this last expression is called the polar-
form of z. For example, if z = —1 +iV/3, then r = 2 and f = 27/3, and 50
z = 2[cos(2m/3) + isin(27/3)]. B : '
Definition: If n is a positive integer and w, 2 are complex numbers such that
* w" = 2, then w is called an nt" root of zand we-say that wis a value of z1/™.
For exaniple, w = (—1 + iv/3)/2 is a cube rootof 1 (i.e. a value of 11/3)
because w® = 1. Similarly, if.p, ¢ are integers, g > 0, and w? = 2P, then we
say that w is a value of 27/9. -

Theorem 8 (De Moivre) If n is an integer, then
(cosf + isin8)" = cosnf + isin nd.
If p, g are intégers and ¢ > 6, then cos(pfd/q) + i sin(pf/q) is one of the values
of (cosB +isinf)e.
Roots of unity: Let n be a positive integer. Then the n roots of the equation

z" = 1are
(211'1') L (21rr)
w, =cos{ — | +ismm{ — |,
g n n

wherer = 0,1,...,n — 1 and are called the nt" roots of unity. These are all
non-real except the rpot 1 when n is odd and except the roots 1, —1 when n is
even. It is easy to see that the sum of all the roots of unity is 0.

Problem 1 Let f(z) = z2 + ax + b where a, b are real numberé. Prove that
there exist quadratic polynomials p(z) and g(x) (with real coefficients) having
all roots real and such that f(z) = 3[p(z) + a(z)]-

Pmblem 2 If the equation Z(;B-I—i —1)(z +1) = 10n, has roots r andr+1,
i=1

find n.
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Problem 3 Let a,b,c,d € R and p(z) = az® + br? + cx + d,a # (.

(i) Show that the cubic equation p(x) = 0 has one real and two purely imagi.
nary roots if and only if bc = ad and ac > 0.

(ii) Show that all roots of ¢he cubic equation p(z) = 0 are real and two of them
are equal but of opposite sign if and only if bc = ad and ac < 0.

Exercise Set 2.1

/r./Findnumbersa,bsuchtl1attherootsofx2+a:z:+b=0area,b.

2. Suppose a, a, b are integers and b # —1. Show that if « satisfies the
equation 22 + az + b+ 1 = 0, then a? + b? is composite.

3. Find all positive integers a, b such that each of the equations

z2—-ar+b=0 and 22-bz+a=0

has distinct positive integral roots.

4. Let f(z) = az? + bz + ¢ be a quadratic polynomial with integral coef-
ficients, where a # 0. Show that

(1) if f(z) is factorisable into linear factors with integral coefficients,
then there are integers d and e such that

d+e=06 and de=ac; : (1)
and (ii) if integers d and e can be found such that (1) holds, then

(ax +d) (az +¢€)
g a/g

flz) =

H

where g is the g.c.d. of a and d and each of the linear factors has integral
coefficients.

5. Prove that if 2% + pz — g and 22 — pz + ¢ both factorise into linear
factors with integral coefficients, then the positive integers p and q are
respectively the hypotenuse-and area of a right triangle with sides of
integer length. Show further that if

*+pr—qg=(z-a)(r—pB) and :rz-—pa:+q=(;c_7)(x_5),

where p, q, a, 3,7, & are integers, then a, 3, 7, & are numerically the radii
of the incircle and the three excircles of the triangle.
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6. Ifa # b, ¢ # 0 and if the equations 22 +az+bc = 0 and z?+bz+ca =0
have a common root, then show that their other roots satisfy the equation

z? 4+ cx + ab = 0. .

. If2(0+b+c)=02+ﬁ2+72,andtherootsofa:2+ax—a=Uare
3,7 and the roots of 2 + z — b = 0 are v, a, show that the equation

whose roots are a, fis 22 + v —c = 0.

8. Find the cubic in z which vanishes when z = 1 and z = —2 and has
values 4 and 8 when z = —1 and z = 2 respectively.

9. Suppose ag, a1, ,an are integers and ap # 0 and a,, # 0. Consider

the polynomial
f(z) = apz™ + a1z ' + -+ + @p1T + Gn.

If p # 0,q > 0 are coprime integers and p/q is a rational root of the
equation f(x) = 0, then show that p|a,, and g|ag, and that if ¢ > 1, then
p — mq divides f(m) for any integer m.

10. Prove that a polynomial f(z), with integral coefficients, has no integral
roots if f(0) and f(1) are both odd integers.

11. Given that z = 2 is a root of 84z% — 15722 — kxz + 78 = 0, find the
value of k and the other roots.

12. Find an integer root of
()z3—6z2+152 —14=0 (ii) 2* — 22° — 822 + 13z — 24 =0.

13. Find all integer roots of
() z®+822+132+6=0 (ii)z3—-522-2z+24=0.
(iii) ° — 292* — 3123 + 3122 — 32z + 60.
14. Find all rational roots of
(i)4z% — 1622 — 9z +36 =0 (ii) 22 + 1122+ 10z — 8 =0
(iii) 82% + 3622 + 227 - 21 =0 (iv)z* +4z° — 722 —222+24 =0
(v) 1223 4+ 422 — 532 + 30 = 0.
15. Find the square-roots of (i) —16+30i (ii) 5 — 121 (iii) 7+ 243 (iv) 9+ 40i.

16. Find real numbers a, bif 22 + z + 1 is a factor of 22 — 25 4 qz% + 23 +
bz? — 4z - 3.

Scanned by CamScanner



62 An Excursion in Mathematics Chapter 2, Algq)_rf

17. Find real numbers p, q if 1 + i is a rool of 23 +pz? +qr +6 = (. Also,
solve the equation.

18. Solve the equation ¥ the given number is a root.
(i) 223 — 722 - 52z — 55 = 0, 3 —2V5.
i)z =203 — 22 —2r-2=0, 1+V3.
(iii) 323 — 722 — 60z + 140 = 0, 2V/5.
(iVz? —423+42-1=0, 2+ V3.

W23 -322-62-20=0, —1+1iV3.
(viyzt — 423 + 522 —2r -2 =0, 1-i.

19. Solve the given system of equations :
Mz+y+2=1, zy+yz+ 220 =-4, zyz = —4.
()z+y+z=1, 22 +y?+2%2=29, zyz = -24.
(i)z+y+2=-2, 22 +9y°+22=6, 28 +9°+23=-8.
(iViz+y+2=18, 22 +y® +22 =110, z(y+ z) = 65.
V) z4+y+z = —zyz, 2Y+yztzz = -1, (1+22)(1+y?)(1+22) = 20.
(vi)z?+ 92 +22=6, 3 +y® —zyz =4, Ty +yz + 22 = -3.

20. Find numbers a, b, ¢ such that the roots of 2% — az2 + bz — ¢ = 0 are
a,b,c.

—-——
-

21. Find a necessary and sufficient condition on real numbers a, b, ¢ so that
2% + ax? + bz + ¢ = 0 has three real roots which are in arithmetic
progression. (Ans. 2a¢® — 9ab + 27¢ = 0 and a2 > 3b.)

/}2./ If a,@ are the roots of 222 — 5z — 4 = 0, find the simplest quadratic
equation whose roots are o + 1/a, 8+ 1/5.

t% If a, B, are the roots of z3 + px — q = 0, find the simplest cubic
equation whose roots are & + 3, 8+ 7,7 + a.

- 24 fa, B, are the roots of z° — 2% + 4z + 7 = 0, find the simplest cubic
equation whose roots are a + 3, 8 + 7, v + a.

/ Find the polynomial of degree 3 whose roots are the cubes of the roots
ofrP—z-1=0.
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26. Let f(z) be a polynomial with integer coefficients. If a, b, ¢ are distinct
Integers such that f(a) = f(b) = f(c) = —1, show that the equation
f(z) = 0 has no integral roots,

27. (i). If a, b, ¢, d are the roots of z4 + z + 1 =g, find the equation whose
roots are ab, ac, ad, be, bd, cd. ,

(ii). If a, b are two of the roots of z4 + z® — 1 = 0, prove that abis a
rootof 28 + z4 + 2% — 22 - 1= 0.

//Solve the equation 4z* — 42 — 1322 4 9z + 9 = 0, given that the sum
of two of the roots is zero. »

29. Solve the equation z* + 223 — 2122 — 221 + 40 = 0, given that the roots
are in arithmetic progression.

30. If the roots of 23 — 522 + gz + 8 = 0 are real and are in geometric
progression, then show that ¢ = —10.

**"31. If one root of the equation z® + 2azx? — b = 0, is equal to the sum of the
other two, then show that a3 = b.

32. If a is a non-real root of 7 = 1, find the equation whose roots are
a+ab, a?+ad o +at.

33. Prove that if f(z) is a polynomial such that f(z™) is divisible by = — 1,
then f(z™) is divisible by z™ — 1.

34. Let f(z), g(x) be polynomials having real coefficients such that F'(z) =
f(z3) + zg(z®) and F(z) is divisible by % + z + 1. Prove that f(z)
and g(z) are divisible by x — 1.

35. Solve the system z2 —yz = 3,y% — 2z = 4,2%> —zy = 5.

36. Factorise (kz —y + z)(z + ky — 2)(z —y — kz) — (kx +y — 2)(z -
ky —z)(z —y + kz).

37. For what integer a, does z2 — z + a divide ' + x + 907

38. Let f(z),g(x) be polynomials with real coefficients. If f (x)g(x) =
f(z? + z + 1) forall z € R, show that f(z) is of even degree.

39. Prove Ptolemy’s theorem: Let ABCD be a cyclic quadrilateral in the
plane of complex numbers. A, B,C, D are represented using complex
numbers z,, 25, 23 and z4. Then, show that :

(21 — 2z2)(23 — z4)| + (22 — 23)(2a — 21)| = |(z1 — 23)(22 — 24).
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2
40. If 1 and 2 + 1 are solutions of z° — 11z + 462° — 947" +937r - 35 =
find the other solutions.

41. Find the common solutions of the following equations:
3+ 2:r24+ 224+ 1 =0and 21990 4 7200 ; 1 — Q.

42. Solve (i) 2 — |3z + 15| =55 = 0. (ii)22 + 2+ 3iz ~8 — 4 =,
(iii)v’x§—4:r+322—:r.

43. Solve the system of equations z+y+z = a,z%+y% 422 = B2, Ty = 2?
where a and b are constants. Give the conditions on @ and bsothatz,y, 2
are distinct positive numbers.

/43. Let the polynomial f(@) =2 +a;2" ! +ap2n—2 4. .. +an—17+a,
- have integral coefficients. If there exist four distinct integers a, b, c and d

such that f(a) = f(b) = f(c) = f (d) = 5, show that there is no integer
k such that f(k) = 8.

45. Determine all solutions in real numbers of the system

Tty+z=w, ~4

8=

1 1
+-=_,
4 w

QL -

46. Let ay,q,,...,q, be non-zero real numbers and b1,bo,..

: € non- -, bn be real
numbers. Find the discriminant of the quadratic equation

(mm—h?+%@m~%F+~~+(%x—bﬂz=&
What can you say about the discriminant?

47. Determine all the triangles with inte

: ger sides such that areg €quals semi-
perimeter?

48. Let a, b, c be real numbers. Consider the equation

(:r-a)(=r—b)+(m—b)(m-CH(x-CJ(m-a)-:o.

Prove that the roots of this equation are always real, Fyep,
the roots are equal if and onlyifa=b=e¢. er, show that
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2.2

Inequalities

Among the basic properties of order relation in R, we have the following:

Foralla, b, c € R,

(I) Exactly one of the following is true: a < b, a = b, a > b.

(I) fa<bandb < cthena <c.

(1) Ifa < bthena+6<b+c.

(IV) Ifa < band ¢ > 0 then ac < be.

These properties imply the following important results.

1.
2.
3.

a>0andb>0=ab>0.
a<bandc < 0= ac>bc

For every a € R, a? > 0, and equality occurs if and only if & = 0. This
is equivalent to the following:

(i)a;et)::-a?>0,and(ii)a=0=>a2=0.

If a, b, c, d are all positive, and if a > band ¢ > d, then,
(i) ac > bd (i1) (a/d) > (b/c).

Leta > 0, b>0andm e N. Thena > b& a™ > d™.

Leta > 0. Then_f(:g:)=aa:2+b$+c:20,forall:cERifandonlyif
b% —dac < 0.

We note that

— ke
fla) =afe+ g+ 2 )

Examples

. If a > 0 then show that a + é > 2, with equality if and only if a = 1.

If a, b, c, d are positive, then show that

Via+ o)+ d) > Vab + Ved. )
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3.Ifa,b,e>0anda+b4c= l.lhcnshowthal};-i-t-l-ﬁgg,

4. If a, b, ¢ are positive, then show that (a + b)(b + ¢)(c + a) > Babe.

Solutions

1. This follows because the inequality is equivalent to (@ - 1)? > 0.

2. Since all terms are positive, the inequality is equivalent to that obtained
by squaring both sides. Hence (1) is equivalent to (a + ¢)(b + d) 2
ab + cd + 2V abed i.e. to ad + bc > 2V abed

i.e. to (Vad - vbe)? > 0. (2)

But (2) is true as square of any real number is non-negative. Hence (1)
is proved.

3. For, ondividinga + b+ c= 1bya, b, cinturn, we get

PRI N

2 3+2+2+2, byEx.l

Note that equality occurs if and only ifa = b = c.

\/_ Vb a+b b+c
4. By Ex. 1 > 2 or > 2. Similarly, > 2 and
e L BT R - » Tee
cjaa > 2. Multiplying these three inequalities the result follows.

The Three Means: If a, b are positive real numbers, we define their arithmetic
mean (A.M.), geometric mean (G.M.) and harmonic mean (H.M.) as follows

AM-—A=3219 GM. =G = +Vab, HM. = (+%)

Remark 2.1 Note that the H.M. is the reciprocal of the A.M. of the re'cipmcals

. 2ab
of the given numbers. Further, H.M. of a and & is S _T_ % We also note that

the A.M. can be defined for any real numbers (not necessarily positive) but to
define G.M. and H.M. we require necessarily positive real numbers.
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'meo_rem 9 If a, bare positive, then A > G > H. Also, equality occurs if and
onlyifa =2b.

Proof: First let a # b. Then \/a and \/Bareunequalandso(\/_-\/ﬁ)’>0.
a+b
- ab=%\/_—s/5)2,G—H=

Hence the identities A — G =

2ab Vab .'.1.:-\/'52
ﬁ_-a_i_b: (‘a/;_b ) reSpectivelyshowmatA>GandG>H.
Ifa=>b,itisclearthat A=G = H =a.

Corollary:Ifa>b>0,thcna>A>G>H>b.

Example 5 If a;, az,...,an areall positive, then show that

-1
Jvaiaz + a3+ ... ++/an-10n < . 5 )(a,1 +ag+...+0an)

Solution. Add the n(n — 1)/2 inequalitics

ay + a2 a; +as
a0z < g a1a3 < 5 ,...,,_/aﬂ_lang———i——

and note that in the sum on the right each a; occurs n — 1 times.
[For example, for n = 4, we have to consider 6 terms:

/@182, /G183, /0104, V0203, J/azas, /304-)
N, Ifay,...,an are N positive real numbers, we define their arithmetic mean
A,, geometric mean G, and harmonic mean H,, as follows:

n
3 1
O‘-], + RO + Gn

a;+..-+a
An = n =, Gn = (31‘12---(111)1/“! Hp, =

We observe that one can have a remark similar to Remark 2.1 here. We also
have the following generalization of theorem 9.

Theorem 10 Ifay,...,an @€ positive real numbers, then
N A, 2 Gy 2 Hy
and equality occurs if and only if a; = a2 = ... = Gn-

Proof: First we prove by induction on 7 that A, = Gn with equality if and
1. The result is true forn = 2. Assume the

only if all the n numbers are equa
result forn = m — 1. Suppose 0 < @1 <ag £ ... < am. Wenote that the
result is true if a; = am. SUppose a1 < am. Then clearly

ma) <a1+az+...+am<mam,

y
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so that a; < A, < am. Hence
Anlay +apm = Ay,) - aya,, = (01 - Am)(Am - am) >0

and so

-

a1,

a + Ay — Am > Am (3)

Now since the A.M. of the m — 1 numbers as,...,Gm-1,a1 + Gy — An is
Apm, we have by induction hypothesis,

AR 2 a.amoi(ag +am - Am)

> az...Qm-) A [by (3)]

Hence AJL > ajaz...ap ie. A > G,

Thus the result is true for n = m and the induction is complete. We also
observe that when the a;'s are unequal, the arithmetic mean is strictly greater
than the geometric mean. Hence, if the arithmetic mean and the geometric
mean are equal then all the a;’s must be equal.

Finally, applying this result to the n positive numbers 1/a;, ..., 1 /an we
see that G, > H,, with equality if and only ifa; = ... = a,,.

Example 6 Ifb, ..., b, is a permutation of the n positive numbers ay, .. ., a,
then

a, a a
i et e e 3

bl b‘2 bn
Solution. Using AM-GM inequality for the numbers ;ﬂ e, %’1 we get
1 n
1(9_1+93+ +3n) > (L. o 9_1)""_1
n bl h - .. bﬂ = bl b2 LY bn — -

Example 7 Let z, y, z be positive real numbers satisfying +y+2z = 1. Prove
that
ry(z +y)? +yz(y +2)° + 2z(z + r)? > dzya.

Solution. As = + y + z = 1, the given inequality holds if and only if

zy(1 -2 +yz(1-z)? +22(1 - y)2 > 4ryz
if and only if :ry+yz+zr—6:ryz+z:yz’+yzx2+zg,-y3:341:1,3
1 1 1
ifandonlyif -4+-+-+x+y+2210
z Ty
1

1 1 1
- - = 5] Pl _>
if and only if I+y+2290f3-1_‘=+ +1

w | 2
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which is true since 7 + y + 2 = 1 and A.M. > H.M. applies.

Theorem 11 Let a, b be positive real numbers and a, 3 be positive rational
numbers such that a + 3 = 1. Then £ b -6/‘
Ka +f. b 5 2", |
7

aa+fb>a® -4 5 @
“J-n' ‘
4] /
i y 7 / ’ B '
a0 +Fb 1%

Proof: We may assume that @ = r/u, § = s/u wherer, s, u € N. Then
a+ B = 1 gives u = r + s. Applying the A.M.-G.M. inequality to the r + s
numbers

and equality occurs if and only if a = b.

G =03 =...=0p =0, GQry] =---=08rss =,
we see that ;
r:ijb > (arb')ll(rﬂ)
;e. aa + Bb > a® - b3, with equality if and only if & = b.
ote.

(i) With the notation of theorem 11, if a, 3 are given and a, b vary so that
ac + bB = ¢ =constant, then (4) shows that the product a® bP attains its

maximum value, c, whena =b=c.

(ii) With the notation of theorem 10, if @;, . . . , Gn Vary so that
a; + ...+ an = ¢ then, A, > G, implies that the product a,az . . . @n

attains its maximum value, (c/n)", when @y = ... = @n = ¢/n. Simi-
larly, ifa;a2...an =G then A,, > G, implies that the suma; +...+axn
attains its minimum value n - ¢'/", when @, = ... = Gn = ci/m,
/ Cauchy-Schwarz Inequality:
For any real numbers a. b, ¢, d, we have the identity
(a? + b?)(c? + d?) = (ac+bd)” + (bc - ad)®. (S)

Now suppose that ¢ and d are non-zero. From (S) we obtain the inequality
(a? + b?)(c? + d?) 2 (ac+ bd)?, ©)

because (bc — ad)? > 0. Also equality holds in (6) if and only if

- ad)? = - .
(bc - ad)® =0 or be adOl‘c 7

PP B8
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Theorem 12 Leta, and b; (i = 1,...,n) be any real numbers. Then

2 .
(a?+...+aﬁ)(b§+...+b3,)2(a1b1+...rl+anbn )} s \(7) ;
-4 " . ' . 4
and equality occurs if and only if either 6 Ve /) _
[/ .

.) /(

v ) O\
Q¢

1. all the a,’s are zero or

2. all the b;’s are zero or

3. the a;’s are proportional to the b;'s i.t:.l there exists £ # 0 such that
Q; = kb, for all 1.

/
Proofl: We have the identity |

(@ + -+ aB) (B + -+ B2) ~[(a1by + -+ + anbp)?
= (a1d2 — a2b1)? + (a1bs - agb))¥ +... + (an-1bn — Gnba—1)2 (8)

This is called Cauchy-Lagrange identity. From it (7) follows immediately and
further, equality occurs in (7) if and only if

ab; - azby =...= an—1b, — @nby—1 =0.

This condition may be written as the set of conditions in the statement of the
theorem. (7) is called Cauchy-Schwartz inequality. ’

Remark 2.2 Another proof of Cauchy-Schwartz inequality follows using ex-

ercise 46 from exercise set 2. 1. We observe that the discriminant is less than or

equal to 0. By actual computation of the discriminant, we get Cauchy-Schwartz

inequality. One may also prove the Cauchy-Schwartz inequality using princi-
ple of mathematical induction. )

Example 8 If a, b, care positive, then

(a6 + b2c + c?a)(ab? + be? + ca®) > 9a2p2¢2,
Solution. This follows from (7) if we put
a’% = GQbs ag —~ b2C= ag S C2a= b% &3 bc2a b3 = Caz; b§ = abz,
n = 3, where we take a;, b; to be positive.

Example9 Ifc,,...,c, are positive real numbers, then

(Ee)(351)2m

=1 i=]
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Solution. Put a; = ,/c; and b; = 7‘;— in (7).

Example 10 For real numbers z,y, 2, prove that

BV N el gl
i (2+3 6) so+3t

with equality only whenz = y = 2.
* Solution. Equivalently, we have to show that
(3z + 2y + 2)? < 6(3z% + 2° + 2%).
This follows by applying the Cauchy-Schwarz inequality to the sequences
&, i, z,y, v, 2and 1,1, 1, 1, 1, 1.

/l‘heonem 13 (Tchebychefl’s Inequality) If a;,a2,--.:@n and
by, ba,. .., bn are any real numbers such that

312322---2‘111a-ndbl_}.b22---zbn )

then
al+-s-+an.bl+---+bnSalbl+-.»+aﬂbn1 (10)
n n n
where equality holds if and only if either all the a’s are equal or all the b’s are
equal.

Proof: We have the identity

n n

ﬂiaibi_(iai)(ibi) == Y (ai—aj)bi—b) A

i=] i=l1 i=1 i=1 j=1

b -

To prove this, note that

ZZ(G., - a’J)(b = bJ == ZZ [aibi -+ (ljbj - a,-bj o ajb,'] (12)

i=1 j=1 i=1 j=1
n n n
Now EZa.b, = 33 aib; =nY_ ab
i=1 j= i=1 j=1 i=1
n n n n
3o ) S0 SR[30)
i=] j= =1 )= i=1 7=1

Using these relations we get  (11) from (12).

o
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Now ifi < jorifi > j, then
(a; — a;)(bi = bs) 20,
since both the factors are > 0 or both are < 0 by (9). Hence the right side of
(11)is > 0 and so (10) follows. Now suppose that at least two a's are unequal

and at least two b's are unequal. Then by (9), a1 > an and by > bn. chge
(ay = an)(b1 — b) > 0 and so the right side of (iii) is > 0 and hence there is

strict inequality in (10).
Corollary : Taking a; = b; we see that
(a;+...+a,,)25n(a.f+...+aﬁ), (13)

where equality holds only when all the a’s are equal.
Remark . Assume that a;, ... ,ay, be any real numbers. Note that from (13)

we get

" 2 2
a1+...+ans\ﬂa1+...+an) (14)
n n

aZ+...+a2
1 R is called root-mean square (RMS) of the given numbers and

n
the inequality (14) is called as RMS-AM inequality.
Remark . If a;,as,...,a, and by, ba, . . ., b, are any real numbers such that

ay>az>...20a, and b < b2 <...< by (15)
ora;<az>...<apand by 2b22...2bn (16)
then
a1+...+an_b|+...+bnZalbl+‘--+anbn’ a7
n n n
where equality holds if and only if either all the a’s are equal or all the b’s are
equal.

Remark . Let r > 3 be any integer. Then if we have r decreasing sequences
of non-negative real numbers, say

a >2az 2 """
by 2by 2

Y,
$
°© o

o
3
Vv v
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then by repeated applications of theorem 13, we get

Ya Tb zz<2(abc---z)

T ———— S

e (13)
n n n

where equality holds only when (r — 1) of the r sequences are constant se-
quences. In particular,

Further, let p, g, 1, ... be a finite sequence of positive real numbers whose sum
is m. Then applying (19) to the sequences
B 0050 50407, 0% w3 00505y 45 +
we get
P q T m
Y.aP> ald a _HEZa , 20)

n n n n

where equality holds only when all the a’s are equal.

Example 11 Let a; < ag < ---ay, be n real numbers such that Za, = 0.
j=1

Show that na,a,, + Za <0.
j=1

Solution. For1 < j <mn,puta; =a;+7;.Then0=r; <ry <--- < 1y,
andry + 72+ -+ r, + na; = 0. Now,

n n
(a1 +15)% =nal + 20.121',- +Zr§

n

2
Z &5
j=1

M-

j=1 =1 j=1
n n
2
= naj + 2a,(—na;) + 27? = —na? + E :-,-‘f
i=1 =1
n n I
Hence,na10, +) a} = naj(en—a)+ Y 17
i=1 j=1

= Zr:)fn+Zr =Y 1, =ra) <0

Jj=1 j=1
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- &-"

- -

Example 12 If a, b, ¢, d, e are real numbers, prove that the roots of "

25 +az? +bz® +cz’ +dz+e=0

cannot all be real if 2a? < 5b. ' |
Solution. Suppose all the roots a; (i = 1,2,...,5) of the given equation are

real. Then Y. a; = —aand 3, ; aj; = b. Hence
02 = (Z 05)2 s Z a? + 2 Z aiaj = Z af-" + 2b, :'\.a,..\,_’,
i<j
so that 3 a? = a2 — 2b. But by (13) above, (3 ;)2 <53 af. So, (—a)? =
(3 o4)? < 5(a? — 2b) or 10b < 4a? or 5b < 2a°.

L R

Example 13 Prove that if a, b, c are positive then
be(b+ ¢) + ca(c + a) + ab(a +b) < 2(a® + b + ).

Selution. By the symmetry of the result we may assume that a > b > ¢. Then
by Tchebycheff’s Inequality, we have

(@+b+c)a? + b +c?) <3(a®+1° + %),
from which the result follows.
Example 14 If a, b, c are distinct positive' numbers, show that

a8+ + >1+1+1
a3b3c3 a b ¢
Solution. By (15) above [extension of theorem 13},
aS+¥+c a+b+cs
A R

% (m)ﬁ ) Zaz _‘_922(1(; >'(abc)2 . 3(Zgab)

Weighted means. The ordinary A.M., G.M. and H.M. are special cases of
the weighted mean which is denoted by M, (a) or A{.(a,p) and is defined as
follows: .

Let p1,...,Pn and ay, .. ., an be positive real numbers and let r be a real
number. Then for r # 0, we define

pa] +--- +pna;)11r

M,(a) = M (a,p) = ( DL+ +Pn
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’ For.g+= 0, we define My(a, p) to be the generalized G.M. thus:

-

?

P,
My(a,p) = (a’l" ay? .- aﬁ“)”

where P, = p; + - +p,. Here the pi’s are called the weights associated with
the a;’s. !

-In particular, puttingr = 1,p; = --. = Pn = 1, we see that

= X ay Kook & 1
s s sk " RS
My(a,p) = ) M-l(a,p)=(-"-‘—n—-—9-1)

are the ordinary A.M. and H.M. Also, the number

»‘...

. S 2, 1/2
RMS= J."I?(G,p)z (plal+ +pnan)
oy e LR o ™

is called the generalized root-mean square. Clearly, if 7 > 0, then

Morfa,p) = (BEL BT
i 1+ +pn M.(3.p)’

We state the following result without proof.

Theorem 14 Let py,...,p, and a;,... , @ be positive real numbers and let
7, s be real numbers. Then, if r < s, then

Mr(a) < A’Ia(aL

where equality holds if and only if all the a;’s are equal. In particular,

M_l(a) < ﬂffu(a) < ﬂf] (a) < .ﬁfg(a),
ie. HM. < GM. < AM. <RMS,
. PL+--+pn P1.P2 1/Pn
ie. - < (aj'ah?---aPr
(plall'--+pna;l) (af' @ o
< (B +---+pnan) P (ma?+-~+pna3.)”2

TN pitectpy "N piti+pa

Example 15 1f a, b, ¢ are non-ne
then show that

gative real numbers such thata + b + ¢ = 1,

a + b + c >9
l+bc” 1+ca 14ab=1Q"
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Solution. The result clearly holds if one of a,b,-c is zero. So let a,b,c be
positive. Sincea +b+¢c = 1, by AM-GM inequality.

1 9 .
it T e T nlettingr =1,n=3,
Hm‘1+3 e 2 10 ow O g

1 1 1
P1=Q,P2=b,p3=0,(11 =-1-—_;_—bc-,ag=—1—l—c;anda3— 1+ ab’

and noting that py + p2 +p3 =a+bd+c= 1, theorem 14 gives

Mi(a) =2 M_y(a), ie
(P10-1 + p2a2 +P303) ( p1+p2+P3 )
pr+p2+ps pra; ! +poag +psaz )

a b ¢ 1

150 " T+ca  1t+ca = a(l+0b0)+0(1+ca)+c(l+ab)
1 9

S T
1+ 3abc ~— 10
Example 16 Let z, y, and z be non-negative real numbers satisfying = + y +
z = 1. Show that

>

VvV

Hence,

4
2 2 2
+- -+ x(-...,

and find when equality occurs.

Solution: By cyclic changes, if necessary, assume that y is between z and 2.

Then (y — z)(y — z) < 0 < zy. So (y — z)(y — 2)z < Tyz and adding z%y,
to both sides we get

2y+(y-z)y—-2)z < y+aye
y+y’z+2°z < Dy+yP +2yz=y(z+2)° = (1-y)%y
& 4[;is(l—y)+§(1~—zar)+y]f‘-_ 4

—
*

3 27

by the A.M.-G.M. inequality, when0 < y < 1.
Example 17 If a, b, ¢ are real numbers witha < b < cand

a+b+c = 6,
ab+bc+ca = 9,

thenprove that0 <a<1<b<3<c<4.
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Solution. we have

a+b+c = 6, 1)
ab+bc+ca = 9. (22)

Substitute a + b = 6 — cin (22) to get ab + ¢(6 — c) = 9. Hence,
ab = (c - 3)% (23)

[We get the perfect square on the right side of (23) because of the particular
numbers 6 and 9 in (21),(22).] Similarly,

ac = (b-3)? (24)
be = (a-3)% | (25)

Now ¢ > 0, by (21), sincea < b < ¢. If a = 0, then ¢ = 3 by (23) and
b = 3 by (24). This is false since b < c by data. Hence a # 0. Similarly,
b#0.Asa # 0andc # 0,ac = (b— 3)? # 0 and so ac > 0. Hence
a > 0,as ¢ > 0. As, b > a b is positive. Multiplying (23),(24),(25), we have
(a — 3)%(b — 3)%*(c — 3)% = a?b%c®. Hence,

(a—3)(b—3)(c—3) = abc+9(a+b+c)—3(abstbe+ca)—27 = abc > 0 (26)

Since 0 < a < b < ¢,b> 3= ¢ > 3, and this contradicts (21). Thus b < 3.
Henceb—3 < 0,a —3 <0andsoc—3 >0, by (26). Thus c > 3.

Ifb < 1,thena < 1sothatab < 1 and so (c — 3)2 < 1, by (23). Hence
2<c<4.Butthena+b+c <1+ 1+4 = 6, contradicting (21). Hence
b>1.Ifa > 1, then ab > 1 and so (¢ — 3)? > 1. by (23). Then either ¢ < 2
orc > 4.If c < 2, then we get a < 2 and b < 2, contradicting (21). If ¢ > 4,
then again (21) is contradicted since a > 1 and b > 1. Thus

O<a<l<bg3d3<ec

If ¢ > 4, then (c— 3)2 > 1 and so b > 1, by (23). Hence a + b > 2Vab > 2,
sothata + b+ ¢ > 2 + 4 = 6, contradicting (21). Hence ¢ < 4.

Example 18 If a, b, ¢, d are all positive real numbers, prove that
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Since a, b, ¢, d are all positive real numbers, by A. M.-G. M. inequality, we

1 1 1_ 3 1 1 1. 3
| — m— — ——  e—  — -—_>*
a3+b3+c3zabc’ a3+b:’+d3"abd’
1 1 1. 3 1 1 1_ 3
i Bae. sl B,
St3tF2a BT F b

Adding the last four inequalities and dividing both the sides by 3 we get
the result, Moreover, equality holds itany onlya = b=c =d.

Example 19 If a, b, c denote the three sides of a triangle, prove that

a(b—c)® + b(c — a)? + c(a - b)? + 4abe > a® +b* + 2.
Solution. One observes that if a, b, ¢ are sides of a triangle then

a+b>c,b+c>aandc+a>b.
We have

a(b - ¢)? + b(c — @)? + c(a — b)? + 4abc — [a® + b + ]
= ab® +ac® +bc? + ba® + ca® + cb® — 2abc — a® - b* - &
A(a+b—c)+abla+b—c)+ca® + cb? —uve—a® - b3
Z(a+b—c)+abla+b~—c)+(a® + b* — ab)(c — a - b)
= (a+b—c)[c® +ab—a®—b*+ab]
= (@+b-0)(@~(a—b)?)
= (a+b-c)(c+b>a)(a+c—D).

As a, b, c are sides of a triangle, each faclor is positive. Hence the required
inequality is also valid.

Example 20 If z, y, z are positive real numbers such that z > y > z, prove
e 2 2 2

i z+z . A T T

2 z v

Solution. Asx >y >z, letz2=a,y=a+b,z = a+ b+ cwhereb,care
non-negative. Then the given inequality is equivalent to
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w
4

23y + 2 + 2827 > 2dyz + P2m + Py,
ie.to Yy —2)+ 2z(z - y) 2 yiz(z - 2),
orto  (a+b+c)a+bb+adela+b+c)>ala+b)P(b+c)
orto  [(a+b)®+ 3c(a +b)? + 3(a + b)e® + c*](ab + %)
+a3c(a + b+ ¢) > ab(a + b)® + ac(a + b)?,
orto  ab(a+b)® +b%(a +5) + [ + 3(a + b)P)(ab+ b*) + 3a’be
+9a2b2c + 9abdc + 3b%c + a'c + adbe + 3a®c?
> ab(a + b)® + a’c + 3a%be + 3a%b?c + ach®,

which is true since the underlined terms on the left side together contain all the
. terms on the right side.

We now state the Rearrangeinent Inequality (RI for short) as follows:

Theorem 15. Leta; < a2 < ++- < apand by < by £ -+ < by, be real
numbers. Let (a) denote the ordered n-tuple (a1, @z, ...,an). Then for any

permutation (a') =(a},a3, - ,a;) of (a), we have |
a.lbn+a2bn_1 + -4 aph < ﬂ.’lbl +a'2b2+---+a.;‘bn §))
and .
aib; +agbe + -+ +apbn < a1by + agby + - + andy 2

[Thus RI says that the sum ) a;b; is maximum when the sequences (a) and
(b) are similarly ordered and it is minimum when they are oppositely ordered.]

Equality holds in (2) if and only if

(af — a’)(bx — b;) > 0 for all k,i where 1 < k < i < n.
[ Thus when aj, > a}, the condition (a}, —a)(bx —b;) > 0 forces the difference
bk — b; to be zero since by — b; < 0. ]

Similarly, equality holds in (1) if and only if

(—ak + a)(bx — b;) > 0 for all k,i where 1 < k < i < n.
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Example 21 Prove that for all positive numbers a, b, ¢
a b c S E
b+c+c+a+a+b — 2
Solution: Since the inequality to be proved is symmetric in a, b, ¢, we may

assume thata < b < c. Thenwegeta + b < a+canfla+c.s b + c. Hence
we get -1 > - > L. Now by the rearrangement inequality, we get

c b - a a- c* b
> -+ 4= )
a+b+a+c+b+c = a+b a+c b+
c b a b a C
- B + + —.
a+b+a+c+b+c ~— a+4+bdb a+c b+c
Adding these we get ’

c b a a+b c+a b+c
>
2[a-}-b-‘-a.-%-c-'-b—}—c]—[.:H—b a+c b+c

from which the result follows.

-

Example 22 If z,y, z are positive real numbers such that z2 + y2 + 22 = 1,
prove that

T y 2 3v3
= > ,
BSy s+ at—m 2

Solution: By the RMS inequality we have
2
(z+y)* <z®+y?’=1-2% sothat —— > ___Ez__
2 | 1-227 (z+y)2
Hence it follows that

2z 2y 2z
2+ v T (1)

By the Cauchy-Schwarz inequality,

) Y 2
Tt+y+z + . 2
E+y+)(Gm + T
s 2
> ot
(y+z 2:+:r+:r:+y) ) 2
By Example 21 above, for z,y,z > 0, we have
T v z 3
y+z+z+z+:c+y2-2" G)
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22
Further, by the RMS inequality we have
rT+y+z 4P+ 1
(——)% < =32
3 3 3
3 1
= z+ <V3 = >—. @
ERYPTRS z+y+z_ V3

Hence (1) gives, using (2),(3), that

E > 2(2’+"’+z)2

= z4+y+z\y+z z+x THY
2 (3\2 33
> — (=) =—. |[by(4
> \/5(2) 5 [by (4)
Example 23 If a, b, c are positive real numbers, prove that
\/a+b+c+\/a+\/a+b+c.+\/b'
b+c c+a

va+b+c++/c . 9+ 3V3
a+b “ova+b+c

+

Solution: Let s = a+ b+ candz = a/s,y = b/s,z = c/s. Then the given
inequality can be written as .

Js+va  Vs+vbh  Jsh/e 9+3v3
=+ * 2 )
b+c c+a a-+ib 2/s

and on multiplying by NG

-

s+J§E+s+ﬁB+s+Js_c> 9+3V3

b+c c+a ~ a+b ~ g

hence on dividing each numerator and denominator on the left by s,

1+vE_ 1+vF  1+VZ 9+3v3

y+2z 2+z z+y 2

orsincer+y+z=1,

1+ 1+ 1+2 9+ 3v3
+ + ,
l—2z 1-y 1-2 2

v

(1)
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Now[(1-z)+(1=gy)+(1-2)] =3~ (z+y+2)= 2and.'sobythe
Cauchy-Schwarz inequality, . ¥

((1—::)+(1—y)+(1——z))(11x+ : + 1 )2(1+1+1)2,

-y 1-2z -
1 1 1 9
- 2
iz Ty 1T=z27-1 @
Also, on replacing z, y, z by \/z, ,/‘ ,v/Z in Example 22 above, we have

l—y l—z 2
Adding (2) and (3), we get (1).
Exercise Set 2.2

1. Show that, if a,b,c > 0, then (i)

t:!.?'-zl-b3 > (a-2|-b)3

(i) a +62 (a—zl—b)2 (i) a2+l;2+c22(a+§+C)2.

2. Show that, if a, b, ¢, d are positive then

ab cd (a+c)(b+d)
+ < .
a+b c+d” a+b+c+d

3. Ifay,ay,...,a, are positive and if a; a2 . . . a,, = 1, then show that

(1+a1)(1+az)...(1+a,) > 2",

4. pr,q>0&ndp+q—1 showthat(p+ ) (q+ ) 22;'

5. Show that for every integer n > 2,
n
(i)n!<(%) (i) 1-3-5...(2n-1) < n"

(i) Tiuy /(7) € VA1),

6. If p, g are real, prove that any real root a of 23 + pz + ¢ = 0 satisfies
p® —4ag 2 0.
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7. If ay,.. ., a, arc positive numbers less than 1 and S, = 61 + - + @n,
“then show that

1-Spa<(1-a;)(1-az)...(1-an) <

148,
-~

8. If z,y, 2 are all positive real numbers, then prove that
(1 +y)+y(l +2)+2(1+x) > 6/7Y2.

9. Let ry,T2,...,Ty bereal numbers. If z; + 22+ ...+ 2n < 1/2,each *
1, > 0, prove that (1 — 1;)(1 = x2) ... (1 — z4) 2 1/2.

10. (a) Letay,...a, be any real numbers. Using the fact that
(nax — Y1, ;) > 0 for each k, verify that the square of the
A.M.ofal,...a,.isglheA.M.oflhesquaresofal,...a,..
thy i) lfa,b,c._d,earcmalnumberssuchthala+b+c+d+e=8

and a2 + b + 2 + d® + €2 = 16, determine the maximum and
minimum values of e. Show that they are attained.

2.3 Functional Equétions

In this section, we discuss some functional equations. The different techniques
used to solve functional equations are illustrated with the help of solved exam-
ples. For further discussion, refer to the book written by B. J. Venkatachala

listed in the bibliography.
1. If f : R — R is a function satisfying the properties
(i) f(-z) = —f(z), () flz+1)=flz)+]1,
(i) f(1/z) = f(z)/z? for z # 0, prove that f(z) =z, forall z € R.

2. Find all polynomials P(z) such that P(F(z)) = F(P(z)), P(0) =0,
where F(z) is a given function satisfying F(z) > z for allz > 0.

() f(f(n))&nforalln € Z and
(i) f(f(r; 2) + 2) = n for all n € Z and (iii) f(0) = 1.

4. Determine all the functions f : R — Rsuch that

f(x)f(y) - f(zy) =z +y for all z,y €R. '
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Solutions

1. The identity function f(z) = z, clearly satisfies the given. f:onditions.
Converscly. let f be any function which satisfies these conditions,

; 1,
Putting z = 0 in (i) we get f(0) = 0. Let z > 0. Replacing z by = in
(ii) we get

1(55) = 1(+5)=1(3) +1
z+1 X T

(&) + 1 by i)

o 1(57) = 1(F] ) = ] 1) by
- (mII Qf(l—xj-l)
= () GR) +) )
-« Y[+ wo
- (z:1)2:—6—_:—1?f(z+1)+1_] [by (iii)]
= ("11)2[1—%"—2—;’)—3] [by (i)

Hence,

1 T+ 1\2 z 1
o f@)==z,if 2 > 0.Ifz < 0, then —% > 0and so f(—z) = —z,
Hence by (i). f(z) = - f(—=x) = —(=z) = 2. Hence f(x) =z, for all
z € R.
Note: When the domain of

f is the set of rationals, we have the follow-
ing alternative method. -

Let f : Q — R be a function which satisfies the above
Putting z = 0 in (i) we get f (0)=0.B
f(z) = z for every positive rational z.

By (ii) it follows by induction on . that VzeQandV¥n e N,
f(z +n) = f(z) +n,

sfies conditions.
y (i) it is enough to prove that

(iv)

In particular, f(n) = f(0+n) = S(0)+n = n. Hence by (ii)Vn e N,
1 1 n 1

f(;) =3f(n) = = faie (v)
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...-"'--__

Next, V m, n € N, (iii) gives

m m? /n :
() =4(5) (v
Now, by induction on m, we prove that ¥V m,n € N,
m m ”
Hazl=y o

This is true for m = 1 by (v). Now let m > 1 and assume that
f(m'/n) = m'/n for all m' < m and all n. Then for a given inte-
ger n we have either (1) n < m or (2) n > m. If (1) holds, then by
induction hypothesis, f(n/m) = n/m and so by (vi), f(m/n) = m/n.
If (2) holds, divide n by m to get n = mq +7,0 <7 <m.Then
n T T .
F(Z) = f(a+5)=4(5)+a by @

m m

r . _ i
= —+q [as in case (1)] = —- (viii)

Hence (vii) follows.

2. Let F(0) = aq. Then P(ag) = P(F(0)) = F(P(0)) = F(0) = ao and
ag > 0. Let F(ag) = 1. Then, as before, P(a1) = a1 and a1 > ao- By
induction, if F(an) = @n+1 then P(ap) = an and @n41 > Gn. But this

means that the polynomial equation P(z) —z = 0Ohas infinitely many
roots ag, a1, - - - Hence P(z) — 2 = 0 for all z, i.e. P(z) = z.

3. The function f (r)=1-n clearly satisfies conditions (i), (ii) and (iit).
Conversely, suppose a function f : Z — Z satisfies (i), (ii) and (jii).
Applying f to (ii) we get,

f(f(f(n+2)+2)) = f(n)
and this gives, because of (1),
f(n+2)+2=f(n), (iv)

for all n € Z. Now using (iv) it is easy to prove by induction on n that
foralln € Z,

0) —n, ifniseven
f(n)={ f{l()ll?-ﬂ, if n is odd

Also by (iii), f(0) = 1. Hence by (i), f(1) = 0. Hence fin)=1-n
foralln € Z.
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4. We have, ' ‘
f(z)f(y) - f(zy) =z +y forall z,y €R. (v)

Put z = y = 0in (v). Hence, f(0)f(0) — f(0) = 0. This implies that
f(0) = 0or f(0) = 1. If f(0) = O then f(z)f(0) = f(OF= z + 0.
Hence, z = 0 for all r € R, a contradiction. Hence, f(0) = 1.

Substituting y = 0, in (v) we get f(z) f(0)—f(0) = zi. e. f(:c) =z+1.

If we substitute f(z) = z+1in (v), we get (z+1)(y+1) —(zy+1) =
T +y. Hence, f(x) = = + 1 is the only solution of (v).

Example 5: Show that if n = 2, 3 (mod 4), it is not possible to get a rearrange-
ment (z1,...,2,) of (1,2,...,n) such that |z; — 1|, |Jz2 = 2|, ..., |Zn — 7
are all distinct.

Solution. Note that |z; — i| = +(z; — i) = (z; — i) (mod 2), 4nd so

ilfi =i = ixi ~ iz’ = 0 (mod 2).
i=1 i=1

i=l1

Now if |z; - 1|,..., |Zn —n| are all distinct, then they must be a rearrange-
ment of 0,1, ...,7 — 1. (Note: 0 < |z; — i|] < n — 1.) In that case,

n

D lzi—il=n(n-1)/2.

i=1

-

If n(n—1)/2 is even, then n = 0, 1 (mod 4). This shows that if n = 2, 3 (mod
4), then |z; — 1|,..., |z, — n| cannot all be distinct.

Example 6: Let f(z) = (z — a;1)...(x — an) + 1, where ay,...,a, are
distinct integers. Show that (i) if n is odd, then f(z) is irreducible over Z
i.e. f(z) cannot be factorised in the form f(x) = p(z)q(z) where p(z) and
q(z) are polynomials with integer coefficients and their degrees are less than
the degree of f(z) (Here the degree of f(z) is n.) and (ii) if n is even, then
either f(z) is irreducible over Z or is the square of a polynomial with integer
coefficients,

Solution. (i) Let n = 2m + 1 and let, if possible, f(z) = p(x)q(z) where p(z)
and g(z) are polynomials with integer coefficients and their degrees, say r and
8, are both less than n. But then, clearly,

f(ai) =1 ie. p(as)ga;)=1fori=1,...,n ()
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Nown =r+s8 = 2m + 1 and so r, s cannot-both be greater than m. So
let r < m. Now by (1), p(a;) = 1or —1fori = 1,2,...,2m + 1. Hence
p(a;) =1 for m + 1 values of i or p(a;) = —1 form + 1 values of i. But the
degree of p(z) = r < m. Hence p(z) is the constant polynomial 1 or —1. This
is a contragiction. Hence f(x) is irreducible over Z.

(i) Let n = 2m. Let f(z) be reducible over Z so that f(z) = p(z)q(z)
as before. Then r = s = m, because if r < m say, then p(a;) = %1 for
i=1,2,...,2m. Hence p(a;) = 1 (or p(ai) = —1) for atleast m values of
i. Hence p(z) is a constant polynomial: contradiction. Hence r = 8 = M.
Now since the leading coefficient of f(z) is 1, we may assume that the leading
coefficients of p(z) and g(x) are both 1 or both —1. Hence the degree of
the polynomial p(x) — g(z) is less than m. But p(a;) = g(a;) = *1 for
i=1,2,...,2m. Hence p(z) — q(z) = 0 has more than m roots. Hence p(z)
and g(z) are equal polynomials, so that f(z) = [p(z))2.

Exercise Set 2.3

1. Determine the function f : R — R which satisfies
22f(z) + f1—z) =22 -z, z€R.

2. If f : Q — R satisfies f(z + y) = f(z) + f(y)V::::y € Q, prove that
f(z) = f(1)=z,Vz € Q.

3. Find all f : R — R such that f(z2+ f(¥) = (f(z))*+y,Vz,y €R.

4. Let a, band c be lengths of the sides of a triangle. Show that if a2 +b% +
2 = be + ca + ab, the triangle is equilateral.

5. If f(z) denotes a polynomial of degree n such that f(k) = 1/k for
k=1,2,...,(n+1),detennincf(n+2). '

6. For what real values of the variable = does the following inequality hold:

41.2
s <2cx+9 ?
(1-+/1+2z)

7. Solve the equation cos? z + cos® 2z + cos? 3z = 1.
8. Let a, b, ¢ be real numbers such that
(be — a2)~! + (ca — b*) ™" + (ab— &)~ =0.
Prove that a(be — a%)~2 + b(ca — b%)~% + c(ab - 2)"2=0.
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9. a,b and c are natural numbers such that the sum of any two of them is
greater than the third number. Prove that

[1 ~ E—;'—c-]a[l— c_—-a]b[l _ a-—-b]‘ <1.

c c
Hints to Problems
Pr. 11fb > 0, take p(z) = 2 + kz + Sband ¢(z) = 2% + (2a —k)z — 3b
N where the real number k is chosen so that k2 — 106 > 0. If b < 0, take

p(z) = 22 + az + 3band ¢(z) = 2° + az + 3b.

Pr. 2 The equation is
z? +nz + %(n'*’ —31)=0.

Hence the sum of the roots is 2r+ 1 = —n and product of rootsis r(r+ 1) =
(n? -31)/3.Son = 11,r = —6.

Pr. 3 (i) Suppose p,§ are real and the roots are p, g, —qi where g # 0. (Here
the non-real roots/have to be complex conjugates.) Then we have the factor-
ization p(z) = alz — p)(z — qi)(z + qi) = a(z® — pz® + q*z — pg?) so that
b= —ap, ¢ = aq?, d = —apq®. These numbers clearly satisfy the given condi-
tion. Conversely, let the given condition hold. Then multiplying by b, equation
becomes abz3 + b2z2 + adz + bd = 0 or abz?(z + &) + ad(z + 2) = Oor
(x + £)(z? + £) = 0. As ac > 0, a and c have the same sign so that c/a > 0.

So —b/a is the real root and +i4/c/a are the purely imaginary roots.

(ii) Suppose p, q are real and the roots are p, g, —g. Then we have the factor-

ization p(z) = a(z — p)(z — g)(z + g) = a(z® — ¢’z — pz* + pqg?) so that

b = —ap, c = —aq?, d = apg?. These numbers clearly satisfy the given condi-

tion. Conversely, let the given condition hold. Then multiplying by b, equation

becomes abz® + b*z? + adx + bd = 0 or (z + 2)(z% + £) = 0. So the roots
~ are —b/a and /—c/a which are as required.

Solutions to Exercise Set 2.1

l.a=b=0ora=15b=-2.

3. Letintegers a > 4 > 0be the roots of (i) z? —az+b = 0 and let integers
v > & > 0 be the roots of (ii) z? — bx + a = 0. For definiteness, let
a > b. Now

a+f=a, af=0b and Y+d=5, v6 =a.
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Hencea—b=1—-(a—1)(8—1).Hence0 < 1~ (a—-1)(3—-1) < L.
So 8 = 1 since a, B are positive integers and 8 < a. Thusa — b = 1.
Further,a — b= (y—1)(§ = 1) — 1, so that (y = 1)(§ — 1) = 2. So since
~ > & > 0 are integers, we see thaty — 1 = 2.and § — 1 = 1, so that
v = 3,6 = 2. Hence,a = v = 6 and b = v + 6 = 5. Also, therefore,
a=5, f=1.

5. Suppose that f(z) = z2 4+ pr — g and g(z) = z? — px + g both factorize
into linear factors with integer coefficients i.e. both the equations f (z) =
0 and g(z) = O have integer roots. Then the integers p + 4q are both
perfect squares, say d2 = p? + 4q and d3 = p* — 4q where d;,d2
are positive integers. So d? — p? is even so that d;,p are both even
or both odd; similarly for da, p. Thus d;, d2, p are all even or all odd.
Hence a = (dy + d2)/2 and b = (d1 — d2)/2 are both integers and,
di = a+b,dy = a— b. But then 2p? = d? + d} = 24 + 2b” and
8¢ = d? — & = 4ab so that p* = a® + b? and ¢ = jab. Hence p is
the hypotenuse of a right triangle with legs a, b and g is the area of this
triangle. Further, if the roots are & = (—p + d1)/2, 8 = (—p — dy)/2,
v = (p+d3)/2, 6 = (p— dz2)/2, then the semi-perimeter of the triangle
iss=(a+b+p)/2=(p+d)/2=—-PF,andg =aff =7 =
the area of the triangle. Hence (except for sign) the inradius and exradii
are respectively given by g/s = aB/8 = a, ¢/(s — a) = ¥3/é = 7,
g/(s=b) =76/7=26,9/(s—p) =aB/a=p.

8. %—(4.7:3 +2z% — 102 +4). 1. k=61, —3/4,13/21.
12. (i) 2 (i) =3. 13. (i) -1, -1, -6 (ii) -2, 3,4 (iii) 1, -2, 30.

14. () 4, +3/2 (ii) 1/2, -2, —4 (i) =7/2,-3/2,1/2 (iv) —4,-3,1,2.
(v)2/3,3/2,—5/2. 15. £(3+5i), £(3—2i), £(4+3i), =(5+4i).

16. a=4,b=1.11.p=1,q9q=-4,1%4i -3

18. (id 3 & 2v/5, —5/2. (ii) 1 & v/3, i (iii) £2v/5,7/3 (iv) 2 £ V3, £1 (V)
~1+iv3,5(vi)1+4,1+ V2.

19. (i) -2, 1,2 (ii) —4, 2, 3 (iii) -2, -1,1 (iv) §,6,7
(v)-1,1,£2.(vi) 1,1, -2.

20. (a,b,¢) = (a,0,0),(—-1,-1,1).
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21. First suppose that the roots are in AP,sayp=k-d,g=k,r=Fk+d.
Then3k =Y p=—4.Sok = -a/3 is a root. Next, 3" pg = b gives
(i) 3k%? - d? = b, and pgr = —c gives (ii) k(k? — d?) = —e. Since
k = —a/3 is a root, we get (—a/3)* + a(-a/3)% + b(-a/3) + c = 0
i.e. (iti) 2a% — 9ab + 27¢ = 0. Further, since the roots are real, (i) shows
that 0 < d? = 3k? — b 50 that 3k% > bie. 3(-a/3)? > b or (iv)
a? > 3b. Conversely, conditions (iii) and (iv) are sufficient for the roots
to be real numbers in A.P. To see this, let (iii),(iv) hold. Then (iii) shows
that r = —a/3 is a root. Also, by (iv), a® — 3b > 0or 9r2 — 3b > 0 so “
that t = ++/3r% — b is a real number. Thus 2 = 3r2 — b. Hence r — ¢ is P
a root because . 5% q

(r=)+a(r—t)2+b(r—t) +c
= r3—3r2t+3rt2——t3+ar2—2art+at2+br—bt+c
= (r3+ar2+br+c)—t(3r2+t2+b+2ar)+t2(3r+a)
= 0-t(3r® +3r? — b+ b+ 2r(-3r)) + £3(0) = 0.

TR T
Bt
a

Similarly, ¢ + r is a root. Hence the roots are r — t,r,r +t which are
real and are in A.P.

22. 822 — 10z — 61 = 0. 23. 22 +pr +¢q=0.

24. 2% — 222 + 52— 11=0. 25.2% - 322 4+ 27 —1.

25, Hint: Let @, 8,7 be the roots of z° —2 — 1 = 0. Then o® = a + 1,
B = B+ 1,7 = v+ 1. So we need to find the equation with roots
a+1,8+1,v+1.

26. Hint: Let, if possible, z = m is an integer root of f(z). Then f(z) =
(z—m)g(x) where g(z) is a polynomial with integer coefficients. Hence
—1 = f(a) = (a —m)g(a) so that a — m divides 1, hencea — m = +].
Similarly, b—m = %1, c— m = £1. Now two of the differences g — m,

b — m, ¢ — m must have the same sign. For example, leta — m = —]
and b — m = —1. So a = b, a contradiction.

27. (i) Since a, b, c, d are the roots of the equation
z* + (0)z3 + (0)z%? + z + 1 = 0, we have

a+b+c+d = 0, ()
ab+ac+ad+bc+bd+cd = 0, (2)
abc+abd+acd+bcd = -1, and A3)
abed = 1. 4)
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Rewrite (2) as

ab+a(c+d)+b(c+d)+cd = 0.Then
by (1), (4), ab-(a+b)2+£3 = B, )

Next, rewrite (3) as

ab(c+d)+cd(a+b) = -1.Then
by (1)!(4)) _ab(a+b)+ (-i%(d-*—b) = -—1,
1 ab
so(a+b)(ab— —) = = e
(a+b)(a ab) lora+b @1 .

Hence on substituting this value of a + b in (5) we get

1 (ab)?

ab+a—b=m.

Hence replacing ab by = and simplifying we see that ab satisfies the
equation
Pf—zt-z*-22+1=0.

This shows that, in fact, each of the six products ab, ac, ad, be, bd, cd
satisfies the above sixth degree equation. Hence the above equation has
exactly these six products as its roots.

28. +3/2, 1+ v5)/2. 29.-5,-2,1,4.

30 Let o/, a,ar be the roots. Then a® = the product of roots = —8. So
a = —2, as the roots are real. R2.234z2-2x—-1=0.

35, (z,5,2) = (~11/6,1/6,13/6), (11/6,~1/6,~13/6).
36, 2(k2 - 1)(z —y)(y - z)(z—z). 3T.a=2.

38. If f(z) is of odd degree, then it has a real root, say z;. But then by the
given condition it follows that z2 = z2 + z; + 1 is also a root. Further,
2y > |z1| because 22 +1 2 2/21 -1 = 2|z,| so that z7 + =1 + 1 2
2|z |+x1 2 |z1|. Similarly, z3 = T3 +2z2+1isalsoarootand x3 > T2
and so on. Hence f(z) = O has infinitely many roots, a contradiction.
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45.

10.

3.

(One guesses possible solutions as z = —-y,z = W etc.) From 2nd
equation, Ty . —1-, so that from 1st equation,
y= w

(x +y+ 2)(zy + yz + z2) = TYz.

Hence, 2y + 7%z + 22 + y°2 + Pr+Py+2zy2=0
ie. (z+y)(z+2)(y+2) =0

Thus, two of z, y, z are opposite of each other and the remaining quantity
is equal to w. (Such values of z, y, z, w are clearly a solution of the two
equations.)

Solutions to Exercise Set 2.2 9

. (i) and (ii) are equivalent to (a — b)2 > 0. For (iii), note that

a?+b?+c?—ab—bc—ca=3[(a-b)?+ (b—c)®+ (c—a)?.

. Equivalent to (ad — bc)? > 0. 4. Hint: By Ex. 1 (ii) above,

LHS. = (p+1+%)2+(q+1+§)22 —1—(p+1+§+q+1-;i-§)2.

(iii) Use (13). 6. For, then « is a root of az? + pz + ¢=0.
(2) |

Z(nak - Z a;)® = n? Z aj + n(z a;)? - 2”(2 a;)?
k=1 k=1 k=1
= 7"2(2 az) — “(Z a;)?.

As this must be > 0, we get the result.

) (a+b+c+d)? <4(@®+b +c +d?) .. (8-¢)? < 4(16 — e2?)
64 — 166 + €% < 64— 4e? e(5e ~16) < 0.0 < e < 16/5.
e=0isattainedfora =b=c=d=2ande = 16/5 is attainéd for
a = b = c=d = 6/5(Thesc values are easily located by observation.)

Solutions to Exercise Set 2.3
f(z)=z. 5. (1+(-1)")/(n+2).
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Chapter 3
Geometry

3.1 Some Important Theorems

, Given any two distinct points A and B on a straight line, they determine a line

’ segment of definite length. When we associate with this segment the direction
from A to B, we obtain the directed line segment denoted by AB. Thus directed

ﬁ segments AB and BA have the same length but opposite direction and we
denote this by the equation AB = —BA, or equivalently by AB + BA=0.

A P B Q

Fig. 3.1

If P is a point on the line AB lying between A and B, P is said to divide the
segment AB internally and the ratio AP : PB of the division is positive. If
Q is a point on the line AB lying outside the segment AB, Q is said to divide
the segment AB externally and the ratio AQ : QB of the division is negative.

(See Fig. 3.1).

Definition 1 Two polygons are defined to be similar if there is a one to one
correspondence between their vertices such that their corresponding angles are

equal and their corresponding sides are proportional.

Theorem 1 In any triangle ABC, the line joining the midpoints B’ and C’ of
the sides CA and AB respectively, is parallel to BC and B'C' = 3BC.

.
Theorem 2 Let ABC be a triangle. If a straight line is drawn parallel to BC
~ through the midpoint C’ of AB, then it passes through the midpoint of C'A.

Theorem 3 If a straight line is drawn parallel to one side of a triangle, then
it divides the other two sides (produced, if necessary,) proportionally. Con-
versely, if a straight line divides two sides (produced, if necessary,) of a triangle
proportionally, then it is parallel to the third side.

93
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Theorem 4 The areas of triangles with equal altitudes are proportional to the
bases of the triangles. The areas of triangles with equal bases are proportional

to the altitudes of the triangles.

Problem 1 Choose point P on side AB of AABC. Let the line parallel to
BC through P meet AC in Q, the line parallel to AB through Q meet BC in
R, the line parallel to CA through R meet AB in S, the line parallel to BC
through S meet AC in T, and the line parallel to AB through T meet BC in .
U. Prove that PU is parallel to AC. ( See Fig. 3.2)

Fig 3.2 Fig 3.3

Problem 2 In AABC, AB = AC. If points D, E are on sides AC, AB re-
spectively such that BC = BD and AD = DE = EB, find ZA (See Fig.

3.3).
Example 1 In a triangle ABC poin'ls D and EE'; respectively divide the sides

i . BD _
BC and CA in the ratios C = m, and FC = n. The segments AD and

BE intersect in a point X. Find the ratio E’%

Solution. Draw DF parallel to BE as
in Fig.3.4. Then by theorem 3, from

AEBC we get
EF _BD _
FC - DC = m, and so

EF BD m
. ' EC  BC m+1’
Fig. 3.4 From AADF we get
AX AE _AE EC _ m+1

—

XD EF EC EF_ """m
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Example 2 On the sides gg, CA, AB of a triangle ABC points D, E, F are

: CE AF
jakeninsuchaway thal — = — = = =
. _ y D.C EA B 2. Show that the area of the
triangle determined by the lines AD, BE,CF is 1 x A where A is the area of

AABC.

A
L M
E )\ A
F
C D B c D B
Fig 3.5 Fig 3.6

Solution. Let XY Z be the triangle formed by the lines AD, BE, CF. Then

by Example 1, AX/XD = 13 = 2. Hence AX/AD = 3. Now the trian-
) . AABD
gles ABD and ABC have the same height and so by theorem 4, ~ABC

%‘g = % Again, the triangles ABX and ABD have the same height and so

AX AABX _ OAABX
AD _ AABD  3iA

Thus AABX = % - A. Similarly, ABCZ = ACY A = £ - A. Butclearly,

AABX + ABCZ + ACAY + AXYZ = A,

andso AXYZ =A—6A[T= AJT.
Direct solution by M. R. Railkar

As shown in Fig. 3.6, complete the parallelogram ABCL and let BE meet
AD in X and AL in M. Then /AEM = /CEB and ZEAM = LECB
so that AAEM ~ ACEB. Hence that AM/BC = AE/CE = 1/2. Simi-
larly, AAXM ~ ADXB so that BX/XM = BD/AM = 2BC/3BC =
4/3. Hence BX/BM = 4/7. Therefore, since triangles AX B and AMB
have bases BX and BM and the same height, we get AMAXB/AAMB =
BX/BM = 4/7. Finally, since M is the mid-point of AL and AM || BC,
it follows that AAMB = 3AABC. Hence AAXB = 3 - 3AABC =
2AABC, and the solution can be completed as before.
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Theorem § If two triangles are equiangular, then their concspf;nding sides
are proportional, and so they are similar. Conversely, if two triangles have

corresponding sides proportional, then they are equiangular and hence they are
similar.

B AC
Theorem 6 Let ABC and DEF be triangles such that 14-— = BE and
£BAC = LEDF. Then the triangles ABC and DEF are similar.

Fig 3.7

Theorem 7 In any AABC, the internal bisector AD of Z A divides the oppo-

— . . . BD AB .
site side BC internally in the ratio DC = Ac the external bisector AX of

.. : . BX AB

£ A divides BC externally in the ratio XC = " Ap" (See Fig. 3.7).
Theorem 8 The straight line that passes through the point of intersection of
the diagonals of a trapezium and through the point of intersection of its non-
parallel sides, bisects each of the parallel sides of the trapezium.

Theorem 9 Angles in the same segment of a circle are equal. In fact, as in
Fig. 3.8, ZAPB = LAQB = (1/2)£AOB, O being the centre of the circle.
Conversely, if line segment AB subtends equal angles at two points P, Q on
the same side of it, then A, B, P, Q are concyclic. (See Fig. 3.9).

Fig 3.8 Fig.3.9
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Theorem 10 The opposite angles of a quadrilateral inscribed in a circle are
supplementary. Conversely, if the opposite angles of a quadrilateral are sup-
plementary, the quadrilateral is cyclic (See Fig. 3.10).

*Fig. 3.10 Fig. 3.11

Theorem 11 If as in Fig. 3.11, line AB touches a circle at point C, then for
any chord C D through C we have /ACD = Z/CED and ZBCD = ZCFD.

Theorem 12 If (see Fig. 3.12) AA’ and BB’ are chords of a circle through a
point P inside the circle, then PA - PA' = PB-PB'.

Proof. Note that the result follows by observing that APAB ~ APB'A'.

Fig. 3.12 Fig 3.13

Theorem 13 If (see Fig. 3.13) Pisa pbint outside a circle and a tangent from
P 1o the circle touches it at T and secants through P cut it at A, A’ and B, B,

then
PA-PA' = PB-PB' = PT? -
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Problem 3 If straight line OT touches a circle at 7', and OAB is a ray cutting

it at A and B, and the bisector of angle BOT meets TA, TB at X, Y, find out
what you can about X and Y and prove it.

Fig. 3.14 Fig. 3.15

Problem 4 O is the centre of a circle QRS and T is a point within the circle.
A second circle passes through O and T and intersects the first circle at R and

S, R being the nearer to T OT is produced to meet the first circle at  and
" TS, QS and RS are joined. Prove that ZQSR = LOST.

3.2 Concurrency and collinearity

Theorem 14 (Ceva) If points D, E, F are taken on the sides BC,CA, AB of

AABC so that the lines AD, BE, CF are concurrent at a point O, then
BD CE AF _
DC EA FB -V 1)

Proof. There are two possible cases depending on whether O lies inside or
outside AABC. First note that in Fig. 3.16 (i), all the ratios BD/DC etc. are
positive, while in Fig. 3.16 (ii) exactly two are negative and so the product in
(1) is positive in all cases. Hence we now ignore the signs of the

s€gments and
prove that the numerical value of the product in (1) is 1.
F
A
0]
C B c D
(i) (ii)
Fig. 3.16
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In Fig. 3.16, since the triangles ABD, ADC have the same altitude and also
the triangles OBD, ODC have the same altitude, by theorem 4 we get

BD _AABD _ AOBD _ AABD - AOBD _ AABO g
DC ~ AADC  AODC  AADC -AODC — ACAO

CE _ ABCO AF ACAO
EA AABO’ FB ABCO
Multiplying these three equations we get (1).

Similarly,

Example 3 D, E, F are points on the sides BC, CA, AB respectively, of

AABC such that AD, BE, CF are concurrent at O. Show that

: OD OE OF A0 BO  CO _
(1) AD+BE+CF=1' (ii) + 4 =2

AO AF " AFE
OD FB EC’
Solution. (i) We have, as in the above,

OD AOBD _ AODC _ AOBD + AODC _ AOBC
AD  AABD AADC AABD+ AADC AABC’

(iii)

etc. Hence :
OD OE_ OF _AOBC AOCA  DOAB _ AABC _,
~p T BE T OF ~ BABC ' AABC ' AABC ~ AABC

2 : AO AD-0D oD .
(ii) Use the relations AD = AD =] - D’ etc. and (i).
(iii) We have
AO AAOB AAOC AAOB + AAOC
OD ~ DABOD AOCOD  ABOD+ACOD
_ AAOB + AAOC AAOB 4 AAOC _ AE " AF
- ABOC = ABOC ' ABOC EC FB’

Theorem 15 (Converse of Ceva’s theorem.) If three points D, E, F takenon
the sides BC, CA, AB of AABC are such that equation (1) holds, then AD,
BE, CF are concurrent.

Proof. Suppose AD and BE meet in O and CO meets AB in F'. Then since
AD, BE, CF' are concurrent, we get by Ceva’s theorem,
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" ’

BD CE AF AF _ AF

i . = 1. b 1 e get — = *

5 EA PR ey Qe 55 " D
AF AF’ AF _AF

Hence —rFE = aF+FB © AB AB
Thus AF = AF and so the points F and F’ coincide. Hence CF also passes

through O. .
Trigonometric form of Ceva’s Theoem: Let points D, E, F be taken on the

sides BC,CA, AB of AABC. Then the lines AD, BE, CF are concurrent
if and only if

sinZBAD _ sinZCBE . sin ZACF _1
sin ZDAC sinZEBA sinZFCB |

Corollary 1. The medians of a triangle are concurrent.
[For in this case, (Fig. 3.20(i)), BD/DC = 1 etc. and so (1) holds.]'

Corollary 2. The altitudes of a triangle are concurrent.

A
E

Fig. 3.17

[For acute-angled triangle ABC, (Fig. 3.17) BELCA and CFLAB and so
) AE AB
AAEB ~ AAFC as ZA is common to them. Hence A7 = iC Similarly,

. BF BC CD CA
IfAD.LBC, then -.B—'E = EZ and EE = ﬁ So

BD.CE.AF__AB'BC CA
DC EA FB BC CA AB "
and so (1) holds. A similar proof holds for obtuse-angled triangles.]

Corollary 3. The internal bisectors of the angles of a triangle are concurrent.

[For in this case, (Fig. 3.7) ? = AL ... , etc. where a, b, c respectively

denote the lengths of the sides BC, CA, AB of AABC. Hence
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e

BD CE AF ¢ a b '

DC EA FB = et 1, and so (1) holds.]
Corollary 4. The external bisectors of any two angles of a triangle and the
internal bisector of the third angle are concurrent.
[For in this case, (Fig. 3.7)

BD ¢ CE _-a AF _ -b

DC — 5 EA = ' FB = -—(—l—,andso(l)holds.]
Corollary 5. If the incircle of AABC touches BC, CA, AB at X,Y,Z
respectively, then AX, BY, CZ are concurrent (the point of concurrence is
called the Gergonne point of AABC.)

[For in this case, (Fig. 3.18 (i)) BX = BZ, etc. and so

BX CY AZ BX
Oy 22 = 1, and so (1) holds. ]

XC YA ZB CY AZ BX
Corollary 6. If the excircles of AABC, opposite the vertices A, B, C touch
BC.CA, AB at X, Y, Z3 respectively, then AX,. BYa, CZs are concurrent
(the point of concurrence is called the Nagel point of AABC.)

Proof. Let the excircle opposite A touch CA alY; and AB at Z,. Then, (Fig.
3.18 (ii))) BX, = BZ;, CX; = CYy, AZ, = AY;. Hence AB + BX, =
AB+BZ, = AZ, and AC+CXy=AC+Ch = AY;. Thus AB+BX, =
AC+CX, = 1/2(AB+BX1 +X,C+CA) = 1/2(AB+BC+CA). Hence
X, bisects the perimeter of AABC. Similarly, Y2, Z3 bisect the perimeter.
Hence by Example 9 below, AX1, BY>,CZ3 are concurrent.

Fig. 3.18

Note: With regard to the Gergonne point it is interesting to note the following

more general result called Problem of Joseph Diez Gergonne: If through the

vertices of a AABC, two lines AP, BQ of arbitrary length are drawn in the

direction of C, AP parallel to BC, BQ parallel to AC, and if lines PD and
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QD are drawn respectively parallel to BQ and AP, meeting in D, then the
lines AQ, BP, and C'D are concurrent.

To prove this, let AQ cut BC in X, BP cut AC in Y, and let AQ, BP intersect
at W as in Fig. 3.19. Let DC meet AB in Z. Then since AQXB ~ AAXC
and ABYC ~ APY A, we get

BX _QB . CY_BC -
XC oA YA AP’
Let DP, BA meetin E and let DQ, AB meet in F. Then, since triangles EAP

and BF'Q are both similar to AABC, we have

EA AP _PE ol dBF FQ @B _ 3)
AB ~ BC CA * AB BC CA
EA
Hence BE = é‘ Next, since AAZC ~ AEZD and AZBC ~ AZFD, we
get ;
AZ ZC ZB zC
EZ ZD’ ZF ZD’
Hence

AZ EZ EZ-AZ EA )

ZB- ZF ZF—ZB BF —u @

Hence by (4), (3) and (2),

AZ BX CY _) 1
ZB XC YA u "'}

Hence by Ceva’s theorem, the lines AQ, BP, and C'D are concurrent.

= 1.

‘L‘:

mo
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If we take AP = BQ = AB, then

AZ _ )\ _AP QB _CA BX QB AB "
ZB— = / = ) and — = — = —5
p BC'CA CB XC AC AC’

so that W is the incentre of AABC. If we take AP = BC and BQ = AC,
it is easy to see that W is the centroid of AABC. Finally, if P is taken as the
point at which BY cuts the parallel through A, and Q the point at which AX
cuts the parallel through B, where X and Y are the points of contact of the
incircle, then W is the Gergonne point of AABC. .

Example 4 A circle cuts the sides of AABC internally as follows:BC at
D, D'; CAat E, E' and AB at F', F.1f AD, BE, CF are concurrent,
prove that AD', BE', CF" are concurrent.

Solution. Let AD, BE, CF be

concurrent, so that bé Ceva’s theo-
BD

rem wehave-——---—?- il—;‘—-l
; FB DC EA

By theorem 12, using signed seg-
ments we have

BD-BD' = BF:BF),
CE-CE' = CD'-CD
and AE'-AE = AF- AF'.
___BD _ FB CE_DCAF_FA
ence 75z = BD’ DC CE’EA AF'
B DO PA_BD CE AF_,
s, 557 ' CE' AF' FB DC EA
Hence by the converse of Ceva’s theorem, AD' , BE' , CF' are concurrent.

Example 5 Let ABCbea triangle and let D, E, F be points on its sides such
that, starting at A, D divides the perimeter of the triangle into two equal parts,
starting at B, E divides the perimeter of the triangle into two equal parts,
and starting at C, F divides the perimeter of the triangle into two equal parts.
Prove that D, E, F lic on the sides BC, CA, AB respectively and the lines
AD, BE, CF are concurrent.

IRef.: Laura Guggenbuhl, Note on the Gergonne point of a triangle, Amer. Math. Monthly,
1957, p. 192-193.
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Solution. Let 2s = a + b+ ¢ be the perimeter of AABC.Nowc < a+b, b<
c+a.Hence2c<a+b+c<2c+2aandsoc<s=AB+BD<c+a=
AB + BC. Therefore D lics on BC. Similarly, E lieson CA and F on AB.
Next,c+BD =s = DC+b, a+CE = s = EA+c, b+ AF = s = FB+a.

Hence
¢ BD CE AF _8-c s—a, s—b
DC EA FB s—b s—c s—a
So, by the converse of Ceva’s thcarcm, AD, BE and CF are concurrent.

=1].

Theorem 16 (Menélnus) If a transversal cuts the sides BC, C A, AB (suitably
extended) of AABC in points D, E, F, respectively, then

BD CE AF
. . = = 5
DC FEA FB 1' &)
Proof. There are two cases depending on whether the transversal cuts one side
externally or all three sides externally. Note that only one ratio (as in Fig.3.20
(1)) or else all the three ratios (as in Fig.3.20 (ii)) in (5) are negative. Thus

the product in (5) is always negative. Hence we now ignore the signs of the
segments and prove that the numerical value of the product in (5) is 1.

E
P F
A
F
E
o .
B C D B C D

Fig. 3.20 (i) Fig. 3.20 (ii)
With the notation of Fig. 3.20 (i), draw AP parallel to DB meeting DF in P,
Then, since AAPF ~ ABDF, ﬁ; gg and since ACDE ~ AAP E,
29 = _C_'_E'_ Hence
AP~ EA

BD CE AF BD DC PA
DC EA FB DC AP BD

=1, numerically.

Note: We can deduce Ceva’s theorem from Menelaus’ theorem as follows: See
Fig. 3.16. Apply Menelaus’ theorem to AABD, and to AADC with line CF
as transversal. This gives

BC DO AF CE AO DB

cD' OA FB- '™ Z2° 6D BC ="

~ A
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Multiplying these equations we get Ceva's theorem.

Conversely, we can deduce Menelaus’ theorem from Ceva’s theorem as
follows: As shown in Fig. 3.21, let a transversal cut the sides BC,CA, AB
of AABC in points D, E, F respectively. Let CF meet BE in P and AD in
Q, and let AD and BE meet in R. Apply Ceva's theorem to each of the six
triangles in Fig. 3.21 as follows:

Fig. 3.21

For ADAB lines DF, AC, BR are concurrent at E and so

BC . DR AF _ 1
CD RA FB
For AEBC lines ED, BA, CP are concurrent at F and so

BD CA EP _
DC AE PB
For AFCA lines FE, CB, AQ are concurrent at D and so

C-‘F.AB_FQ_I
EA BF QC

For ADEA lines DC, ER, AF are concurrent & B and so

AR DF EC _

RD FE CA

For AEFB lines EF, FP, BD are concurrent at C and so
FA BP ED _.
AB PE DF
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For AFDC lines F B, DQ, CE are concurrent at A and SO

DB CQ FE
BC QF ED
By multiplying the last six equations we get
(BD . CE . AF)2 "
DC FEA FB
From this Menelaus’ theorem follows because the transversal cuts either one
side externally or three sides externally.

Theorem 17 (Converse of Menelaus’ Theorem.) If points D, E, Fare taken
on the sides of A ABC such that equation (5) holds, then D, E, F are collinear. .

Proof. Let DE meet AB in F'. Then by Menelaus’ theorem, we get

BD CE AF' AF’

AF
DC EAFB- ~1. Henceby(S)wcgctﬁ =B

andso F = F'.
Hence F' lies on DE, as required.

Corollary. The external bisectors of the three angles of a scalene triangle meet

their respective opposite sides at three collinear points. (A triangle is called
scalene if no two of its sides are equal.)

Example '6 The incircle of AABC has centre I and touches the side BC at

D. Let the midpoints of AD and BC be M and N respectively. Prove that
M, I, N are collinear.

Solution. Let N1 meet AD at M’. Join A and 7 and let A meet BC at L. For
AADL, with NIM' as transversal, Menelaus’ theorem gives

DN LI AM'

NLCTA*MD - ©)
A
B p L~ N c
\
Fig. 3.22
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Now H=LC"= ab = g (7)
TA CA_ (b+ob b+ec

and DN=BN—BD=%—(3-—b)=b+c ®)
LN BN - BL g _ ac a

!

o : A
Substituting (7) and (8) in (6), we get 3 Iﬁ) = 1. Hence, M’ coincides with

M.
%cise Set- 3.1

/ A transversal cuts the sides AB, BC,CD, DA of a quadrilateral ABCD
at P, Q, R, S respectively. Prove that

AP BQ CR DS _

PE OC RD SA_ ¢

/2./ Points X, Y are taken on the sides CA, AB of AABC. If BX, CcY

meet at P and
AX BY _1

XC~ YA~
find the value of the ratio BP/PX. [Ans. BP/PX =3/4]

/ In AABC, BC = 2CA; the internal bisector of angle C meets AB at
X and AA’ is a median. If A’X meets C A produced at Z, prove that A
is the midpoint of CZ. If also AA’, CX intersect at O and BOcutsCA

atY, prove that Y is a point of trisection of CA.

/ Points E, F on the sides CA, AB of AABC are such that F'E is par-
/ allel to BC; BE, CF intersect at X. Prove that AX is a median of

AABC.

The external bisector of angle A of AABC meets BC produced at L,
and the internal bisector of angle B meets CA at M. If LM meets AB

at R, prove that C R bisects the angle C.

/ AD, BE, CF are concurrent lines drawn from the vertices of AABC
to points D, E, F on the opposite sides. If AD is the altitude of

AABC, show that AD bisects LFDE.
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3.3 Pythagoras Theorem

Theorem 18 (Pythagoras.) In any right-angled triangle, the square on the hy-
potenuse is equal to the sum of the squares on the other sides.

R

& 5—~——6Y
X L
Figure 3.23 Fig. 3.24

Proof. Let ABC be a triangle having ZA = 90°. Construct squares BXYC
on BC, CPQA on CA and ARSB on AB as shown in Fig. 3.23. Draw
AL || BX meeting XY in L. Join AY, BP.

Then, since ZBAC = ZCAQ = 90°, BAQ is a straight line. For sim-
ilar reason, CAR is a straight line. In triangles ACY and PCB, CA =
CP, CY = CB and LZACY = /PCB because each = ZACB + 90°.
Hence triangles AC'Y and PC B are congruent. Now parallelogram CDLY
and AACY are on common base CY and are between the parallel lines C'Y

and AL and so
area CDLY = 2-area AACY.

Similarly,
area of sq. CPQA = 2 - area APCB.

Hence,
area CDLY = area of sq. CPQA.
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Soariy, by oinng SCand AX, it can be seen tha
area BX LD « aronof sq. BARS,
Heace, akhing the expressions for area CDLY and area BX LD, we get

area of 5q. BXY C = area of sq. CPQA + aroa of g, ARSY,

as was 0 be proved.

Another Proof. Let ABC be a triangle having ZA = 90°. Construct & circle
with B as centre and a as radius, Let AC intersect the circle at D and AH
intersect the circle at E and F as shown in the fig 3.24. By theorem 12, we
have CA - AD = EA - AF. Hence, b* = (a = ¢)(a +¢) = a? - ie.
a? = b® + ¢* as was 10 be proved.

Exercise Set- 3.2
1. In Fig. 3.23 show that
() AB‘-’=BD-BC,AD?=3D-DC,AD-BC=CA-AB
: + —1—— AY LBP.

® 3p2 = 27" AC
(c) Triangles SBX, PCY, RAQ and ABC have the same arca.

(d) AL, SC, and BP are concurrent and S, A, P are collinear.

2. (a) In AABC, £C is obtuse and AD is perpendicular to BC pro-
duced. Prove that AB2 = BC? + CA? +2LC -CD.

() In AABC, £C is acute and AD is perpendicular to BC. Prove
that AB2 = BC? + CA* —2BC - CD.

This is a form of Cosine Rule.

3. If point D divides the base BC of AABC in the ratio BD/DC = n/m,
then show that

m-ABz+n-Ac'2=m-BD2+n-CD2+(m+n)-AD2.

This is called as Stewart’s theorem .
(Draw AX LBC. Then applying Ex. 2to AABD we get

AB? = BD* + AD* +2BD - DX
and applying Ex. 2 to AADC we'get

AC? = AD* + DC*¥2DC - DX.
Multiply these equations by m and n respectively and add.]
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4. Letin AABC, D be the midgoint of BC. Prove that
AB? 4 AC? = 2AD? + 2DC?.
This is called Apollonius’ Theorem.

5. In AABC, AD is perpendicular to BC. Prove that for any point P on
AD,

BP? - PC? = BD? - DC? (D

and conversely, if P satisfies (1), then P lies on AD. Hence prove that
the altitudes of a triangle are concusrent.

6. On the sides of AABC, equilateral triangles APB, BQC, CRA are
drawn outwards . Show that AQ = BR = CP. Further, if ZBAC = .
90°, show that the area of the triangle on the hypotenuse 1§ cqnaLto thc 2
sum of the areas of the other two triangles.

7. ABC is any triangle; any parallelograms BADE, BCFG are placed
on BA,BC; DE, FG produced meet in H. Show that the sum of the
areas of parallelograms BADE and BCFG is equal to the area of the
parallelogram ACIJ having sides CI, AJ equal to and parallel to BH.
(Pappus’ extension of Pythagoras' theorem.)

3.4 Properties of triangles

Centroid. Let ABC be a triangle
and A, B’, C’' be the mid-points of
the sides BC, CA, AB. The me-
dians AA’, BB’', CC' are concur-
rent and the point of concurrence G
is called the centroid of the triangle.
G trisects every median, the larger
segment being toward the vertex.
Thus AG:GA'=2:1. Figure 3.25

The concurrence of the medians has been proved in Corollary 1 of the con-

verse of Ceva’s theorem. Now, as in Fig. 3.25, for AABA’ with transversal
CGC’, we get by Menelaus’ theorem that

BC A'G AC' _
CA' GA C'B
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Moreover, BC = —2C A’ and AC' = C'B, and so we get AG = 2GA’ as
stated.

Enljnpl.e.7 A line from vertex C of AABC bisects the median from A. Prove
that it divides the side AB in the ration 1 : 2.

E

Figure 3.26

Solution. Through B draw a line parallel to the median AD meeting CA
extended in E. Let M be the midpoint of AD and let CM extended meet BE
in F and AB in N. Then as in ACBE, DA is drawn through mid point D
of CB parallel to base BE, it follows that A is mid point of CE. Hence F'
is the mid point of BE as BF = 9DM = 2MA = FE. Hence AB and
CF are medians of ACBE and so they divide each other in the ratio 1:2, i.e.,
BN =2NA.

Equivalntly, one may apply Menelaus’ theorem [0 AABA’ with line CMN as
transversal.

A

(1) (ii)
Figure 3.27

Circumcentre. In AABC, the perpendicular bisectors of the sides are con-
current and the point of concurrence O is equidistant from the vertices. Let R
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be the common distance. The circle with centre Q and radius OA = R, passes
through the vertices A, B, C and is called the circumncircle of the triangle and
O is called the circumcentre of the triangle. See Fig. 3.27. ;

For an obtuse-angled triangle, the circumcentre is outside the triangle: see
Fig. 3.27(ii). Clearly, ZBOA' = ZA'OC = /LA elc.

Orthocentre. The altitudes AD, BE, CF of AABC are concurrent and the
point of concurrence H is called the orthocentre of AABC. The triangle DEF
formed by the feet of the altitudes is called the pedal triangle of AABC. See
Fig. 3.28(i).

For an obtuse-angled triangle, the orthocentre is outside the triangle: see
Fig. 3.28(ii).

A

(1) (ii)
Fig. 3.28

When AABC is an acute-angled triangle, as in Fig. 3.28(i), we have the fol-
lowing results.

(1) As BCEF is a cyclic quadrilateral, ZAFFE = C, ZAEF - B
Similarly, ZBDF = A, etc. '

(ii) Since ZADF = 90° — ZBDF = 90° — A and ZADE = 90° —
ZCDE = 90° — A, we see that AD bisects ZEDF and ZEDF =
180° — 2A. Similarly, BE, CF bisect angles DEF and DFE. Thus, -
H is the incentre of the pedal triangle DE'F. When £A is obtuse, as in'
Fig. 3.21(ii), we have ZADE = A — 90° and H is the excentre of the
pedal triangle DE'F opposite to vertex D.

Theorem 19 If H is the orthocentre of AABC and AP is a circumdiameter,
then PH and BC bisect each other. If OA’ LBC, where O is the circumcentre
of AABC, then AH = 20A4’. .
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Proof. As in Fig. 3.29, BELAC and PC LAC. Hence BH || PC. Similarly,
BP | HC. Thus BPCH is a parallelogram and so its diagonals BC and PH
bisect each other at A’. Next, A’ is the midpoint of PH. Hence from AAPH,
we get AH = 204" '

Fig. 3.29

Theorem 20 (Euler line) The circumcentre 0, the centroid G and the ortho-
centre H of a non-equilateral triangle are collinear and GH = 2- OG. Also
OG is called the Euler line of the triangle.

Proof. See Fig. 3.30. Let AA’ cut OH in G'. Since ZAG'H = LA'G'O and
ZAI'G' = ZA'OG', triangles HAG' and OA’'G' are similar. Hence

AG' _HG _ AH
G'A ~ GO O0A"
But AH/OA' = 2by the last theorem. Hence AG'/G'A’' = 2,sothat G’ is the
same as the centroid G. Thus O, G, H are collinear. Further, GH/OG = 2,
as required.
A
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Theorem 21 If H is the orthocentre of AABC and AH produ-ccd meets BC
at D and the circumcircle of AABC at P, then HD = DP. (Fig. 3.31)

A

Proof. Since ZPBC = ZPAC (same
segment) and ZDBE = /90° — LC =
ZPAC, we see that ZPBD = /ZDBH.
Since ZBDH = ZBDP = 90° and BD
is a common side, the triangles PBD and
DBH are congruent. Hence HD = DP.

Fig. 3.31

Incentre. The internal bisectors of the angles of AABC -are concurrent and
the point of concurrence [ is equidistant from the sides. Let r be the.common
distance. See Fig. 3.32 (i). The circle with centre I and radius r touches
the sides BC, CA, AB and is called the inscribed circle or the incircle of
AABC. I is called the incentre and r is called the inradius of the triangle. Let
2s = a + b + ¢, so that s is the semiperimeter of the triangle. Then, as shown
in figure below, since tangents from a point to a circle are equal in length, we
have AZ = AY, BZ = BX and CX = CY. Hence

AZ+BX+XCz%(a+b-f-c)=s,

andso AZ+a=sorAZ = AY = s—a. Similarly, BZ = BX = s —band
CX=CY =s-c. '

Fig. 3.32
As shown in the figure (ii) above, the internal bisector of ZA and the ex-

terna! bisectors of angles B and C are concurrent at I;. J 1 is equidistant from
the sides BC, CA, AB. Let r; be the common distance. Then the circle
with centre I; and radius r; touches BC intemally and CA, AB externally
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at X1, Y1, Z; respectively. This circle is called the escribed circle opposite
A and I is called an excentre of AABC. Similarly, there are escribed cir-
cles with centres I, I3 and radii r2, r3 (say) opposite B and C respectively.
Again, using the equal tangents property, we get AY; = AZ;, BX: = BZ,
and CY; = CX,. Hence

2s =perimeter = AB + BX, + X\C+CA=AZ + AY;,
andso AZ; = AY; =sand BX; = AZ;, - AB=38-¢,CX =s-b.

Also ZBIC = 90° + ﬁ, etc. Further, if AD is the bisector of ZA, then

2
BD AB ¢ ac ab
-55-—-2—0——3,80 that BD = - DC-*b-i-c.

Hence by Ex.3 of Exercise Set-3.2, we get

Py wa .

g N 2

AD2=bc[1—(b—j_—$].

Also, if A denotes the area of triangle ABC, then

A =rsf-=r1(3—a)=r2(s—b) = r3(s—c)
1 1 1 1
Hence, —+—+— = -.
™ T2 T3 T

Example 8 If A, B are two fixed points and Pis moving point such that £4
is constant, then prove that the locus of P is a circle.

Fig. 3.33

— . Divide AB internally at H and

= A = 45 = £%, PH and PK are
f /APB. Hence, ZHPK = %[AAPB +
the circle whose diameter is & K. This circle

Solution. Produce AP to Q. Let 4
externally at K in the ratio . Since
the internal and external bisectors O
£BPQ) = 90°. Thus, P lies on
is called the circle of Apollonius.
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Theorem 22 (Nine - point circle) The circle through the midpoints of the
sides of a triangle passes through the feel of the altitudes and the midpoints
of the lines joining the orthocentre 10 the vertices. This circle is called the
nine-point circle of the triangle.

B A D C
Fig. 3.34

In Figures 3.34, 3.35 and 3.36 A’; B/, C" are midpoints of BC,CA, AB and
D, E, F are the feet of the altitudes AD, BE, CF and P, Q, R are mid-
points of AH, BH, CH where H is the orthocentre of AABC. Let O be the
circumcentre and R be the circumradius of AABC.

Proof. Asin Fig. 3.34, C'P || BE, since in AABH, C’P joins the mid-
points C" and P of AB and AH respectively. Similarly, C’A’ || AC. Hence
ZLA'C'P = 90°, since BE L AC. Similarly, ZA'B'P = 90°. Also ZA'DP =
90°. Hence the circle having A’P as a diameter, passes through B’, C’, D.

-
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—

Hence the circle A’ B’'C’ passes through P and D, and similarly through Q, E
and F, R. Also B'Q and C'R are diameters of the nine-point circle.
A

Next, as in Fig. 3.36, the perpen-
dicular bisectors of the chords A'D
and C'F meet in the midpoint of
OH, say N. Hence N is the centre
of the nine-point circle. Hence from
AAOH, R = OA = 2NP. This
shows that the radius of the nine-
point circle is half the circumradius. B A" D c

Fig. 3.36

Nine-Point Circle another proof. We note that from the proof of Euler line
Theorem 20, we get that AH = 20A’. As P is midpoint of AH, we get
that PH = OA’. Join A’ and P. Suppose AP intersects OH at N. Then
triangles OA’N and HPN are congruent to each other. Hence, N is midpoint
of QH as well as of A’P. Further, as Z/A'DP = 90°, there is a circle .with
A’P as diameter passing through D. The radius of this circle is NP. ?mce,
P is midpoint of AH and N is midpoint of OH, we get that PN = EOA.
Similarly, we can show that there is a circle with B'Q as diameter passing

1 . :
through E and having center N and radius -2—OB and a circle with C'R as

1
diameter passing through F and having center N and radius EOC' Bul,.OA .
OB = OC. Hence, the three circles are the same. Hence, the nine points are
concyclic.

Yet another proof. Observe that A'CB'C' is a parallelogram. Also, DB’ is
a median of the right angled triangle ADC and hence DB’ = -éAC'. Thus,
/B'C'A' = ZB'CD = £B'DC. Hence, A’, B',C', D are concyclic.

Similarly, A’, B',C’, E and A’, B',C', F are concyclic. Hence, A, B'.C', D,
E, F are concyclic. Thus, the midpoints of the sides and feet of the altitudes of
a triangle lie on a circle. Applying this observation for triangle HBC, we get

that A’,Q,R,D, E, F are concyclic. Similarly, in triangle HAB, we get that
C'.P,Q, D, E, F are concyclic. Hence, A',B’,C’', D, E, F are concyclic.

Notes.
(i) See Fig. 3.36. Since D, E, F are the feet of the altitudes of AABC, it
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follows that A is the orthocentre of A H B¢ and that the triangles ABC
and H BC have the same nine-point circle.

(i1) In Fig. 3.35, triangles A’ B’C’ and PQR are congruent.

(ii)) As in Fig. 3.37, the excentres I, I, I3 of AABC form a triangle ;
whose sides pass through the vertices A, B, C. Since angle-bisectorsof &

an angle are at right angles, we see that the incentre I of AABC is the
orthocentre of AL LI,. ’

Also, as A, B, C are the feet of
the altitudes of A 1,15, it follows
that the circumcircle of AABC is
the nine-point circle of Al I,15.
Hence the circumcircle of AABC
bisects the lines Iyl3, Isl, I 1,
and also the lines I'1,, I1; and II5.

Fig. 3.37

Theorem 23 The angle between the altitude AD and the circumdiameter AL
drawn from the vertex A of AABC is equal to difference of angles at vertices

B and C and is bisected by the angle - bisector AX of ZA. Thus, the angle
bisector of ZBAC is also an angle bisector of ZOAH.

Proof. See Fig. 3.38. Since ZAOC = 2B,
we get ZCAO = 90°-B. Also ZDAB =
90° — B. So ZCAO = /ZDAB. Since
LXAB = LXAC, we get LZXAD =
£XAQ, ie. AX bisects ZDAL. Also,
in Fig. 3.38,

£DAL = 2(£XAB-/DAB) = B—C.

Fig. 3.38

Theorem 24 (Euler) In any AABC, OI* = R? — 2Rr, where O, [ are the
centres and R, r are the radii, respectively, of the circumcircle and incircle of
AABC.

Proof. See Fig. 3.39. Since ZMBC = LM AC = A/2, we get
LMBI = (A+B)/2=/IBA+ ZBAI = Z/BIM.
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Hence BAM = A[].

Lc'l the internal and external bisectors of ZA meet the circumcircle in M
and N. Then ZM AN = 90°. Hence MN is a diameter. Now if XY is the
diameter containing O and I, then AT - IM = XI - IY and so

AI-IM = (R+OI)(R-0I)=R?-0I.

A

M
Fig. 3.39 Fig. 3.40

Let ILLAB. Also, since ZLAI = ZBAI\IM-I and ZALI = ZMBN =

90°, we see that AALI ~ AN BM. Hence s %, and so, since BM =

IM. we get A - IM = MN - IL = 2Rr.

Remark. The proof of BM = M1 is immediate if we use the note just before
theorem 23. Also, it can be proved that OI} = R* +2R - n1. O - R? =
OI?—-QPz =11P-11A=PB'11A=2R°?'1.

Example 9 Consider an isosceles triangle, Let r be the radius of its circum-
scribed circle and p the radius of the inscribed circle. Prove that the distance d
between the centres of these circles is d = Vr(r—2p).

Solution. See Fig. 3.40. Draw /L1 AB and join BM. Then, as in Theorem 24,
BM = IM = r—d. Since BD = §, equating the two expressions for the area
of AABI, we get 3cp = JAI-§,0r2cp= (r+d)a. Similarly, AABM gives
¢-BM = ar = ¢(r —d). Hence, eliminating a, we get 2¢cp = (r+d)c(r—d)/r
or r2 — d? = 2rp, as required.

Theorem 25 (Simson line) The feet L, M, N of the perpendiculars on the
sides BC, CA, AB, of any AABC from any point X on the circumcircle of
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the triangle are collinear. The line LAIN is called the Simson line or the pedal
line of the point X with respect to AABC.

Proof: Let XNLAB and XM LAC as in Fig. 3.41. Let NM meet BC in L.
Then to prove that L, M, N are collinear, it is enough to show that X L L BC.
For this, join XA, XC. Then the quadrilateral XM NA is cyclic because
LANX = LAMX = 90°. Hence ZXML = /XAN. Also the quadri-
lateral X ABC is clearly cyclic and so ZXAB = ZXCL. Hence ZXML =
£XCL. Therefore the quadrilateral X MCL is cyclic. Also X M LAC. Hence
LXLC = 180" — ZXMC = 90, as required.

Fig. 3.41 - Fig. 3.42

Corollary 1. If the perpendicular X L on BC meets the circumcircle again at
L', then AL’ is parallel to the Simson line of X. (See Fig. 3.41).

Proof. Let X L produced meet the circumcircle at L. ThenZXCA = / XL'A.
Also ZXCA = ZXLM, since the quadrilateral X LCM is cyclic. Hence
LXL'A=/ZXLM sothat AL’ || LMN.

Corollary 2. The Simson line of any point bisects the join of the point and the
orthocentre.

Proof. As shown in Fig. 3.42, let the altitude CF produced meet the cir-
cumcircle at Y. Let XY cut the Simson line at S and AB at Z. Let X H cut
the Simson line at 7. Let X N produced meet the circumcircle at N'. Then
CN' || LN, by Cor. 1. Since HF = FY, we have

LZHF = LZYF =z, LZHZF = LYZF =y, say.
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Since X N’ and CY are parallel chords, ZY XN' = ZXN'C = £LXYC = z.
Hence H Z is parallel to CN’ and hence to the Simson line. Hence ZSNZ =
ZSZN sothat SN = SZ. Also ZYXN' = LXN'C = £LXNS, so that

XS = S.N . Hence S the mid-point of X Z. Therefore, as Z H is parallel to the
Simson line, T is the mid-point of X H.

Example 10 With the notation of Fig. 3.41, we have
XL-MN XM-NL XN-LM

) —g¢ - i v et
where X X’ L LM N, and (ii) one of the ratios
BC CA AB
and ——

XL XM XN
is equal to the sum of the other two.

Proof. (i) Clearly, as in Fig. 3.41, AXNM ~ AXBC, and AXNX' ~

AX BL. Hence
XN MN XN_XX’

XB BC’' XB XL’
XL-MN :
e = XX |

Similarly, since AXNL ~ AX AC, AXAM ~ AXNX'etc. we obtain
the remaining ratios.

so that

Theorem 26 (Ptolemy) The rectangle contained by the diagonals of a cyclic
quadrilateral is equal to the sum of the rectangles contained by pairs of its

opposite sides.

Proof. As in Fig. 3.43(i), draw AFE making ZBAE = ZCAD. Then, since
/ABE = £ACD (same segment) and Z/BAE = /CAD (by construction),
it follows that the triangles BEA and CDA are similar. Also, ZBAC =

/BAE + ZEAC = ZEAC + LCAD = LEAD and ZBCA = ZBDA, it
follows that the triangles AED and ABC are similar. Hence

AC _CD AC _ BC
2B BE 2 AD ED’
So AC.BE = AB-CD and AC-ED=AD-BC.

Adding these equations and noting that BE + ED = BD, we get
AC-BD=AB-CD+ AD- BC.
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Fig. 3.43

Corollary. If a point be taken anywhere on the circumcircle of an equilateral
triangle, its distance from one of the vertices is equal to the sum of its distances
from the remaining vertices.

Proof. As in Fig. 3.43(ii), let P be a point on the minor arc BC of the cir-
cumcircle of the equilateral triangle ABC. Then applying Ptolemy’s theorem
to the cyclic quadrilateral ABPC, we get PA- BC = AB-PC+ AC - PB.
So PA = PB + PC, since AB= BC =CA.

Theorem 27 (Extension of Ptolemy’s Theorem.) Let ABC D be a quadrilat-
eral which is not cyclic. Then BC.AD + AB.CD > AC.BD.

A

Fig. 3.44

Proof. See Fig. 3.44. Let ABCD be a quadrilateral which is nor cyclic so
that angles ABD and ACD are not equal. Make £BAE = ZCAD and
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LABE = LACD. Join ED. Then AABE ~ AACD and so
| AB_4AC
BE - CD or -CD = AC - BE.
Also, since AABE AACD, — 28 jf)
Also, ZBAC = LEAD. So, by theorem 6, we see that AABC ~ AAED
= and so
BC ED
Z—C—, E or BC AD AC ED
Hence

AB-CD+ BC-AD = AC - (BE + ED) > AC - BD

|
.

because BED is not a straight line.

Theorem 28 (Brahmagupta.) If in AABC, AD is the altitude and AE is
the diameter of the circumcircle through A, then

AB-AC = AD- AE.

Proof: As shown in Fig. 3.45 AABD ~ AAEC so that — = —.

Fig. 345

Example 11 If ABCD is a cyclic quadrilateral, then

AC -[AB-BC +CD-DA] = BD-|DA- AB + BC - CD).
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Proof: See Fig. 3.46. By the last theorem, we have

AB-BC = 2R-BM,
DA-DC = 2R-DN,

where R is the radius of the circle. Hence

AC -[AB-BC + CD- DA
= AC-2R-BM + AC-2R-DN
= 2R[2AABC + 2AACD)
= 4RS,

where § =the area of the quadrilateral
ABCD.

Similarly, BD - [DA - AB + BC - CD] = 4RS, and the result follows.

Example 12 D, E, F are the midpoints of the sides BC, CA, AB of AABC.
Through D, E, F straight lines are drawn meeting in a point P; and through
A, B,C lines are drawn parallel to DP, EP, FP respectively. Prove that
these lines also meet in a point. (You may assume that P is inside AABC.)

Fig. 3.46

Fig. 3.47

Solution. Let the lines through A and B parallel to DP and EP respectively
meet in Q. Join CQ. Since DP || QA, EP || BQ and AB || ED, triangles
QAB and PDE are similar. So QB/EP = AB/DE = 2. Also BC/FE =
2. Hence QB/EP = BC/FE. Also, ZQBC = z+ /ABC = g+ /DEF =
LFEP. Hence AQBC ~APEF. Hence QC || PF and the result follows.
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Emmpl_e 13 D is the midpoint of the side BC of AABC. The line joining D
and the incentre [ of the triangle intersects the altitude AA’ at the point P.
Prove that {( AP) is equal to the radius of the incircle of the triangle.

Solution. In AABC, let D be the midpoint of BC, I the incentre and P the
intersection of DI with the altitude AA’. Draw the circumcircle with centre O.
Now X, the midpoint of arc BC of the circumcircle, lies on A, and OX is
the perpendicular bisector of BC. Draw IQ 1 AC. .

Since ZIAQ = ZBAX = £LBCX = 3ZA, the right triangles AIQ
and CX D are similar.Also since ZIAP = ZIXD and LAIP = £XID,
triangles AIP and X ID are similar. Hence

AP _AL . AL_IQ
XD _ Ix " XC XD
But we know that /X = XC. Hence AP = IQ, as required.
Exercise Set-3.3

1. Heron’s formula: In AABC, let a, b, c denote the lengths of the sides
BC, CA, AB respectively. Let 2s = a + b+ ¢, so that s is the semi-
perimeter of AABC. Then show that the area A of AABC' is given

by

A = /s(s —a)(s —b)(s —¢).
Hence, or otherwise show that among all the triangles having the same
perimeter, equilateral triangle has the maximum area.
2. The centroid G of AABC, is such that AG = BC. Show that ZBGC' =
~ %o.
3. In AABC, G is the centroid. Prove that
AB? + BC? + CA? = 3(GA® + GB* + GC?).

4. Theorem: In any triangle, the sum of any two sides is greater than the
third side.

5. PQRS is a quadrilateral in which ZPQR = ZQRS. Prove that £ZRSP
is greater than, equal to, or less than ZSPQ according as PQ is greater
than, equal to, or less than RS.

6. E is the mid-point of segment AD, which is drawn through A to meet !
the side BC of the equilateral triangle ABC at any point D. Show that
AE < CE.
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10.
11.

12.

13.

14.

15.

16.

17T,

18.

19.

. Theorem: In AABC, straight lines are drawn from the vertices B, C' -

to intersect at a point Q within the triangle. Prove that
(i) AB+ AC > OB + OC. (ii) ZBOC > ZBAC.
(iii) AB + AC - [OB + OC] < 2- OA.

Theorem: In triangles ABC and DEF AB = DE, AC = DF and
ZBAC > LEDF. Prove that BC > EF. [ Conversely, if AB =
DE, AC = DF and BC > EF, then ZBAC > LEDF.]

Square ABCD is divided into two parts by the diagonal AC. Show that
if O is any point within triangle ABC, then OB < OD.

In AABC, AB > AC. Show that median BE > median CF.

Suppose ABCD is a rectangle and P, Q, R, S are points on-the sides
AB, BC, CD, DA respectively. Show that

PQ+QR+RS+SP>2-AC.

4
In AABC,mya+mp+me<a+b+c< §(m,JI + mp + me).

In AABC’, O is the circumcentre and H is the orthocentre. If AO =
AH, prove that ZA = 60°. Also, if the circle BOC passes through H,
prove that ZA = 60°.

In AABC, O is the circumcentre and H is the orthocentre . Then, prove
that AH? + BC? = 4A0°.

The incircle of A ABC touches BC at D. Show that the circles inscribed
in triangles ABD and C'AD touch each other.

In A ABC, let AD be the internal bisector of ZA. Show that, AD? =
AB-AC - BD - DC.

P and P’ are points on the circumcircle of AABC such that PP’ is
parallel to BC. Prove that P’A is perpendicular to the Simson line of P.

P is a point on the circumcircle of AABC and O is its circumcenctre.
Prove that ZAPQO = angle between the Simson line of P and BC.

If, as in Fig. 3.43(i), the diagonals AC, BD intersect in A, then prove

that
AB-BC BM
AD-DC DM’
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20. Two circles intersect in points A and B. PQ is a line segment through
A and terminating on the two circles. Prove that BP/BQ is constant for
all allowable configurations of PQ.

21. A hexagon inscribed in a circle has three consecutive sides of length
a and three consecutive sides of lengths &. Determine the radius of the

circle.

22. Consider a trianglelPngPg and’a point P within the triangle. Lines
P, P, P,P, P;P, intersect the opposite sides in points @1,Q2, @3 re-
spectively. Prove that out of the numbers

PP PP P3P
PQ,’ PQ;’ PQs’

. ‘atleast one is < 2 and at least one is > 2.

23. If a quadrilateral ABC D circumscribes a circle, show that AB + CD =
BC + DA. Conversely, show that if a convex quadrilateral ABCD is
such that AB + CD = BC + DA, then a circle can be inscribed in the

quadrilateral.

24. A quadrilateral inscribes a circle and it also circumscribes another circle.
If the sides of the quadrilateral are a, b, ¢, d, show that the area of the
(quadrilateral is v abed. '

25. Show that the harmonic mean of the altitudes of a triangle is equal to 3
times its inradius.

26. ABCD is a square. E is a point inside the square such that mZEBC =
mZECB = 15°. Show that AAED is equilateral.

27. In the triangle ABC, AB = AC; the altitude AD of the triangle meets
the circumcircle at P; prove that AP.BC = 2AB.BP.

28. P is a point on the minorparc AI.; of the circumcircle of the square
PA+ PC D
ABCD; prove that PETPD - PC'

29. P is a point on the minor arc AB of the circumcircle of the regular
ABCDE: thtPA+JDIJ"__P1E,‘
pentagon ; prove that m=——55 = B&-

30. P is a point on the minor arc AB of the circumcircle of the regular
hexagon ABCDEF; prove that PE + PD = PA+ PB + PC + PF.
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31.

32.

33.

P is a point on the minor arc AB of the circumcircle of the regular
pentagon ABC DE; prove that PA+ PB+ PD=PC+ PE.

P is a point inside a parallelogram ABCD, such that
LAPB + £CPD = 180°%;
prove that AP-CP + BP-DP = AB- BC.

If P,Q, R are points on the sides BC,CA,AB of a triangle, such that
the perpendiculars to the sides at these points are concurrent; then show
that

BP? + CQ?* + AR? = PC? + QA” + RB*.

Two circles of radii a and b touch each other externally and they also
touch a line. A circle of radius c is inscribed in the region in between the
circles and the line to touch the both the circles and the line. Show that

35. Two circles C;, C; of radii a and b touch each other externally and they

both touch a unit circle C internally. A circle Cj of radius r is inscribed
to touch the circles C;, Cz externally and the circle C internally. Show
that

ab

“1-ab

r
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3.5 Constructions

Notation. In _z;\ABC, we denote by (i) a, b, ¢ the lengths of the sides opposite
to A', B, C; (ii) hq, hy, h. the altitudes on BC,CA, AB; (iii) m,, Ms, M
medians to BC, CA, AB; (iv) ta, ts, L., the bisectors of angles A, B, C.

1. To construct AABC when the stated elements are given.

(i) (ii)
Fig. 3.48

(a) Given my, mc, he. (See Fig. 3.48(1)). Construct AGBC with altitude
GX = ho/3 and sides GB = 2m;/3, GC = 2m./3. Then AABC can be
easily completed. -

(b) Given mg, mp, ha (See Fig. 3.40(ii)). First construct right angled triangle
APD with side AP = h, and hypotenuse AD = m,. Divide AD at G in the
ratio 2 : 1. Take B on PD such that GB = 2 my/3 and produce BD to C
such that BD = DC. Join Ato B and C'.

A

(c) Given m,, mp, Me.-

First construct ABGG’ with sides E
GG', BG, BG' equal to 2/3 times

Mg, mp and m,. Find midpoint D

of GG'. Produce BD to C so that g D C
BD = DC. Produce G'G to A so
that G'G = G A. Join AB and AC. G'

' Fig. 3.49

(d) Given hq, hy, he. Since a.hy = b.hpy = c.h. = twice the area of AABC,
we see a, b, ¢ are inversely proportional to the altitudes hgq, hy, h. So first con-
struct line segments inversely proportignal to ha, hs, he as follows. As in Fig.
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3.50(ii), draw a circle of sufficiently large radius. In it take a point P suf-
ficiently close to the circumference. Find points A;, B1,C) on the circle at
distances hq, hp, he from P. Let the lines meet the circle again at A, B, Ca.
Then by theorem 12, we see that PA,, PB,, PC, are the required segments.
Construct AAMN with sides MN, AM, AN equal to these segments. En-
large or reduce AAMN to obtain A ABC with given altitude h,. '

Fig. 3.50

(e) Given my,, h, t,. First construct right angled triangle AD X with AD = h,
and hypotenuse AX = ¢,. Draw AL so that ZX AL = ZDAX. Find A’ on
DX (produced if necessary) such that AA’ = m,. Then by theorem 23, we
see that the perpendicular to DX through A’ meets AL at O, where O is the
circumcentre of the required A ABC. Hence the circle with centre O and radius
OA cuts DX at B and C. See Fig. 3.51 (i)

)
(e

DR C
@ (i1)
Fig.3.51

IL To inscribe a square PQRS in a given triangle ABC such that P is
on AB, Q is on AC and R, S are on BC. For this draw F'E parallel to BC
through A. Find E such that AE = altitude AD as in Fig. 3.51 (ii). Let EB
cut AC in Q. Then rectangle PQRS is as required.

v
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I11. To inscribe in a given AABC a
triangle similar to a given AXY Z.
For this, as in Fig. 3.52, draw EF
parallel to Y'Z. Then draw DF ||
XZ and DE || XY to meet in
D. Produce CD to meet AB in P.
Draw PR || DF and PQ | DE.
Join QR. Then APQR is as re-
quired.

Fig.3.52

IV. To construct a square whose area is equal to the area of a given rectangle
ABCD using unmarked ruler and compass only. As in Fig. 3.53(i) produce
AB to E so that BC = BE. Draw a semicircle with AE as diameter and let it
meet C' B produced at G. Then BG equals a side of the required square.

Fig.3.53

V. To find a point P in a given acute-angled triangle ABC such that PA +
PB + PC is minimum. Take any point P inside AABC. Join P to A, B,C
and as in Fig. 3.53 (ii), rotate A AP B through 60° about B to obtain AA'P'B.
Then AABA’ and APBP’ are equilateral. Hence PA+ PB+PC = A'P'+
P'P + PC and three segments A’P’, P’ P and PC form a path from A" to C.
This path, in general, has angles at P’ and P and it has minimal length when
it is straight, in"'which case ZBPC = 120° and ZAPB = LA'P'B = 120°.
Thus the required point P, for which PA+ PB+ PC is minimum, is the point
at which each of the sides BC, CA, AB makes an angle of 120°. This point
P can be constructed thus: P is the second intersection of line C A" with the

circumcircle of the equilateral AABA’.

VL L is a line and A, B are points not on L and lying on the same side of L.
To find a point P on L such that AP + PB is minimum. As in Fig. 3.45, let A’
be the reflection of A in L. Let A’B meet L in P. Then P is the required point.
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For if R is any other point on L, then AR+ RB'= AR+ RB > A'B =
A'P + PB = AP + PB.

A!
Fig.3.54 . Fig.3.55

VII. To inscribe a regular pentagon in a given circle. See Fig. 3.55.

Draw the circle with centre O and let P be a point on it. Construct OB_LOP
meeting the circle in B. Bisect OB at D. Bisect ZODP and let the bisector
meet OP at N. Construct NQ_LOP meeting the circle in Q. Then PQisa
side of a regular pentagon inscribed in the given circle.

Exercise Set-3.4

1. ABC is a given triangle; construct a point P such that PA : PB -
PC=1:2:4.

2. ABCD are four collinear points; construct a point P at which AB, BC,
C' D subtend equal angles.

3. Given the base, vertical angle and the ratio of the sides containing it,
construct the triangle.

4. Construct a triangle, given the lengths of one side and two medians.
5. Given A, N, H construct the triangle ABC.
6. Three distinct concurrent lines are given. Construct an equilateral trian-

gle having exactly one vertex on each of the given lines. You are allowed
to use unmarked ruler and compass only. Justify your construction.

Scanned by CamScanner



3,6. Solved Problems 133

3.6 Solved Problems

Exfample 14 A straight line cuts two concentric circles in points A4, B, C and
Din tha} order. AE and BF are parallel chords, one in each circle. If CGis
perpendicular to BF and DH is perpendicular to AE, prove that GF = HE.

Fig. 3.56

Solution. Let DH intersect BF at P. Let AB = m. Then CD = m, since the
chords AD and BC have a common perpendicular bisector as the circles are

concentric. Then in right angled triangle GPH,
GH? = GP? + PH? = m?sin’ D + m2sin? A = m?,

since angles A, D are complementary. So GH = m and the trapezium ABGH
is isosceles. (Note that BG < AH). Since AEFE and BF are parallel chords
in two concentric circles, they have a common perpendicular bisector. Hence
the trapezium ABFE is also isosceles. Hence EFGH is a parallelogram and

GF = HE.

Example 15 Construct AABC, given ZA, side AC a
inscribed circle. Justify your construction.

Solution. Analysis: Let I be the incentre. Let ID, IE, I F be the perpendicu-
lars from I to the sides BC,CA and AB.
Then ZFIE = 180° — ZA. Also the tangents CE and CD are equal.
Construction: Draw a circle with centre [ and radius r. Draw radii JE and
IF such that ZFIE = 180° — A. Draw the tangents at F and E meeting in
A. Produce AE to C so that AC is as given. With centre C draw an are with
radius C E to cut the incircle at D. Produce CD to meet AF in B. Then ABC

is the required triangle.

nd the radius r of the
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Example 16 AABC is right angled at C. The internal bisectors 0
LB mgekt BC and CA at P and @Q respectively. M and N are the fegt of the
perpendiculars from P and Q to AB. Find ZMCN.

A
Q M
c p B )
Fig. 3.57

Solution. Since ZBNQ = ZBCQ = %0°, B,C,Q, N are céncyclic and
so ZCNQ = £ = £NCQ. Similarly,A, P, M,C are concyclic. Hence,
LMCP = 4 = /PMC. Hence, 4 + ZMCN + § = LACB = 90°.
Since ZA + ZB = 90°, we get ZMCN = 45°.

Example 17 Three circles Cy, C2, Cy with radii 7y, 72, 73 (11 < 12 < r3)
respectively are given. They are placed such that C; lies to the right of C)
and touches it externally; Cj lies to the right of C; and touches it externally.
Further, there exist two straight lines each of which is a direct common tangent
simultaneously to all the three circles. Find 73 in terms of r; and r3.

Fig. 3.58

Solution. Let the given common tangents !, m meet at P. We observe that
the centres, say A, B, C of the given circles will lie on the angle-bisector of
the angle between [ and m. Let these circles touch m at D, E, F respectively.
Draw AK 1 BE. We have

DE = AK=./(AB)?-(BK)?
= (ra+r)? - (rz—1m)%=2/r1s.
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Similarly EF = 2,/rar3. Let mZAPD = 6 and PD = z. Then
 AD _BE CF

tanf = = =
an PD~ PE _ PF
. X T2 - L. N
oz z42ymrz  z+2/2rr2+ J/T27s
b i T rs—rz

Hence,

o0frir; . 2/mrs
Thus, /T3(r2 — ri)' = /Ti(rs — ra). Therefore,

ra(y/Fs + VD) = VATTS(VAT + V73).
Hence, ry = |/T173.

Example 18 Let ABC be a triangle with unequal sides. The medians .of
AABC, when extended, intersect its circumcircle in points L, M, N. If L lies
on the median through A and LM = LN, prove that

9BC? = CA? + AB2.

Solution. We note that the triangles AGB and MGL are similar because
ZGAB = Z/GML (same segment) and ZAGB = ZMGL. Hence

AG AB _ - ;
_M_-(_?.—_-m ie. AG = MG M (1)
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Similarly, AAGC ~ ANGL and so

AG  AC b
—&—G-—m 1.e. AG:NG-—NI. (2)
Also, by data, LM = LN. Hence by (1),(2) we get
MG b 3
GN - C- ( )

Since the chord BM and CN intersect at G, we have
BG-GM =CG -GN.

Soby (3), BG-b=CG - candso

2 2
EBB’- = gcc' .c or 2BB"”? .p® =2C0C" - 2.

So, applying Apollonius’ theorem twice we get

b’(c® +a? —24B?) = c2(a? + b% — 24C"),
(S +a® = 38) = a4 - 1Y),
PH =) = -,
202 = b +c% asb#ec

Solutions to Problems

Problem 1 By Theorem 3, since PQ || BC, we get the equality AP/PB =
AQ/QC. Similarly, we have, the equalities CR/RB = CQ/QA,

BR/RC = BS/SA, AT/TC = AS/SB,and CT/TA = CU/UB.

Multiplying these five equalities we get AP/PB = CU /U B. So, by Theorem
3, PU || AC.

Problem 2 Let ZBAC =z, £BDC =y, and ZEDC = 2. Then by data, we
get LZAED =z, /BCD = ZABC = y,and ZEBD = z. Now for AEBD,
exterior angle AE D = the sum of the interior opposite angles EDC and EBD
i.e. T = 2+ 2z = 2z. Similarly, from AABD we gety = z + z so that y = 3z.
Finally, from AABC we get z + 2y = 180° so that 2z + 62z = 180° i.e.
z = 22.5° Hence ZA =z = 2z = 45°.
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Problem 3: We will show that TX = TY. Let ZTOX = £ZXO0A =1
and ZOT A = y. Then since OT touches the circle at T, ZT'BA = y. So
from ATOX, ZTXY = z + y and from AYOB, £LTYX = z +y. Thus
LTXY =z +y=ZLTY X sothat AT XY is isosceles.

Problem 4: Hint: Join OR.
Solutions to Exercise Set-3.3

11. Assume that AB > BC. Then AC? = AB? + BC? < 2AB? so that

AC < V2 - AB. Also, SP + PQ > SQ, QR+ RS > SQ. Hence SP +
PQ+QR+RS>2-5Q>2-AB=2-AC/V2= V2 AC.

12. Let D, E, F be the midpoints of BC,CA, AB and G be the centroid.
Then in AADE, AD < AE + ED or m, < (b/2 + c/2). Similarly we get
mp < (c/2 + a/2) and m, < (a/2+ b/2). Adding these three inequalities we
get mg + mp + m. < a + b+ c. Next from ABCG, BG + GC > BC or
2my + 2mc > aor 2(mp+m,) > 3a. Similarly we gel two more inequalities
and adding them we get 3(a + b + ¢) < 4(mq + M + ).

16. Let AD produced meet the circumcircle of AABC in L. Then, clearly,
AABD is similar to AALC. Hence AB/AL = AD/AC. Hence,

AB-AC = AD-AL = AD(AD+ DL)
— AD?+ AD-DL=AD?+ BD-DC.

23. First, suppose that the quadrilateral ABC'D circumscribes a circle so that

its sides AB, BC, CD, and DA touch the circle respectively at points P, Q, R,

and S, say. Then AP = AS, BP = BQ,CQ = CR,and DR = DS. Hence

AB+CD =AP+PB+CR+RD=AS+BQ+QC+SD =AD+BC.
Conversely, let convex quadrilateral ABC D be such that

AB +CD = BC + DA. @)

If AB = BC, then by (i), DA = CD, sothat ABCD isa kite and the internal
bisectors of angles A and C meet on BD, by symmetry, at O, say. Then
clearly a circle can be inscribed in the quadrilateral with centre ©. Otherwise,
let AB > BC. (Fig. 3.60) Then by (i), DA—CD = AB — BC and so DA >
CD, also. Take point X on side AB such that BX = BC and point Y on side
DA such that DY = DC. Thenby (i), AX = AY. The internal bisectors of the
angles B, A, D bisect at right angles the bases of the isosceles triangles BC X,
DCY and AXY and so they meet at the circumcentre say O', of ACXY.
The point O’ is equidistant from all the sides and lies within the quadrilateral.
Hence a circle with centre O’ can be inscribed in the quadrilateral.
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24. First, consider a general convex quadrilateral ABCD. Denote the lengths
of its sides and diagonals thus: AB = a, BC = b, CD = ¢, DA = d,

AC = z,and BD = y. Let S be the area and 8 = -lu(a+b+c+d)bcthe
semi-perimeter of the quadrilateral. Then S = AABC + AACD so that

4S8 = 2absin B + 2cdsin D. (1)
Also, a2 + b2 — 2abcos B = 22 = ¢? + d? — 2cd cos D so that
a? +b* — ® — d® = 2abcos B — 2cd cos D. )
From (1) and (2) -by squaring and adding,

1652 + (a2 + % — c® — d%)? = 4a?b? + 4c*d® — Babed cos(B + D)
= (2ab + 2¢d)? — 8abed(1 + cos(B + D)]. Hence

1652 = (2ab + 2cd)? — (a? + b® — ¢® — d*)? — 16abcd cos? B;D
= [(a+b)? — (c—d)*] [(c +d)* — (a - b)?]
— 16abed cos? B;D
=(a+b+c—d)fa+b—c+d)(c+d+a—-b)(c+d—a+b)
— 16abed cos? B;D
B+D

= (2s — 2d)(2s — 2c)(2s — 2b)(2s — 2a) — 16abed cos® —
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Sc

B+ D
g

When the lengths of the sides of the quadrilateral are given, (3) shows that the
area of the quadrilateral is greatest when cos 3 (B+ D) = Oi.e. when B+D =
180° i.e. when the quadrilateral is cyclic. Also, when the quadrilateral is cyclic,
its area is given by

8 = (s—a)(s-b)(s—c)(s—d). 4)

If the quadrilate'ré.i is cyclic and also has an inscribed circle, then as seen above,
wehavea+c=b+d=1(a+b+c+d)=s Hences—a=c,s—c=a,
s—b=d,and s — d = b. So (4) gives

3)

5?2 = (s-a)(s—b)(s — c)(s — d) — abed cos?

S = +vabcd.
31.
PA-DE+PD-AE = PE-AD=PE-BD;
PE-BD+PB-DE = PD-BE=PD-EC;
PD.-EC = PE_‘-DC+PC-DE;
add all the three results; then

PA-DE+PD-AE+PB-DE=PE-DC+ PC-DE,

but DE = AE = DC.

34. Hint: Let O'QLO" P and T'S be the common perpendicular to O” P and
O’P through O. Then PP = 50%? = 00" - 0"$? = (a+¢)*-(a-¢)* =
dac so that PP’ = 2y/ac. Similarly, P'R = 2v/bc. Also PR? = QO? =
0'0™" - 0"Q? = (a + b)? — (a — b)? = 4ab so that PR = 2V/ab. Now

PR = PP'+ P'R.
35, Hint: First, 2a + 2b = AB = 2 sothat a + b = 1. Using cosine rule for
triangles PRO and PRQ, we get

1-r)2 = (a+7)+(1-a)®-2(a+r)(l-a)cosa,
and (b+7)? = (a+r)?+(a+b)*—-2(a+r)(a+b)cosa.

Now put a + b = 1 and eliminate c.
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Solutions to Exercise Set-3.4

5. Observe that N is midpoint of OH. Hence, we gei OA, the circumradius of
AABC. Also, observe that OA’ || AH and OA' = §AH ;

6. Let the given lines be denoted by {, m, n and be concurrent at 0.
Construction:

e Choose any point P, other than O, on m.

e Draw ZAPQ = ZCPO = 60° such that A and C lie on [ and n respec-
tively.Complete the triangle APC.

e Draw the circumcircle of triangle APC. Let it intersect m again at B.
Then AABC is as required.

Justification: Note that ABC'P is a cyclic quadrilateral and
ZABC = LACB = 60°

as they are inscribed in the arcs having measure 60°. Hence AABC is equilat-
eral as desired.
ok

]
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Chapter 4

Combinatorics

Combinatorics is concerned with arrangements of the objects of a set into
patterns. Thus in combinatorics we deal with the problems of existence, count-
ing and generation of arrangements of a specified kind. Two basic counting
principles, namely the Addition Principle (A.P.) and the Multiplication Prin-
ciple (M.P.) are already known to the reader. In this chapter, we apply A.P.
and M.P. to count permutations and combinations of objects with or without
repetition. Then we introduce the Bijection Principle, the Inclusion-Exclusion
Principle, the Pigeonhole Principle and the method of recurrence relations.

4.1 Basic Counting Principles

Addition Principle (A.P.): If a finite set S of objects is divided into two dis-
joint subsets Sy, Sy, then the number of objects in S (denoted as |S|) can be
determined by finding the number of objects in S; and S, and adding them,
i.e. S| = |51] +|5a|.

This principle can be extended, by induction, to the case of more than two
subsets as follows:
If a finite set S of objects is divided into mutually disjoint subsets Sy,...,Sn,
then the number of objects in .S can be determined by finding the number of
objects in Sy, ..., Sm and adding them, i.e. |S| = |S1| + ...+ |Sm].

The addition principle can be stated in terms of choices as follows:
If a set S contains m objects and a“set T" contains n objects and S and T are
disjoint sets, then the total number of ways of choosing oné object from S or

Tism+n.

Multiplication Principle (MP): If an action A has m different outcomes and a
second action B has n different outcomes, then on performing both the actions
A and B, in that order, we get mn composite outcomes, provided all these
composite outcomes are distinct.

This principle can also be stated as follows:

If A, B are finite sets containing m and n objects respectively, then the
Cartesian product A x B = {(z, y) | ¢ € A, y € B} contains mn ordered

pairs.

141
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The multiplication principle can be extended, by induction, to any finite
number of actions as follows:

Multiplication Principle (MP): Suppose a procedure can be broken into m
successive ordered stages, with vy outcomes in the first stage, 72 outcomes in
the second stage, ... ,r, outcomes in the m*? stage. If all these compos-
ite outcomes are distinct, then the total procedure has ry - 72 - - - Tm different
composite outcomes.

In solving problems, we shall apply one or both of the above principles. In
general, the method is as follows:

If the given problem can be divided into mutually exclusive tases, then we
apply AP and the total count is the sum of the counts obtained in the various
cases. If we have to perform 2 or more actions, in succession, then we apply
MP and the total count is the product of the counts obtained in the various
stages. Also, we must note carefully whether repetition is allowed and whether
order is to be taken into consideration.

Example 1 Find the number of 2-digit numbers which are even and have dif-
ferent digits.

Solution. Since the number 10z +y is to be even, its units digit y must be even:
0,2,4,6,8. So, y can be chosen in 5 ways. Also, the tens digit z must be non-
zero and different from the units digit. Hence we have 2 mutually exclusive
cases: (a) Let y = 0. Then x can be chosen in 9 ways. This gives 9 numbers.
(b) Let y be non-zero. Then y can be chosen in 4 ways and z can be chosen in
8 ways. This gives, by the multiplication principle, 4 x 8 = 32. Hence, by the
addition principle, the total number of required numbers is 9 + 32 = 41. Note
that if we first choose z from {1,2,.. ., 9}, then we have to proceed differently.
In fact, we then have the following 2 mutually exclusive cases: (i) = odd (i1)
r even. In case (i), = can be chosen in 5 ways and y in 5 ways giving in all
5 x 5 = 25 numbers and in case (ii), = can be chosen in 4 ways and y in 4 ways
givinginall 4 x 4 = 16 numbers. Hence, by the addition principle, the total
number of required numbers is again 25 + 16 = 41.

Example 2 How many numbers can be formed from some or all of the digits
2.3.4,5 if no number is to have repeated digits?

Solution. The number can be of 1, 2, 3 or 4 digits. Of these types there are
respectively, 4, 4x3, 4x3x2 and 4 x 3 x 2 x 1 numbers that can be formed from
the digits 2, 3, 4, 5 without repetition. So, in all, there are 4+12+24+24 = 64
numbers.
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Example 3 A binary word or a binary sequence of length n is a sequence of

length n such that cach of its terms is 0 or 1.

(i) How many binary words of length n are there ?

(ii) How many binary words of length 10 begin with three Os ? How many end
with two Is ?

Solution. (i) Each of the n terms in the word can be chosen in 2 ways: Oor 1.
Hence, by MP, there are 2" binary words of length n.

(i) Let A = set of binary words of length 10 which begin with three 0's and
let B = set of binary words of length 10 which end with two 1's. A

word in A is of the fom 000 - - ————~— where each of the 7 dashes is either
Oor 1. Hence|A| = 27. Similarly, a word in B is of the form ————=—=—= 11
where each of the 8 dashes is either 0 or 1. Hence |B| = 2°.

We now state the third basic counting principle:

Bijection Principle (BP): If two finite sets S and T can be put into one-to-
one correspondence with each other, then they contain the same number of

elements, i.e. |S| = |T.

Hence, the number of elements in a given finite set S can sometimes be
found in the following way: discover a set T' which is in one-to-one corre-
spondence with S and the number of elements in T is known, say n. Then the

number of elements in S is also n.

For example, consider an n-set § = {a1,az,...,an}. Let A be the family of

all subsets of S and B the family of all binary words of length n. We define

a correspondence between A and B in the following way: a subset T of S
corresponds to the binary word ¢ = (z1,...,2n) where z; = 1if a; is in

T and z; = 0 if a; is not in T'. (for example, if n = 4, the subset {a2,0a4}
corresponds to the binary word (0,1,0,1) of length 4.) Clearly, the binary

word t is uniquely defined when T is given. Conversely, every binary word of P
length n uniquely corresponds to a subset of S. (For example, if n = 5, the 1
binary word (1,0,0,1,1) corresponds to the subset {a),a4,a5}) Thus T = ¢

is a one-to-one correspondence between the families A and B and so, by BP,

|A| = | B|. But as seen in Example 3 (i) above, |B| = 2". Hence |A]| = 2"

Note. In a standard pack of playing cards, there are 52 cards. These are di-
vided into 4 suits of 13 cards each: spades (), hearts (¥), diamonds (¢) and
clubs (&). Each card has a rank. The ranks of the 13 cards in each suit are
2,3,4,...10, Jack, Queen, King and Ace. Two or more cards are said to be of

the same kind if they are of the same rank. A pair is a set of two cards of the
same kind (i.e. 2 twos or 2 cights or 2 kings etc.).
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Exercise Set- 4.1

7’ A new club flag is to be designed with 6 vertical stripes using some or a.ll
of the colours yellow, green, blue and red. In how many ways can this
be done so that no two adjacent stripes have the same colour ?

/5 4y How many different five-digit numbers are there (leading zeros, €.g.
00144, not allowed) ? .
,(&l( How many even 5-digit numbers are there ?
(i) How many 5-digit numbers are there with exactly one 3 ?

How many 5-digit numbers are there that are the same when the
order of their digits is inverted (e.g. 14341) ?

3. How many times is the digit 0 written when listing all numbers from 1
to 33337

” How many times is the digit 5 written when listing all numbers from 1
to 10° ?

¢ How many non-empty collections of letters can be formed from three A’s
and five B’s ?

. Show that the number of ways of making a non-empty"colleclion by
choosing some or all of n; + nz + - - - + nj objects where n, are alike
of one kind, n, alike of second kind, ... ,n; alike of k** kind, is

(ni+1)(n2+1)---(ne+1)—1.

7. Show that the total number of subséts of a set S with n elements is 2.
8. How many positive integers are factors of 30030?

9. Let A = {1,2,...,m} and B = {1,2,...,n} where m,n are positive
integers. How many functions are there from A to B ? How many one-
one functions are there from Ato B ?

10. A = {a;,as,a3,...,a,} and B = {b;,b2}. Find the number of onto
functions that can be defined from A to B.

11. How many functions are there from the set {1, 2....,n} to the set {0, 1}
(i) that are one-to-one ? (ii) that assign 0 to both 1 and n? (iii) that assign
1 to exactly one of the positive integers < n?
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Solutions to Exercise Set 4.1

l. Let abedef denote the 6 vertical stripes in order from the left. Then a
can be of any one of the 4 colours; then b can be of any one of the other3
001011}'3: then c can be again of any one of 3 colours since the colour used
for a is now available. Similarly, there are 3 possible colours for each of
d, e, f. Hence, by MP, there are 4 x 35 ways of designing the flag.

2. fi) A 5-digit number is of the form abede where a,...,e are the digits in
1t and a is the leading digit. Now a cannot be 0 and so can be chosen in
‘_9 ways (any one of 1,...,9). Each of the remaining digits can be chosen
in 10 ways since repetition is allowed. So, in all 9 x 10% ways.

(11) The number abede is even if and only if the units digit e is even; so
tllere are 5 choices for e : 0,2,4,6,8. Soin all 9 x 10% x 5 ways.

(ui)l Two cases: either only @ = 3 or exactly one of b, ¢,d, e = 3. There
are 9* ways in the first case and 8 x 9° x 4 in the second case (factor 4
for the 4 subcases b =3 orc = 3 etc,); soinall 9% + 8 x 93 x 4 ways.
(iv) By the given condition, the values of a, b, ¢ fix the values of d, e :
e = a,d = b. Hence, the number of ways is 9 x 102. '

3. We are considering the integers ¢ such that 1 < t < 3333. Clearly, the
largest number ¢ having 0 in the units place is 3330. So there are 333
numbers ¢ having 0 in the units place: they are 10, 20, .. .,3330. We can
describe these numbers as ¢ = z0 where z is any one of 1,2,...333.
Similarly, numbers ¢ = z0y i.e. numbers having 0 in the tens place are
in all 33 x 10 because x can be any one of 1,2, ...33 and y can be any
one of 0,1,2,...9. Thus there are 33 x 10 = 330 numbers like z0y. In
the same way, there are 3 x 102 = 300 numbers with 0 in the hundreds
place (i.e. x0yz where1 < z < 3, 0 < y,z < 10). Hence the total
number of times 0 is written is 333 + 330 + 300 = 963.

[We assume in this solution that the number such as 11 is written as 11
and not as 0011.]

4. Since we are counting the occurrences of digit 5, consider integers ¢
such that 1 < ¢ < 105, Clearly, the largest number ¢ having 5 in the
units place is 99995. So there are 1 + 9999 = 10* numbers ¢ having 5
in the units place: they are 5, 15, 25, ...,99995. We can describe these
numbers as t = x5 where z is any one of 0,1, 2,...9999. Similarly,
numbers ¢ = x5y i.e. numbers having 5 in the tens place are in all
(1 + 999) x 10 = 10* because x can be any one of 0,1,2,...999 and y
can be any one of 0,1,2,...9. In the same way, there are 10 numbers
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———

in each of the following cases: numbers with 5 in the hundreds pla?e or
thousands place or ten thousands place. Hence the total number of times

5 is written is 104 x 5.

A collection is determined once we know the number of times A occurs
in it and the number of times B occurs in it. Let these numbers be i
and 7 respectively. Then i takes values from 0 to 3 and j from O to 5.
Hence to obtain a collection we have 4 choices for ¢ and 6 choices for j
so that there are 4 x 6 = 24 collections (for example, i = 1, j = 2 gives
the collection {A, B, B}). The empty collection corresponds«o letting
i = j = 0; so that omitting this case there are 24 — 1 = 23 non-empty
collections. The next problem gives the general case of this resnilt,_

To make a collection we have to select a certain number of objects of
each kind. Now for each value of r, 1 < r < k, from n,. like objects we
can choose 0, 1, ..., or n, objects; i.e. there are n, + 1 choices. Hence,
by MP, there are in all (n; + 1)(n2 + 1) - - - (nx + 1) collections and so
the number of non-empty collections is (ny +1)(na+1) - - - (nx+1) — 1.
As an application, let us answer the following question: How many dif-
ferent numbers can be formed by the product of two or more of the num-
bers 3,4,4,5,5,6,7,7,7 ? The numbers formed by products whose factors
are taken from the given numbers exactly correspond with non-empty
collections made from the 9 objects 3,4,4,5,5,6,7,7,7: for example, the
number 4 x 52 x 72 corresponds with the collection 4,5,5,7,7. Hence, by
the last example, the total number of such numbers is

(Ry+1) - (ne+1)—1= (1+1)(2+1)(2+1)(1+1)(3+1) -1 = 143.

Hence, on omitting the 9 given numbers, the numbers formed by prod-
ucts of two or more numbers are in all 143 — 9 = 134.

Let S = {aj,az,...,a,}. Note that we form a subset T of S, in n
stages as follows: we have 2 choices for a; : either a; is included in T
or a, is not included in T'. Similarly, we have 2 choices for a, : either
as.is included in T or az is not included in T, etc. Finally, we have 2
choices for a,, : either a,, is included in 7" or a,, is not included in 7. (For
example, if n = 4, then the subset {a3, a4} corresponds to the sequence
of choices no, yes, no, yes.) Hence, by MP, the total number of subsets
is 2x 2 x .-+ x 2(n factors) i.e. 2™.

Here m = 30030 = 2 x 3 x 5 x 7 x 11 x 13, and each prime factor
occurs only once. Hence every factor of m corresponds to the product of
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elements of a particular subset of the 6-set § = {2,3,5,7,11,13}. Note
that the empty subset corresponds to the factor 1. Hence the number of

factors of m is equal to the number of subsets of S, namely 2, by the
last problem. '

9. A function f from A to B corresponds to the ordered set given by
(f(1),.. .-,.f(m)) of m elements where f(i) is the value of f at i. Now
for each i in A, f(i) can be chosen in n ways from B. Hence, by the

multiplication principle, there are n x n X ... x n (m factors) = n™
flinctions from A to B.

. F_l'he number of one-one functions will be n(n—1) - - - (n —m+1). Thus,
“if n < m then the number of one-one functions is zero and if n > m

|
then the number of one-one functions is ———-.
~ (n—m)!
Remark. We will obtain a formula for the number of functions from A
onto B in §4.4 below, by using the Inclusion-Exclusion Principle. The
next problem is a special case.

10. The function is to be onto B and so it must take on both the values by
and bq. So there are 2 choices for the value of* the function at each of
the n elements of A, namely b, or b, excepting the case when all values
are equal-to b, and the case when all values are equal to bz. Hence the
number of required functions is 2" — 2.

11. (i) If n = 1, the number of one-to-one functions from A to B is 2: the

function which maps 1 to 0 and the function whichmaps 1to 1. If n = 2,
the number of one-to-one functions from A to B is again 2: the function
which maps 1 to 0 and 2 to 1 and the function which maps 1 to 1 and 2
to 0. If n > 3, the number of one-to-one functions from A to B is 0.
(ii) The number of required functions is 1 if n. = 1.1fn > 1,itis gn-a,
since f(1) = 0, f(n) = 0 and each of f(2),... ,f(n—1)canbeOorl.
(iii) The number of required functions is 2(n — 1), since for each number
k=1,2,...,(n— 1), we have the function f for which f(k) = 1 and
f(i) =0 forevery,0< i < (n - 1),i# k,and f(n)=0o0rl.

4.2 Permutations - Combinations

By an r-permutation of aset S = {1,2,...,n}, we mean an ordered arrange-
ment of r of the n elements of S in a row.
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Theorem 1. The number of r—permutations of a set S containing n different
objects is denoted by P(n,r) or " P, and is given by

n!
"Pr=nn-1)n-2)...(n-r+1)= .(1’1——-'7)-'
By an r-combination of a set § = {1,2,...,n}, we mean an unordered selec-

tion of r of the n elements of S.
Theorem 2. The number of r- combinations of an n— element set is denoted
by () or "C; or C(n,r) and is given by

n!
T ln-n)

"Cr

Theorem 3 (Binomial Theorem). For every positive integer n, we have

(z+a)® = ™Coa™+ "Ciz" la+ "Coz"?a®+
+ ... 4"Crz" "a" +...+ "Cra". (1)

Before giving a combinatorial proof of this theorem we consider an example:
To evaluate the power (z + y)? i.e. the product

(z+y)z+y)(z+y)
we have the following procedure:

1. Choose one term from each factor (2 choices: z or y) and multiply the 3
chosen terms together to obtain a monomial. For example, taking z from
the first factor, y from the second factor and x from the third factor, we
get the monomial zyz or z2y. There are in all 23 such monomials.

2. Take the sum of all the 2° monomials to obtain the expansion of the
above product. Thus

(z 4+ y)® = zxT + TTY + TYZ + Y2T + TYY + YTY + YYT + Yyy.

3. Simplify the sum by pulling together the monomials which occur more
than once. Thus

(z+y)* =23 + 322y + 3x9% + 4°.
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4.2. Permutations - Combinations 149
Proof of theorem 3: To evaluate the product
(r+y)" = (@ +y)x+y) - (x+y) [nlactors]
ed by

we have to add the 2" monorials obtained thus: a monomial is formed b,
choosing one term from each factor and multiplying them together. Now if
we choose y from r of the factors and z from the remaining 7 — T factors,
then we get the monomial z"~"y". Here r takes values from 0 to n to account
for all possible monomials. But r of the n factors (from which we ta!tc y)
can be chosen in "C, ways. Hence the monomial z"~"y" occurs nC, times.
Therefore the simplified expansion of the above product is given by

(z+y)"="Cox" +" Crz" ly+-- - +"Crz" Y + +" Cat™

Some properties of ™C, are collected in the following theorem. These can _be
easily proved algebraically. Here we give combinatorial proofs of properties

(f) and (g).
Theorem 4. For any positive integers n, r (r < n), we have

(8 ™"Cr= "Cp-y, f 0<r<n.
(b) "Ci+ "Coey=""MC,, f1Zr<n
n

() "Ce=Z2x"'Cry, 17 <n.

(d) "Co+ "Ci+ "Co+...+ "Cpn=2"

(e) "Co+ "Ca+ "Ca+...="Ci+ "C3+ "Cs+...=2""".
k

(f) E an ka_r = m+“Ck_

0 OG)-C6)

Proof: (f) This is known as Vandermonde’s identity. This is obtained by count-
ing the k-subsets of an (m + n)-set in two ways. Let S be an (m + n)-set of
which m elements are red and n blue. Fix k such that 0 < k < m + n. Then
the total number of k-subsets of S is ™*"(Cy. Now we can make a k-subset
of S using any r red elements and k — r blue elements where 0 < r < k.
So the total number of ways of making a k-subset with r red elements is
™C, "Ck—r. Hence the total number of k-subsets is, by addition principle,

Z:f___o mC_ "Cr—r. Hence (f) follows.
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150 An Excursion in Mathecmatics Chapter 4. Combipatorics

() Let S be an n-set. Consider the set T of all ordered pairs (A, B) where A
is a k-subset of S and B is an m-subset of A. We prove (g) _by counting the
elements in 7' in two ways. First, set A C S can be chosen in (}) ways and

set B C A can be chosen in (*) ways and so |T| = (%) (:,_) Secondly, an

m

m-subset B of S can be chosen in () ways. For each choice of set B, choose

m

a(k—m)-subset Cof S — Bandlet A = BUC. Then A is a k-subset of
Sand B C A. Thus the number of ways of choosing set A=the number of
ways of choosing set C=(}""). Hence |T| = () (R_) and so (g) follows.

m/ \k—-m

In particular, if we take k = r and m = 1, then we get the property (c).

Example 1 Evaluate

Solution: We note that

(1+z)" = (g) + (711):1:+ (g)z2+---+ (2):1:“.

Putzr =1,

o= () (o Qo

(14 w?)" = (g) + (T)wz + (g) (W2 + ..

Adding the equations for x = 1, w, w?, we get,

st csmr=a(2) s (2) o (%) o
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4.2. Permutations - Combinations 151

using 1 + w + w? = 0. But

i 4
l+w = -w’= +22J3=c03500+isin600, and
. 1-1y/3
l14w? = —ws= ;\/ = cos 60° — i sin 60°.
Hence 2"+ (14 w)™ + (1 + w?)"
= 2" 4+ (cos60° + isin60°)™ + (cos60° — isin 60°)"
= 2" 4 2cos(n60%)
1 ifn=6k
L e
-3 ifn=0k+2
-1 ifn=6k+3.
This gives
| & ;2 if n = 6k,
(g)+(g)+(g)+---=<2;1 ifn=6k+1
il
. 3

Example 2 Given an 8 x 8 chessboard, (i) how many squares of all sizes are
there on it ? (ii) how many rectangles of all sizes are there on it ?

Solution. (i) We count the squares according to their size. For example, on an
8 x 8 chessboard, there are 9 vertical lines and so there are 7 sets of 3 successive
vertical lines, namely 123, 234, ..., 789. Each such set gives a 2x 9 strip. Each
such strip contains 7 2 x 2 squares; the figure shows one such square. Hence
there are 72 squares of size 2 x 2. Similarly,there are 82 squares of size 1 x 1,
62 squares of size 3 x 3 etc. Hence the total number of squares is

824+ 72 +.--+1%2 = 204.
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Now let us consider an n x n chessboard. Forr = 1,2....,n + 1, there are
n—(r-1) sets of r+ 1 successive vertical lines, namely. For ar.ly-such r+1-set,
there are n - (r — 1) sets of r 4 1 successive horizontal lines, giving n — (r — 1)
squares of size r x r. Hence, by MP, there are in all [n — (r — 1)]2 squares of
size r x r. Thus the total number of squares is

Z“:[n -(r=-1)P= %n(n +1)(2n +1).
r=l

(i) Similarly, forr = 1,2,... . n + 1, there are n — (r — 1) sets of r + 1
successive vertical lines. For any such r + 1-set, there are n — (s — 1) sets of
s + 1 successive horizontal lines, givingn — (r — 1) x n — (s — 1) rectangles

of size r x 5. Hence, by MP, there are in all [n — (r — 1)][n — (s — 1)] squares
of size r x s. Thus the total number of rectangles is

n n

> Y ln=(r=1lfn = (5= 1) = In%n+1)2

8=]r=

Example 3 How many 7—digit numbers are there such that the digits are dis-
tinct integers taken from the set S = {1,2,...,9} and such that the integers 5
and 6 do not appear consecutively in either order ?

Solution. We first find the number n; of 7—permutations of the 9-element set
S which do contain 56 or 65. Consider 7 places as follows:

abcdefg

There are 6 pairs of consecutive places, namely ab, be, ..., fg in which we
can place 56 or 65. Thus each of 56 and 65 can be placed in 6 ways. In
cach case there are P7 ways of filling the remaining 5 places. Hence n, =

2 x 6 x Py. Also, the number of 7-permutations of S iIsn2 = P?. So the
number of required permutations is ng —n; = 151200.

Example 4 In a group of 15 boys, there are 7 scout-boys. In how many ways

can 12 boys be selected so as to include (i) exactly 6 scout-boys (i1) at least 6
scout-boys?

Solution. (i) (a) 6 scout-boys out of 7 can be chosen in "Cg ways and (b) 6
other boys out of 8 others can be chosen in 8Cg ways. Now any 6-combination
from (a) can be combined with any 6-combination from (b) to make a required

type of group of 12 boys. So, by MP, the total number of ways is 7Cg x® Cg =
196. '

Scanned by CamScanner



4.2. Permutations - Co_l_l!blnalions - 153

(ii) The 12-combination can include either 6 or 7 scout-boys. As in (i), there
are "Cs X3 Cy 12-combinations with exactly 6 scout-boys. Also, if we include
all the 7 scout-boys, then the remaining 5 boys can be chosen from the other
8 boys in 8Cy ways. So there are 8C5 12-combinations with exactly 7 scout-
boys. Hence, by AP, the total number of ways is Ce x8 Cg +° Cs.

Example 5 Suppose n is a positive integer and let S = {1,2,...,n}. Find
the number of ordered pairs (A, B), where A and B are subsets of S, in the
following cases.

(1) A is a subset of B (ii) A is a proper subset of B.

Solution. (i) To get a pair (A, B) with A C B, every element x of § must be
treated in one of the following three ways:

(a) z is put in both A and B

(b) z is put in B but not in A

(c) z is put in neither of A, B.

Hence, as there are n elements in S, the number of pairs of subsets, (A, B),
with A C B is, by MP, 3",

(i) The number of pairs (A, B), with A = B is the number of subsets of S
and is therefore = 2". Hence the number of pairs (A, B), where A is a proper
subset of B, is 3" — 2",

Second solution for (i): For a given 7, 0 < r < n, a subset B with r elements
can be chosen in "C,. ways. For each such B, a subset A of B can be chosen 2"
ways. Hence, for r-element subsets B, there are " C,.-2" pairs (A, B), AC B.
Hence the total number of pairs is

n

Y "C 2 =(2+1)"=3",

r=0
using the binomial theorem.

Second solution for (ii): For a givenr, 0 < r < n, a subset B with r elements
can be chosen in "C,. ways. For each such B, a subset A of B can be chosen
2" — 1 ways. Hence, for r-element subsets B, there are *C., - (2" — 1) pairs
(A, B), A C B. Hence the total number of pairs is

Y G (T -1)=(2+1)" - 2" =3" = 9",

r=0

Example 6 In how many ways can 2n players be grouped into n tennis pairs?

L]
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Solution. Here we want to partition a set S of 2n elements into n 2-element
subsets (i.e. these n 2-element subsets are pairwise disjoint and their union is
S). For example, letn = 5and S = {a,,ay,...,a;0}. Then one possible
partition or pairing is
P:p = (a1,0a3), p2 = (ay,a5), p3 = (as4,a7),
Pa = (ag,a9), ps = (as,ay).

To find the number of all possible parings, note that first, 2 players can be
chosen out of 2n in 2"C, ways. After that 2 players can be chosen from the
remaining 2n —2 players in 2"~2C, ways, etc. Continuing in this mahner, after
n — 1 steps, 2 players remain and of these 2 can be chosen in 2C, ways. Also,
the order in which the n pairs are chosen is not important. So the total number

N of ways of obtaining n pairs is the product of above n numbers divided by
n!ie.

N = [21102 .2n—202”.4cz '202]/71!
— (2n)(2n—1)_(2n—2)(2n—3)_”4-3.2-1'.1

2 2 2 "2 ‘ql
= (2 -1)(2n—-3)---3-1,

Example 7 (a) Ten boys are to be grouped into 5 tennis pairs. In how many
- ways can this be done ? (b) The same 10 boys are going to 5 seaside places

A.B,C,D,E, two to each place. In how many ways can this be done ? Explain
the difference between your answers.

Solution. The difference between (a) and (b) is this: In (a), only ;‘.he pairings
are important; not the order in which the pairs occur in a pairing. But in (b),
for each pairing, such as P in the last example, the order in which the pairs of
boys are sent to 5 places A,...,E makes a difference. Hence for (a) the answer
is, by the last example,n =9 x T x5 x3 x 1 = 945. But for (b), the number
n must be multiplied by 5! since each pairing corresponds to 5! different ways
of visiting the 5 places. So the answer is n x 5! = 945 x 5! = 113400.

Circular permutations

By a circular permutation of the set S = {1,2,... ,n}, we mean an ordered
arrangement of the n elements of S around a circle.

Theorem 5. The number of distinct circular permutations of n different objects
is (n — 1)!.

Corollary: Let n > 3 be a positive integer. The number of different circular
necklaces that can be made from n different beads is 3l(n=1).
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Example 8 There are 8 persons. j ; W
Jr o

(l) In I_ww many ways can they be seated at a roun:i_lable ?
(i) With the further condition that 3 of them, a and b, must not sit in adjacent

seats ?
(iii) If 4 of the persons are men and 4 ladies and if no two men

adjacent seats ?
(iv) If the 8 persons are 4 married couples and if no husband and wife, as well

as no two men, are to be in adjacent seats 4

are to be in

Solution. (i) The number of ways is (8 — 1)! = 7! by theorem 5 above.

(i) Regard a, b as one person: ab or ba. Then in each of these cases we are
to seat 7 persons round the table and this can be done in (7 — 1)! = 6! ways.
Hence a, b are seated together in 2 X 6! arrangements. Hence the number of
arrangements in which they are not together is 7! — (2 X 6!).
(iii) The 4 ladies can be seated in 3! ways. There are 4 places between the
. successive ladies and for each arrangement of the ladies the men can be seated
in these 4 places in 4! ways. So the total number of required ways is 3! x 4.

(iv) The 4 wives can be seated in 3! ways. There are 4 places between the
successive wives and for each arrangement of the wives the men can be seated

in these 4 places in exactly 2 ways counterclockwise:

wl,m4sw2,m1.w3,m2,w4,m3, wl,msawzmhws,m],wmmz-

So the answer is 12.

Exercise 4.2

~How many ways can 12 identical white and 12 identical black pawns be -
placed on the black squares of an 8 x 8 chessboard ?

“ How many ways are there to place 2 identical rooks in a common row or

column of an 8 x 8 chessboard ?

al kings on an 8 x 8 chess-

3. How many ways are there t0 place 2 identic
ares 7 On an n x m chess-

board so that the kings are not in adjacent squ
board ? =

4. How many necklaces can be made using 7 beads of which 5 are identical
red beads and 2 are identical blue beads ?

5. There are 12 members in a committee who sit around a table. There is
one place specially designated for the chairman. Besides the chairman
there are 3 people who constitute a subcommittee. Find tl:%number of

£

>~ )

i h" b
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scating arrangements if (i) the subcommittee sit together as a block, and
(ii) no 2 of-the subcommittee sit next to each other.

/ Prove that the number of ways of arranging p 1's and g 0’s in a line such

. ; 1
that no two 1's are adjacent 1s (q T

7. Prove that the number of r-subsets of the set S = {1,2,...,n} thatdo

. ) L. fn-r+1
not contain a pair of consecutive integers 1S " .

Hints and Answers to Exercise Set 4.2

1. There are 32 black squares and of these 12 can be chosen to put the 12
white pawns in (‘;g) ways. Then out of the remaining 20 black squares

12 can be chosen to put the 12 black pawns in (33) ways. So the answer
e (32) X (20)
15 \13 12)-

2. Since the 2 rooks are identical, the order in which they are placed in a
row (or column) is not important. First a row can be chosen in 8 ways. .
In any row, 2 of the 8 squares can be chosen in 8C, ways. Hence the 2
rooks can be placed in a row in 8 %8 Cy ways. Similarly, 2 rooks can be

placed in a column in 8 x® C; ways. So the total number is 2 X 8 x8 Cs.
For an n X m board the answer is n x"‘_Cg +m x™ Cs.

3. A row can be chosen in 8 ways. In a row, there are in all #C; pairs of
squares of which 7 are pairs of adjacent squares. So there are [BCy -1 |
pairs of places in any of which the two identical kings can be placed. - '
Herice the kings can be placed in a row in 8 x [*Cz — 7] ways and in
the same number of ways in a column. So the total number of ways is
2 x 8 x [8C; — 7). Foran n x m board, the number is

n[™Cy = (m—1)]+m["Cz — (n - 1)).
4. The different necklaces are determined by the number of red beads be-

tween the two blue beads, $aking both arcs into consideration. So there
are exactly 3 distinct necklaces:

bbrrrrr, brbrrrr, brrbrrr.

5. Ans: (i) 9! x 3! (ii) 8! x 9Ps.

Scanned by CamScanner



4.2. Permutations - Combinations 15_7_

6. There are g + 1 places between the ¢ 0's (namely, ¢ — 1 places between
the g successive 0's and 2 places at the ends). The required arrangements
are obtained by putting the p I's in p of these g + 1 places; and this can
be done in (";‘) ways.

7. An r-subset T of S corresponds, in a one-to-one way, to an arrangement
ay,az,...,apof r I’'sand n —r0's in arow as follows: a; = 1ifi € ¢ &
and a; = 0if i ¢ T. Hence the r-subsets of S = {1,2,...,n} that
do not contain a pair of consecutive integers exactly correspond to the
arrangements of 7 I’'sand n — r 0’s in a line such that no two 1’s are
acljacent.1 Hence, by the last problem, the number of required r-subsets
N s

4.2.1 Permutations with repetitions:

Theorem 6. Suppose there are n objects, of which n; are identical of first
type, 12 are identical of second type, ..., 7 are identical of k' type so that
n = n; + n2 + - .. + ni. Then the number of permutations of these n objects,
taken all at a time, is denoted by P(n;n1, na, . . ., nx) and is given by

n!

P(n:ny,n2,...Nng) = .
( ’ ’ ’ ) n1!n2!...nk!

Combinations with repetitions:

Suppose S = {a1, a2, as, as, as, Gs, az} is a set containing 7 different objects.
Then a 5-combination of S, with repetitions allowed, is t = agasazasaz. To
count the number of such 5-combi nations of S, note first that each combination
uniquely corresponds to a table with 7 — 1 =6 columns in which 5 dots have
been placed in the columns. Thus the combination ¢ corresponds to the table

Q) as az | aqg | a5 | G | A7
'iol[‘ ° e

Also, each such table uniquely corresponds to a permutation of 6 vertical lines
and 5 dots. Thus the combination ¢ corresponds to the permutation |eee|||e]|e.

Conversely, every such permutation (say, ||ee||| |®) uniquely corresponds
to a table of the type described above (namely,

a, a; | az | a4 as | as | ar
& o0 ] ®
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in this case) which in trn uniquely corresponds to a 5-combination with repe-
litions (namely, ayagazagay, in this case). »

Now there are {33! — (s) = (""1*5) permutations of 6 vertical lines
and 5 dots.

Hence the number of 5-combinations of S, with repetitions allowed, is the

same as the number of such permutations, and so it is ("~1+%).

More generally, the same method of proof can be used to obtain the follow-
ing
Theorem 7. Let S be a set having n different objects. Then the number of
r—combinations of S, with repetitions allowed, is (n - : o r).

Corollary 1. Let n,r be given positive integers. Then the number A, . of
non-negative integer solutions (z,, z2, . .., z,) of the equation

. (n — 14 r)
1S .
T

Proof. Let S = {a1,...,a,} be a set with n distinct elements. Given any
r-combination ¢ of S, with repetitions allowed, (say, t = aqasaqzasar, n =
7,7 = ) let z; be the number of times a; occurs in £. Then ¢ corresponds to
the solution (z1, z2,...,zy) of equation (1) in non-negative integers.
(Thus the above 5-combination t = azazazasay corresponds to the solution
(0,3,0,0,1,0,1) of the equation x; + x5 + - - - + 7 = 5).

Conversely, every non-negative integer solution of (1) corresponds to a
unique r-combination of S, with repetitions allowed. Hence, by the above

theorem, A, , = (n — L4 r)-

T1t+za+- o tzh=r, (1)

T

Corollary 2. Let 7 > n > 0 be integers. The number B, , of solutions
. ? v . [r—1

(By Bays oy :r:,,) of equation (1) In positive integers 1s . 1) ‘

Proof. Given any solution (yi,...,¥a) of (1) in positive integers, let z; =
¥i — 1. Then substituting in (1), we get

Ty+...4+Zp =Y +...+Yn—n=r—n, (2)

so that (z,,%,,...,z,) is a non-negative integer solution of (2). Con-
versely, every non-negative integer solution of (2) corresponds to a unique
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positive integer solution (y1.- -+ ¥a) of (1) With gy =z + 1. Hence,
n—1+r—n) _ fp=]
B""_( r-n ﬂ(n——l)'

Corollary 3. Let r,n > 0 be integers. Let a;,...,a, be given in!cgcrs._ Then
the number of integer solutions of equation (1) such that x; > ai, 1<ign,

R-1
Proof. Given any solution (y1,...,¥s) of (1) in integers, such that y; >
a;, 1 <i<nsothaty, +...+y, = r. Let z; = yi — a;. Then substi-

tuting for y's we get

-

1 +...Tp=7r—(a; +-+an),

so that (z,,Z,...,Z,) is a positive integer solution of the last equatig
r—a;—---—-a..—l)

conversely. So, the number of required solutions is ("~**7,”]

Example 9 If n identical dice are rolled, how many different outcomes can be
recorded ?

Solution. Since the dice are identical, the order in which the n scores appear
is not important. So we want the number of n-combinations, with repetition,

of the set {1,2,3,4,5,6} and itis (°7*").

Example 10 A shop sells 6 different flavours of ice-cream. In how ‘many ways

can a customer choose 4 ice-cream cones if

(i) they are all of different flavours;

(ii) they are not necessarily of different flavours;
(iii) they contain only 3 different flavours;

(iv) they contain only 2 or 3 different flavours?

Solution. Let the flavours be denoted by a, b, ¢, d, e and f.

(i) Here we want the number of ways of choosing 4 ice-cream cones of differ-

ent flavours from cones of 6 different flavours. That is, we want the number

og 4-combinations of 6 distinct objects without repetition. So the number is )
= 15.

((i?; By theorem 1, the number of 4-combinations of 6 objects a,b,¢,d, ¢, f,

with repetitions allowed, is (1) =() =12

(iii) The number of ways of choosing 4 cones of exactly 3 different flavours,

with repetitions = (the number of ways of choosing 3 flavours out of 6)x(the
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number of ways of choosing 4 cones of 3 chosen flavours) = (3) x 3 = 60, be-
cause there are (3) ways of choosing 3 flavours out of 6 and for each choice, say
a, b, c, there are 3 ways of choosing 4 cones of the 3 chosen flavours, namely
a,b,c,cora,b,b,cora,a,b,c.

(iv) As in (iii), the number of ways of choosing 4 cones of exactly 2 c.iiffer-
ent flavours, with repetitions = (3) x 3 = 45, because for each choice of
2 flavours, say a, b, there are 3 ways of choosing 4 cones of the 2 chosen
flavours, namely a, a,a,b or a,a, b, b or a, b, b, b. Hence the ways of choosing
cones of 2 or 3 flavours are in all 60 + 45 = 105. Alternatively, the num-
ber of ways of choosing 4 cones of only 2 or 3 different flavours, with rep-
etitions allowed = the number of ways of choosing 4 cones, with repetitions
allowed, when 6 flavours are available —[(the number of ways of choosing 4
cones of only 1 flavour) + (number of ways of choosing 4 cones of 4 different
flavours]= 126 — (6 + 15) = 105, because there are 6 ways of choosing 4
cones of only 1 flavour, namely aaaa, bbb, etc.

Example 11 Given integers 1,2, ... » 11, two groups (not necessarily disjoint)
are selected; the first group contains 5 integers and the second group contains
2 integers. In how many ways, allowing repetitions, can the selection be made
if

(1) there are no further conditions ?

(i1) each group contains either all odd integers or all even integers ?

Solution. (i) The first group G; of 5 integers from the 11 integers can be
chosen in (11 7*®) = () ways. Similarly, the group G, of 2 integers from
the 11 integers can be chosen in (*'7*?) = ('2) ways. Therefore the two
groups G, and G, can be chosen in (%) x (*2) ways.

(i) We have 4 mutually exclusive cases: (a) G, all odd, G5 all even

(b) G, all odd, G- all odd (c) G, all even, G all odd (d) G, all even, G all

even. Hence the total %urréber of ways is
1
DO+HO+OO+OO.

Example 12 Find the number of non-negative integer solutions of the equation
T1 + T2 + x3 = 19 subject to the given conditions.

Mx; 20, 2, >0, 320

(i) r1>0,22>0, 23>0

(i) 2 23, 22> 2, 2, > 7.

Solution. (i) By theorem 1, the required number is (*~1+15) = 136, (ii) By
-1

corollary 1 above the required number is ('§7') = 91. (iii) If (31, ys, ys) is
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a solution of the required type, letzy = y; =3, T2 =y~ 2, Ta =y3 - 7.
Then (x,22,z3) is a non-negative integer solution of z; + 3 + z3 = 15 -
(3 + 2+ 7) = 3. So the required solutions are in all (*~3*°) = 10.

Example 13 Find the number of integer solutions of z, + zz + 23 + 4 = 48
with the conditions z; > 5, 22 > 6, z3 > 7, 4 > 8.

Solution. If y,, ..., y4 is a solution of the required type, put z; = y; — 5,22 =
Y2 —6,r3 = y3 — Tand 24, = y4 — 8. Then y; + --- + ys = 48 becomes
Ty + -+ x4 = 48 — 26 = 22 and we want positive integer solutions. So the

number of solutions is (%27}).

Example 14 Find the number of isosceles triangles with integer sides if no
side exceeds 1994.

Solution. Let the sides of the'isosceles triangle be a, a, b. There will such a
unique triangle if and only if 2a > b. Hence, for any a,b can vary from 1 to
2a — 1. We have additional restrictions: a < 1994 and b < 1994.

(i) If a < 124 = 997, b varies from 1 to 2a — 1, i.e. b can take 2a — 1 values.
Hence the number of isosceles triangles obtained is the sum of the first 997 odd
natural numbers which equals (997)2.

(i) If 998 < a < 1994, b can take any value between 1 and 1994, i.e. there
are 1994 choices for b. In this case a has 997 possibilities. So the number of
isosceles triangle s in this case is :

997 x 1994 = 2 x (997)2. The total numbers of isosceles triangles is thus
3 x (997)% = 3 x 994009 = 2982027.

(Note: (997)2 = (103—3)2 = 10°—6x 10%+9 = 1000009—6000 = 994009.)

Example 15 How many ways are there to split a group of 2n a's, 2n § s, and
2n v s in half (into two groups of 3n letters)?

Solution. Count the ways to select 3n letters from the 3 types of letters and
then subtract outcomes with 2n + 1 or more of one letter —-C(3n+3—1,3n)—

3 x C((n—1) +3 —1,n —1). Since each split forms two groups of 3n letters,
it appears we should divide this count of 3n-letter gmups{bfl‘" However,
the split in which each group consists on n letters of each type contains two
copies of the same group (this split is not double counted). So the answer is
lC(3n+3-11,3n) -3 xC((n—1)+3 - L,n-H-1+1

Exercise Set- 4.3

1. Find the number of arrangements of any 3 letters from the 11 letters of
the word combination.
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A Fmﬁ the number of integer solutions of the given equation with given

conditions.
Wz+y+z="T2>0>0,2>0
(i)r+y+2=9220y20,220
(iz+y+z2=4;z>1y>1z>1
(iVz+y+2=24z>1y>2,2>3
WMz+y+z+t+w=36 :c,y,z,t,w?_'ﬂ

3. Show that the equations 71+ -+ 27 = 13and z; +- - +214 = 6 have
the same number of non-negative integer solutions.

4. Show that the equations z; + z2 + z3 = 12and z; + -+ + 210 = 12
have the same number of positive integer solutions.

5. How many integers between 100 and 1,000,000 have sum of digits (a)
equal to 5 (b) less than 5 ?

6. How many different collections of 3 coins can be formed if the coins can
be pennies, nickels, dimes, quarters or half-dollars ? How many different
collections of 5 coins can be formed with the same types of coins ?

7. Find the number of integer solutions of the given equation with given
conditions.
Nrz+y+z+w=40; z,y,z,w>5
i)z +---+ 26 =72
@zx; >0,z >10 (b)z; >0,z > 10,25 > 5
(ji)z+y+2z=12> -5,y > -=5,z> —5.

8. How many ways are there to invite'l of 3 friends over for dinner on 6
successive nights such that no friend is invited more than 3 times ?

Solutions to Exercise Set- 4.3

1.3 x 2148 P,

2. (i) (327) = 15. Gi) (*~9*°) = 55. (iii) Put X = z — 1 etc. Then the
equation becomes X +Y +Z +3 =24 or X + Y + Z = 21. Hence the
number of solutions is (%)) = 190. (iv) (*31415). (v) (5 1+%6),

S. (a) Let 2;,1 < ¢ < 6, be the digits of a number with at most 6 dig-
its. Then the number of non-negative integer solutions of z; + - + Tg =
5is (°"5*°) = 252. But the number is to be > 100. So the 6 numbers
5,14,41,23,32,50 are to be omitted. Thus the required number is 252 — 6 =
246. (b) For 1 < k < 4, the number of non-negative integer solutions of
Z 4 -+x5 =5—kis (“;fi"‘) = (m;"). Again we have 10 omit the
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4.3. The Pigeonhole Principle _1_6__3

15 numbers 1.10.2.20,11,3.30,12,21,4,40,13,31,22,100, and so the answer is
Eie0 (1%F)] = 15 = 194.
6. Let r,y, 2, t, w respectively denote the numbers of coins of given types to
form a collection of 3 coins. Then the required number is the number of non-
negative integer solutions of * + y + z + t + w = 3 which is (5":1,+3) = 35.
Second part: (*7}*°) = 126.
7. () Put z = a + 5, etc. so that the equation becomes a + b+ ¢ +d = 20 and
its positive integer solutions are in all (2°~1) = 969. (ii) (a) Put z; = z1 + 10
so that the equation becomes z; + Z2 + - - + zg = 62 and its positive integer
solutions are in all (%°7'). (b) (5 7,')- Gii) 105.
8. Let x, y, z be the friends and let (a, b, c) denote the case where I is invited
a times, y b times and z ¢ times. For example, one possible arrangement cor-
responding to the triplet (3,2,1) is
L. 5.0, 8068

Then we have the following possibilities: (i) (a, b,¢) = (1,2,3); (1,3, 2);
(2,3,1); (2,1,3); (3,1,2); (3,2,1). (ii) (a,b,¢) = (3,3,0); (3,0, 3);

(0,3,3). (iii) (a, b, c) = (2,2,2). So the total number of ways is
’ : 6 x 61/1!12!3! + 3 x 6!/3!3! + 6!/2!2!2!.

v 4.3 The Pigeonhole Principle

The pigeonhole principle (PP), also called Dirichlet’s box principle, states
that if more than n objects are distributed into n boxes, then at least one box
must receive more than one object. We will abbreviate this as (PP1). /

Second form of the pigeonhole principle (PP2): For any positive integers
n,t, if tn + 1 or more objects are placed in n boxes, then at least one box will

contain more than ¢ objects.

Third form of the pigeonhole principle (PP3): If the average of n positive
numbers is ¢, then at least one of the numbers is greater than or equal to t.
Further, at least one of the numbers is less than or equal to .

Proof: Let ai,az, ..., a, be the numbers. Then by data,

/ ‘ a1+.;1.+an=tsothat ay+:::+an=1in. 3)

i Hence if each of the n numbers ay, . . ., @ is less than ¢, then the sum of these

numbers would be less that nt, contradicting 4).
A similar argument shows that at least one of the numbers is less than or

equal to t.
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Remark: If the numbers a;, az,...,ay are integers, then PP3 says that at least
one of them is > to, where t; is the smallest integer not less than t; and at least
one is < (t] where [t] is the integral part of ¢.

Strong form of the pigeonhole principle: Let g1, g2, . .., gn be positive inte-
gers. If (g1 + g2+ ... + gn — n + 1) objects are put into n boxes, then either
the first box contains at least g, objects or the second box contains at least Q2
objects....,or the nth box contains at least Gn Objects.

We will abbreviate this form as (PP4).
Proof. Suppose we distribute (q; + g2 + ... + gn — n + 1) objects in n boxes

and if for each i = 1,2,. .., n, the ith box contains less than g; objects, then
the total number of objects in the n boxes is

S@W=-D+(@-D+..4+@-)=q+q+...+ g —n.

But this number is less than the number of objects placed in the n boxes.
Hence, for at least one 1, ith box must contain at least gi objects,

Solutions to the following problems use this principle as the key-step in the
argument.

Examples

I. Given m integers a,, as, ..., an, show that there exist integers &, s with
0<k<s<msuchthat axs; + aryo+... + a,is divisible by m.

2. Among the integers 1,2, ..., 200, if 101 integers are chosen then show
that there are two among the chosen, such that one is divisible by the
other.

3. Prove that if 100 integers are chosen from the set 1,2, -+ - , 200 such that
atleast one of them is smaller than 15, then there exist two of the chosen
integers such that one divides the other.

4. Suppose numbers 1 to 20 are placed in any order around a circle. Show
that
(i) the sum of some 3 consecutive numbers must be at least 32
(i1) the sum of some 4 consecutive numbers must be at least 42.

5. A storekeeper's list consists of 115 items, each marked “available™ or
“unavailable”. There are 60 available items. Show that there are at least

2 available items in the list exactly 4 items apart.

(For example, available items at positions 5 and 9 or at positions 36 and
40 satisfy the condition,)

i P . - - L . G il L ‘
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4.3. The Pigeonhole Principle . 165

6. A chess master who has 11 weeks 1o prepare for a tournament decides
to play at least one game every day, but not more than 12 games during
a week. Show that there exists a succession of days during which the
chess master will have played exactly 21 games.

7. Prove that if in a group of 6 persons, each pair is either of mutual friends
or mutual enemies, then there are either three mutual friends or three
mutunl enemies. Also show that the result is not true in case of a group
of 5 persons.

8. Let (a1,az,...,a1995) be a sequence of positive integers whose sum is
3989. Show that there is a block of r successive a;’s (r > 1) whose sum
is 95.

9. Let (zi,y:), 1 < i < 5, be a set of five distinct points with integer co-
ordinates in the z-y plane. Show that the mid-point of the line joining at
least one pair of these points has integer co-ordinates.

10. Let ai, az,...,a00 and by, by, ..., bigp be any two permutations of the
integers from 1 to 100. Prove that among the hundred products

a1b1, azbs, 4., 21000100,
there are two products whose difference is divisible by 100.

11. Prove that no 7 integers, not exceeding 24, can have sums of all subsets
different.

Solutions

1. Consider the sequence a;, a; +a3,...,a;+az+...+ a.,. If anyone of
these m sums is divisible by m then we are through. Otherwise, suppose
that none of them is divisible by m. So each leaves a non-zero remainder
1,2,...,(m - 1). Since there are m sums and (m — 1) possible values
of the remainders, by the pigeonhole principle two of the sums leave the
same remainder after division by m. So let

ay+ar+...+a, = bm+r
and a)+ar+...+a,

cmA+r. 5

This giveg (if k < 8), ag+1 + ag+2 + ... + a; = m(c — b). Thus m
divides ax+1 + @r42 + ... + a,.
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e . e —

2. Let the 101 integers chosen among 1,2, ..., 200 be written as m; =
28q, fore = 1,2,..., 101, where a; is an odd number which is the
greatest odd divisor of m, and it is one of the 100 odd numbers 1,3,5,
..., 199. Thus by pigeonhole principle, among the chosen 101 numbers
m,, at least two have equal odd parts after removing the power of 2. Thus
let my = 28 . q, and n, = 2%(*)q, with a; = a,. Then if k(t) < k(s)
then my divides m, and if k(t) > k(s) then m, divides m;

3. Let us suppose that we have chosen 100 positive integers, not exceeding
200, none of which is divisible by any other. Let us prove that none of
the numbers from 1 to 15 is contained among these 100 numbers.

Let us consider all the greatest odd divisors of the chosen numbers (as in
the last example). It is obvious that these divisors form the set of all odd
numbers not exceeding 200. In particular, these odd divisors include the
numbers 1,3,9,27,81. Since among the numbers corresponding to these
odd divisors there are no two numbers one of which is divisible by the
other, the number containing the odd factor 27 must be divisible by a
power of 2 whose exponent is atleast 1,the number containing the odd
factor 9 must be divisible by a power of 2 whose exponent is atleast 2,
the number containing the odd factor 3 must be divisible by a power of 2
whose exponent is atjeast 3, the number containing the odd factor 1 must
be divisible by a power of 2 whose exponent is atleast 4. This means that
the numbers 1,2 =1-2,3,4=1-226=2-3,8=1-2% 9and
12 = 3 - 22 are not contained among the 100 chosen numbers.

In just the same way we can consider those of the given numbers whose
greatest odd divisors are 5, 15 and 45 and prove that the given numbers
do not contain 5, 10 = 5-2 and 15. Similarly, if we consider the numbers
7, 21 and 63 we can show that the numbers 7 and 14 are not among the
100 chosen integers; while if we consider the numbers 11 and 33, we can
show that 11 is not among the 100 chosen integers and if we consider the
numbers 13 and 39, we can show that 13 is not among the 100 chosen

integers.

4. (i) Let a;,...,a> be the numbers placed around the circle. Since the
mean of the 20 sums of 3 consecutive numbers, namely a; +as+as, az+
az+aq, ...,a19 + azy + ay, axo +a; +azis

| _3(20)(21)

20[3(‘11 +az+---+axy)= -—-————-2(20) =31 + 8§,

we see by PP3, that at least one of the sums must be > 32. A similar
proof holds for (ii).
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5. Let the positions of the available items be a;, a,, ..., ag. Since agy <
115, we see that the 120 numbers

a1 <az < --- < ago

and ay +4d<az+4<...<ag +4

lic between 1 and 119. Hence by PP, two of these numbers must be
equal. But the numbers in the first row are all distinct and similarly the
numbers in the second row are all distinct. Hence some number in the
first row must be equal to a number in the second row i.e. for some %, j
we must have a; = a; + 4, so that a; — a; = 4, as required.

Second method: By data, there are 115 — 60 = 55 unavailable items.
Label the items in the list thus: i, .. .,4y;5. Then we have the following
set of 111 pairs of items in each of which the two items are 4 items apart:

S ={(i1,1s), (i2,16), (i3,%7), (ia,is), (i5,%9),-- -, (i111,%115)}

Now call a pair (i, ) from the above set a good pair if the items i, and
is are both available, and a bad pair otherwise. Then, clearly, the pair
(ir,1s) is bad if at least one of the items i, and i, is unavailable. Note
that if, for example, item i5 is unavailable, then both the pairs (i1, 15)
and (is,19) are bad.

We want to show that there is at least one good pair. Suppose, if possible,
that all the 111 pairs in S are bad. This implies, since 111 = (2x55)+1,
that there are at least 55 + 1 = 56 unavailable items. This contradicts
the fact that there are only 55 items which are unavailable. So there is at
least one good pair.

6. For 1 < r < 77, let a, denote the total number of games played on the
first T days.

Hence 1 < a; < a3 ... < a77. Now the chess master plays at least one
game per day so that a;;; > a; + 1. Also, since at most 12 games are
played during a week, a77 < 132(= 12 x 11). Thus a77 + 21 < 154.

Consider the sequence of 154 positive numbers, a;, az,...,a77,a;1+21,
as + 21,...,a77 + 21 such that a; and a; + 21 < 153 for all . So by
the pigeonhole principle, at least two of the elements in the sequence are
equal. Buta; <as <...<a@arranda;+21 < az+21 <.... < ar7+21.
Hence a; = a; + 21 for some j < i. Hence a; — a; = (j + 1) th day
games + ... + (7) th day games = 2].
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Thus games played on (j + 1)th, (7 + 2) th, ..., (2) th day total upto
exactly 21. *

Note: By the same method, the following general result can be proved.

Suppose a chess master decides to play on d consecutive days, playing
at least one game a day and a total of no more than b games where d <
b < 2d. Then for each i < 2d — b — 1 there is a succession of days on
which, in total, the chess master plays exactly i games.

7. First part: Consider a fixed person A. Of the other five, by PP, there
are either three who are friends of A or three who are not. In the first
case, the three friends of A are either mutual enemies or two of them are
friends and form a triplet of friends with A. The other case is similar.
Second part: Consider a group of 5 persons and suppose that exactly the
following are pairs of friends: AB, BC, CD, DE, EA. Then it is easy
to see that no three are mutual friends or mutual enemies.

Remark. In fact, one can show that in .a group of six people there are
two triplets of mutual friends or two triplets of mutual enemies or one
triplet of mutual friends and one triplet of mutual enemies.

8. Forl <r <1995,Jetb, =Y |_,a;.Hence 1 < b; < by... < byggs =
3989. Distribute b;’s into 95 boxes 0, 1,2,...,94 such that b; is in box
j if 7 is the remainder when b; is divided by 95.

Case (i) None of the b;’s is divisible by 95. Then the 1995 b;’s are put in
only 94 boxes 1, 2, . ..,94. Hence, by pigeonhole principle, there is one
box which contains atleast 22 integers. Suppose b;, < b, < ... < b;,,
are in the same box. If |b;, — b;,| = 95, for some s, ¢, then we are done.

Otherwise,

bi, > bi +2(95),
bi;, > bi, +2(95) 2 b, +4(95),

bi,, biy1 + 2(95) 2> b, + 42(95) > 3990

IV

But b;,, < 3989, a contradiction. Hence, there is a block of r successive
a;'s (r > 1) whose sum is 95.

Case (ii) Atleast one of the &;'s is divisible by 95. If there is one box

which contains atleast 22 integers, then as in Case (i), we get a block of
r successive a;'s (r > 1) whose sum is 95. Otherwise, each box contains

|
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exactly 21 integers. Suppose by, < b,, < ... < b;,, are in the box 0. If
bi, = 95 or |b;, — b;,| = 95 then we are done. Otherwise,
bi, = 2(95),

1

b = bi+2(95) > 4(95),

biyy > big +2(95) > 42(95) > 3990

But b;,, < 3989, a contradiction.

9. Since an integer must be either even or odd, every point (a, b) with inte-
ger co-ordinates must be put in one of the four pigeonholes:

(even,even), (even,odd),(odd,even) and (odd,odd).

Hence, two of the given five points (say, A(z;,%1) and B(z2, y2)) must
lie in the same pigeonhole, so that their z co-ordinates must have the
same parity ( i.e. they are either both even or both odd ) and their y
co-ordinates must have the same parity. Hence, z, + 3 and y; + y» are
even. Thus (z; + x2)/2 and (y; + y2)/2 are both integers, so that the
mid-point of AB has integer co-ordinates.

10. Suppose that the 100 products a;b; leave 100 different remainders when
divided by 100. Then 50 of the products must be odd and the remaining
50 must be even.since their remainders must now be a permutation of
1,2,...,100. The 50 odd products use up all the odd a; and all the odd
b,. Hence the even products are products of even numbers and are there-
fore divisible by 4. But then none of the products will be of the form |

4k + 2, which is a contradiction.

11. Let Sbe any 7—subset of {1,2,. .., 24}. The number of non-empty sub-
sets of S having at most 4 elements is

7 7 7 7
(1) (2) + (3) + {5) ===
If T is any one of these subsets, then the sum of elements in 7T is be-
tween | and 21 + 22 + 23 + 24 = 90. Since 90 < 98, by PP1 it follows
that the sums corresponding to the above 98 subsets cannot all be differ-

ent. [Note that for the 6—element subset {11,17, 20,22, 23, 24} sums
corresponding to all subsets are different.)
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Exercise Set - 4.4

/ True or false? Justify your answer.
If there are more than m objects and there are m boxes,

(i) there will be at least 1 box with no objects,
(ii) there will be at least 1 box with at least 2 objects,
(iii) there will be at least 2 boxes with the same number of objects.

. Given a group of n women and their husbands, how many people myst
be chosen from this group of 2n people to guarantee that the set contains
a married couple ?

/ Thirteen persons have first names Bapu, Chandru and Damu and last
names Kale, Late, Mate and Natu. Show that at least two persons have
the same first and last names.

/(.. Eighteen persons have first names Eknath, Ganesh and Hari and last
names Patil, and Rathi. Show that at least three persons have the same
first and last names.

. The members of a class of 27 pupils each go swimming on some of the
days from Monday to Friday in a certain week. If each pupil goes at least
twice, show that there must be two pupils who go swimming on exactly
the same days.

. Let A be any set of 20 distinct integers chosen from the arithmetic pro-
gression 1, 4, 7,...,100. Prove that there must be two distinct integers
in A whose sum is 104.

j Let S = {3, 7,11,...,103}. How many elements must we select from
S to ensure that there will be at least two distinct integers among them
whose sumis 110 ?

. If 11 integgrs are selected from {1, 2, 3,...,100}, prove that there are
at least two, say z,y, such that 0 < |/ — /5| < 1.

. How many times must we roll a single die in order to get the same score
() at least twice (ii)at least three times (iii) at least n times (n > 4) ?

10. (i) Let k be a positive integer. Prove that there is a positive integer m
such that k| and the only digits in m are 0’s and 1°s.
(ii) Let k be a positive integer. Prove that there is a positive integer n
such that k|n and the only digits in n are 0's and 3's.
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1. Let n be an odd positive integer. If #),i9...., in is a permutation of
LBesv, n, prove that (1 —i;)(2 - i3)---(n — 1,) is an even integer.

2. In any set S of ten 2-digit numbers, show that there always exist 2 non-
empty, disjoint subsets A and B such that the sum of elements in A
equals the sum of elements in B.

13. Let S be a set of 7 positive integers the maximum of which is at most

24. Prove that the sums of the elements in all the non-empty subsets of
S cannot be distinct.

14. Let S be a set of 5 positive integers the maximum of which is at most

9. Prove that the sums of the elements in all the non-empty subsets of S
~ cannot be distinct.

15. Let n > 3 be an odd number. Show that there is a number in the set
{2! -1, 22— 1, ...,2"1 — 1} which is divisible by 7.

16. At registration time, 750 students were required to select exactly five
courses from a total of 10. Show that among all such combinations of
courses, there was at least one not selected by more than two students.

17. An umn contains 100 balls: 28 red, 20 green, 12 yellow, 20 blue, 10 white
and 10 black. What is the smallest number of balls that must be drawn

from the um, without looking, if the collection contains atleast 15 balls
of the same colour ?

18. Given 8 distinct positive integers from the set {1,2,...,16} prove that
there exists k such that a; — a; = k has at least 3 distinct solutions
(ai,a;).

19. A storekeeper’s list consists of 80 items, each marked “available” or “un- \
available”. There are 50 available items. Show that there are at least 2
unavailable items in the list either 3 or 6 items apart.

20. Show that given 52 integers, there exist two of them whose sum or dif-
ference is divisible by 100.

21. (a) Show that of any 5 points chosen within a square of side length 2,
there are two whose distance apart is atmost /2.

(b) Show that of any (n? + 1) points chosen in an equilateral triangle
with side-length 1, there are two whose distance apart is atmost 1 /n.
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22. Prove that when a rational number a/b, in lowest terms is expressed as a
decimal, the decimal must either terminates or recurs.

23. Every point on a straight line is coloured with one of two colours. Prove
that there is a segment whose ends and mid-point have the same colour.

24. If the points of the plane are colored in two colours, then show that there
are three points of the same colour that form vertices of an equilateral

triangle.

25. Show that among any 8 composite integers selected from the first 360
natural numbers, there will always be two which are not relatively prime.

26. If n + 1 integers are chosen, show that there exist two integers whose
difference is divisible by n, where n is a positive integer.

27. In a round-robin tournament, show that there must be two players with
the same number of wins if no player loses all matches and there are no

drawn matches.

28. Show that given any set of seven distinct integers, there must exist two
integers in this set whose sum or difference is a multiple of 10.

29. Show that any collection of eight positive integers whose sum is 20 has
a subset summing to 4.

30. Show that if (n + 1) integers are chosen from the set 1,2, ..., 2n, then
(i) there is a pair of coprime numbers among the chosen numbers; (ii)
there exists a pair among the chosen integers which adds upto 2n + 1;
(iii) there exists a pair among the chosen integers such that one of them

divides the other.

31. In a gathering of n people every two individuals either know each other
or do not know each other. Show that there must exist two individuals

who know the same number of people.

32. A set of numbers is called a sum-free set if no two of them add uptoa
member of the same set and if no member is double of another member.
What is the maximum size of a sum-free subset of

§={1,2,...,2n+1)?
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33. There are 1958 computers which can communicate among themselves in
6 languages with the provision that any two computers can communicate
only in one language out of the 6 languages. Prove that there exist at least
3 computers whose mutual language of communication, two by two, is
the same.

34. Two disks, one smaller than the other, are each divided into 200 congru-
ent sectors. In the larger disk 100 of the sectors are chosen arbitrarily
and painted red; the other 100 sectors are painted blue. In the smaller
disk each sector is either painted red or blue with no condition on the
number of red and blue sectors. The smaller disk is then placed on the
larger disk so that their centres coincide. Show that it is possible to align
the two disks so that the number of the sectors of the smaller disk whose
colour matches the corresponding sector of the larger disk is at least 100.

35. Show that every sequence a;, as, . . . @mn+1 of mn+1 distinct real num-
bers contains either an increasing subsequence of length m + 1 or a de-
creasing subsequence of length n + 1. (Recall thatif b : by,ba...,bm
is a sequence, then b’ : b;,,b;,,...b;, is called a subsequence of b
vaidEdl 0 L L e 0 X TH)

[For example, let m = 3, n = 4. Then in a sequence of mn+1 = 3(4)+
1 = 13 distinct real numbers, there is either an increasing subsequence
of length 3 + 1 = 4 or a decreasing subsequence of length4+1 = 5. In

the sequence
4,3,2,1,8,7,6,5,12,11,10,9, 16,

4,8,12, 16 is an increasing subsequence of length 4 but there is no de-
creasing subsequence of length 5.]

36. Show that among any seven distinct positive integers not greater than
126, one can find two of them, say z and y, such that 1 < y/x < 2.

37. Show that given any set A of 13 distinct real numbers, there exist T,y €

A such that .
gzl 203
1+ zy

Hints and Answers
1. (i) False; for if the number of objects is m + r, r > 0, then it is possible

that m — 1 of the boxes contain 1 object each and the m*” box contains
all the remaining r + 1 objects so that no box is empty. (ii) True; this is

Scanned by CamScanner



174

-\'\'-r\ = - —— B i o i Wad

An Excursion in Mathematics Chapter 4. Combinatorics

PP1. (iii) False; for if the number of objects is (1 — 1)/2, m > 3, then
m(m~—1)/2 > mand it is possible that the boxes contain respectively
0.1,2,...,(m~—1) objects so that all the boxes contain different number
of objects. [ Note that 1 4 -+ + (m — 1) = m(m — 1)/2 = the total
number of objects given.]

Ans. n+ 1.

By the multiplication principle, there are 4 x 3 = 12 possible names such
as Bapu Kale, Bapu Late etc. Now regard the 13 persons as 13 ‘objects’
and the 12 names as 12 ‘boxes’. Then by PP1, it follows that at least 2
‘objects’ are in the same box i.e. at least 2 persons have the same name.

By the multiplication principle, there are 3 x 2 = 6 names such as Eknath
Patil etc. Now since there are 18 persons and 18 = 3 x 6, it follows, by
PP2, that at least 3 persons have the same first and last names.

. The set { Monday, .. ., Friday} of 5 days has () + &)+ G+ {=) ==

14 5+ 10 + 10 = 26 subsets each containing 2 or more days. Regard
the 27 pupils as ‘objects’ and these 26 subsets as ‘boxes’. Then by PP1,
there must be at least one box containing at least 2 pupils i.e. at least 2
pupils must go swimming on the same days.

The given A.P. 1,4, ...,100 has »** term 3n — 2 and hence contains 34
terms. Arrange these terms in 18 boxes as follows:

[1] [52] [4 100] [7 97] ... {49 55

Note that the sum of the numbers in each of the last 16 boxes is 104.
Then by PP1, if 20 numbers are taken from these 18 boxes, then at least
two of the numbers must come from the same box (and that box must be
one of the last 16 boxes since the first two contain only 1 number each)
and their sum is 104 as required.

Ans: 15. To see this note that the set S contains 26 elements which form
an A.P. These numbers can be put in the following 14 boxes

(3] [55] [7_103] [11 99] ... [51 59

where the sum of the numbers in each of the last 12 boxes is 110. Hence
by PP1 is enough to select 15 elements from S.
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8. Consider the integral part [t] of the positive real number ¢. Then t - [¢t] =

10.

11.

[ is the fractional part of t and 0 < f < 1. Now since 1 < x < 100, we
have 1 € /7 < 10and so 1 < [/z] < 10. Thus for elements z of S,
[v/Z) must be one of the 10 numbers 1,2, ..., 10. Hence if 11 numbers
are taken from S, then by PPI, at least two of them, say z,y, must be
such that \/Z and /i have the same integral part, say i. Soif /Z = i+ f)
and /Y =i+ f2,0< f1,fa < 1,then0 < |/z— Sy =|fi—-fo| < 1.

The score is one of the 6 numbers 1,2,...,6 in one roll of the die. (i)
So, by PP1, we must roll the die 7 times to be sure to get the same score
twice. (ii) Since 13 = 2 x 6 + 1, by PP2, if we roll the die 13 times, then
we :_mxsl get the same score at least 3 times. (iii) 6(n — 1) + 1.

(i) The 9k + 1 numbers 10!, 102,...,10%+1, when divided by 9k, can
leave only 9k different remainders 0, 1,...,9k — 1. Hence, by PP1, two
of these numbers , say 10" and 10° (r > s), leave the same remainder
on division by 9k. Thus 9% divides 10" — 10° so that 10" — 10° =
10°(107~* — 1) = 9kl, for some integer . Now the integer 107~* — 1
consists of digit 9 only. Hence (10"~* — 1)/9 is an integer Thus m =
10°(107—* — 1)/9 is an integer consisting of digits 0 and 1 only and k|m
since m = kil by the above.

(ii) Find the number m as in (i). Then n = 3m is as required.

Since n is odd, let n = 2m + 1 where m is a non-negative integer.
Then the set S = {1,2,...,n} contains m + 1 odd numbers, namely
1,3,...,2m + 1 but only m even numbers, namely 2,4, ...,2m. The
same is true of the permutation i3, 42,...,i, of S. Consider the m + 1
pumbers 1 — 7,3 — 43, ...,n — i, which are of the form r — i, wherer
is odd. Since i, is even for only m values of s, by PP1, one of the m + 1
numbers iy, 42, .. ., in, SAY %, is odd where t is also odd. Hence ¢ — i is

even and so the product (1 — i3)(2 —i2) - -+ (n — i) is even.

12. Let s(T') denote the sum of the numbers in any non-empty subset T

of S. Then by data, the largest number in S can be at most 99 and so
8(T) < 90+ 91 + - - - + 99 = 945. Thus s(T') has at most 945 different
values. But the number of non-empty subsets of S is 2! — 1 = 1023,
Hence, regarding the sums s(7") as ‘boxes’ and the non-empty subsets
T of S as ‘objects’, we see that there are more objects than boxes. So,
by PPI, there exist 2 distinct non-empty subsets A, and B; such that
s(A;) = s(B,). If Ay, B, are disjoint, they are the required subsets. If
A, N B, is non-empty, we can remove the common part from each of
them to get the required subsets.
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13. Let s(7) denote the sum of the numbers in any non-empty subset T" of
S. Since the largest number in 7" can be at most 24 we have s(T") <
18 + 19+ -+ 24 = 147. Thus s(T') can have 147 different values. But
we cannot argue as in the last problem because in this case the number
of non-empty subsets of S is 27 — 1 = 128 — 1 = 127 which is less than
the number of possible sums, namely 147. So we consider non-empty
subsets A of S such that |A| < 5. Thereareinall 2" — (14+7+1) = 119
such subsets T" because we have to exclude the empty set and the ( ) =17
subsets with 6 elements each and the set S itself. Now for such a subset
A we have s(A) < 20 + 21 + 22 + 23 + 24 = 110. Hence, as in the last
problem, by PP1 we see that there exist 2 non-empty subsets A, B with
at most 5 elements such that s(A) = s(B).

14. Consider non-empty subsets A of S such that |A| < 3 and proceed as in
the last problem.

15. Consider the n numbers 2°.2!,...,27~1, Since n is odd, none of these
numbers is divisible by n and so, modulo n, they can leave only n — 1
different remainders: 1,2,...,n — 1. Hence, by PP1, two of them, say
2" and 2%, 0 < s < r < n — 1, must leave the same remainder modulo
n so that n divides 2" — 2° = 2%(2"~% — 1). Hence n divides 2"7° — 1
since n is odd and so n and 2° are coprime. So the result follows since
1<r—-s<n-1.

16. There are () = 252 different 5-combinations of the 10 courses avail-
able to the 750 students. Hence the average number of times a combina-
tion is chosen by a student is 750/252 = 2.97... Hence, by PP3, there is
a combination which was chosen by at most 2 students.

17. By PP4,itisenoughtodraw (14 + 14+ 12+ 144+ 10+ 10)+ 1= 75
balls.

18. Let a,,...,ag be the chosen numbers. Without loss, we may suppose
that these are arranged in decreasing order:

ap > az > az > a4 > as > ag > ay > as.

Now we have (5) = 28 differences of the form a; — a; with i < j.
We have to show that at least three of these differences are equal with
common value k, say. We will, in fact, show that at least three of the

following seven successive differences

a) — az, az — az, az — a4, a4 — Aas, Q5 — Qg, Gg — az, ay —ag (i)
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19.

22.

23.

16 — 1 = 15. Suppose, if possible, that,any difference can occur at th_c
most twice. Then the sequence of differences having minimum sum 1s

clearly the following:
1, 1, 2, 2, 3, 3, 4;

are equal. Since 1 < a; < 16, the sum of these differences is a1 — ag <

and the sum of these differences is 16. This contradicts the fact that the
sum of the differences is always < 15. Hence at least thrée of the seven

differences in (i) must be equal.

Let the positions of the unavailable items be a,, a2, . . -, @3o-
Since a3p < 80, we see that the 90 numbers

a; < az <---<aso
and a1 +3<ay+3<...<azp+3
and a1 +6<ax+6<...<azg+6

lie between 1 and 80. Hence by PP1, two of these numbers must be
equal. But the numbers in the first row are all distinct and similarly the
numbers in the second row and those in the third row are all distinct.
Hence some number in one of the rows must be equal to a number in
some other row. So, for some %, j we have either a; = a; + 3, ora; =
aj + 6 ora; + 3 = a; + 6. Hence either, a; — a; = 3 or a; —a; = 6,

as required.

We obtain the decimal for a/b by long division as follows: Divide a by
btoobtaina = zb+ r, 0 £ r < b. Next, divide 10r by b to obtain
10r = ;b + r1, 0 < r; < b. Next, divide 107; by b to obtain 10r; =
z2b + 12, 0 < 12 < b; next divide 10rz by b to obtain 10ry = x3b +
r3, 0 < r3 < b, and so on. Then, we get a/b = z - z129T3--- .
Now if the decimal does not terminate, then we must obtain a non-zero
remainder at each stage. Since there are only b — 1 possible different
non-zero remainders, by PP1, some remainder must be repeated after at
most b steps. Hence the expansion will recur from this point onward.

Suppose every point on a straight line is coloured with one of 2 colours,
say red and blue. Then there exist 2 distinct points, A and B, with the

same colour, say red.

Let C be the mid-point of AB. (i) Let C be red. Then segment ACB is
as required. (ii) Let C be blue. In this case, take a point A’ on the A-
side of C such that AA” = AB and a point B’ on the B-side of C such
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that BB' = AB. If A’ and B’ are both blue, then scgment A C'B.' is as
required. If A’ is red, then segment A'AB is as requlrec!. If B' is red,
then segment ABB' is as required. Thus the result holds in all cases.

24. Suppose the points of the plane are colored in two colours, say red and
blue. Then, as shown in the last problem, there exists a segment ADB
such that D is the mid-point of AB and the points, A, D, B have the
same colour, say red. Consider an equilateral triangle ABC. .Let E,F
be respectively, the mid-points of BC' and C'A. If E ( respectively F')
is red, then ADBE ( respectively ADF A) is as required. So, suppose
both E, F are blue. Then if C is red, then AABC is as required and if

C is blue, then ACF FE is as required.

25. Leta;,. .., ag be eight composite numbers from the numbers 1, ... . , 360.
Now for 1 < i < 8, a; < 360 < 361 = 192. Hence, if p is the smallest
prime divisor of any a;, then p < /a; < 19. Now there are only 7
primes less than 19: 2,3, 5,7,11,13, 17. So, by PP1, at least 2 a;’s must
have a common prime divisor.

33. Let C; be any one of the given 1958 computers. Then since C; commu-
nicates with the remaining 1957 = 326 x 6+ 1 computers in 6 languages,
it follows by PP2 that C; communicates with at least 327 computers in
the same language, say L. If two of these 327 computers communi-
cate with each other in this language L, the the result holds. Otherwise
these 327 computers communicate with each other in the 5 remaining
languages. Now we can repeat the above argument: Let C; be any one
of the above 327 computers. Then C; communicates with the remaining
326'= 65 x 5 + 1 computers in 5 languages, so that C; communicates
with at least 66 computers in the same language, say L,. If two of these
66 computers communicate with each other in this language Lo, then
the result holds. Otherwise these 66 computers communicate with each
other in the 4 remaining languages, and since 65 = 16 x 4 + 1, we are
reduced to the case of 17 computers which communicate with each other
in the same language out of the 4 languages. Next, since 16 = 3 x 5+ 1,
we have the case of 6 computers which communicate with each other in
2 languages. Now the result follows by solved Ex. 7 above.

34 Let 5,,85,,...,S20 denote the successive sectors of the smaller disk.
As the smaller disk rotates, sector S, matches in colour with 100 sectors
of the larger disk in one complete rotation. Similarly, sector So matches
100 times and so on for each of the 200 sectors of the smaller disk. Hence
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in all there are 100 x 200 = 20000 colour matches for the 200 sectors
of the smaller disk. Theréfore the average number of colour matches per
position is 20000/200 = 100. So the result follows by PP3.

35 Leta : a;,ag,...,8mns+1 bE the given sequence. Let Z; denote the
length of the longest increasing subsequence of a beginning at a; and let
y; be the length of the longest decreasing subsequence of a beginning at
a;. Consider the mn + 1 ordered pairs (z;,y:),1 <i < mn+1. We will
prove that

() All these mn + 1 ordered pairs are distinct.

]
bl
'
3

For any distinct integers i, such that 1 < 4,j < mn + 1, we are
given that a; # a; since the terms of the sequence are distinct. Let

i < j. First let a; < a;. Then it follows that z; > T; since we can
append a; at the beginning of every increasing subsequence beginning

1 with a; and obtain a longer subsequence of the same type. ( To sec

this, let a’ : aj,,aj,...aj,, where j1 = j, be any increasing sub-
sequence of a starting with a;. Then since i < j = Jj1, the sequence
a” : ai,0;,,08j,,- - - @j, obtained by appending a; to &’ is a subsequence
t of a starting with a;. Further, this last subsequence is also increasing be-
cause by supposition a; < a;,.)
Similarly, if a; > @;, then y; > ¥;. Hence, if i # j, then (z;, i) and
(z;,y;) are distinct ordered pairs. This proves ().

- Now suppose that the stated result is not true. Then for each i, we must
have 1 < z; <mandl <y <N Thus there are only m possible
different values of z; and only n possible different values of y;. Hence,
by the multiplication principle, only mn of the mn + 1 ordered pairs
(zi,:) can be distinct. Hence by PP, at least 2 of the mn + 1 ordered
pairs must be equal: contradiction to (*). Hence the result is true.

e —

4.4 Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion (PIE) is the most general form of
the addition principle for enumeration. Let S be a finite set of objects. Let A
and B be two subsets of S, then to count the number of elements in AU B
is to count the number of elements of A and those of B — A and add. But

|B - A|=1|B|-[AN B|. Hence
|Au B| = |A| + |B| - |AN B|.

:‘ - —_--h,,..m-_um_.—,.-., .
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In other words, while counting elements of A and of B separately, elements
common to both A and B are counted twice and so in order to nullify this
double counting one has to remove the A N B count once from |A| + | B).

General form of PIE Let A}, A,,..., A,, be subsets of an n-element set S.
Let A; = § — A, = the complement of A; in S. Then the number of elements
not belonging to any of the sets A, A, ..., A, is given by

[AiNA2N...NAL | =n-5+8 ~Ss+...+ (-1)™S,,

where S, = Z |[4i, NA;; N N A; |

and the sum is taken over the C(n, r) choices of r integers i1, . .., %, such that
1<, S v St T
To understand this better let us take m = 3. Then

41N A NAL = n— (|| + |4 + | As))
+ (AN Az| + |41 N Ag| + |A2 N As]) - |4, N Ay N Ag.

Example 1 Find the number of positive integers between | and 1000 which
are divisible neither by 2 nor by 5.

Solution. Let S = {1,2,...,1000}, A = {z € 5|2 divides z},
B = {z € S| 5 divides x}. We are interested in finding |A’ N B’|. Recall the
De Morgan laws,

(AUB) = A'NB',(ANB) = A'UB'. Thus if [z] denotes the integral part
of z,

\A'NB'| = |(AUB)'|=|S|-|AUB| =S|~ (|A]+|B| - |4n B))
= 1000 - ([1000/2] + [1000/5] — [1000/10]) = 400.

Example 2 A party is attended by n persons and every party-goer leaves his

hat at the counter. In how many ways can the hats be given back so that nobody
receives his own hat?

Solution. Let 1,23, ..., n be these persons and 1, 3. . . , i denote their corre-

sponding hats. Let A; denote the set of all distributions so that i gets his own
hat fori = 1;2....50,

The number of distributions in which ; gets 7 is clearly (n — 1)! as the

remaining (n - 1) hats can be distributed arbitrarily among the remaining (n —
1) persons. Thus |A4,| = (n-=1).

Next for each choice of k distinct integers iy,43...,4 from 1,2, ..., n let
Aiyiz.ie = A, NAi, N .. N A;, = the set of all distributions so that i, gets

4
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i1, g, gels ig,. .., 4 gets ix, then again |Aiiz...is| = (n = k)!. Note that th‘is
counting is independent of the choice of i1,12,. .., ik. The number of ways in
which we can choose k distinct symbols from 1,2, ...n ils C(n.k).
Thus Sc = 3 |Auis..ial = C(n, k) - (n = K)! = Ji. Now by PIE
A NASN...n4L| = n!=C(n,1)(n—-1)!+ C(n,2)(n—2)—...
+ (-1)*C(n,k)(n = k) + ...+ (-1)"C(n, n)

This number is denoted by D,,. Thus the probability that no one gets his own
hatis D, /n!. Note that D,, is the number of derangements of §=(1,2,...n),
where a derangement of S is a permutation (i1, 82, ... in) such that i 7# k for
k=1.2....0

Example 3 Find the number of integer solutions of z; +Z2 + 3 = 24 subject
to the conditions 1 < z; <5, 12 <15, <18, —1< 23 < 12.

Solution. Lety; =1 — 1, y2 =22 — 12, y3 =23 + 1,50 that the equation
becomes y; +y2+y3 = 12, and we want non-negative integer solutions subject
to the conditions y; < 4, y2 < 6, y3 < 13. Let A, B, C'be respectively
the sets of all solutions (y1,¥2,¥s) such that zn > 4, y2 > 6, y3 > 13.
Then A N B is the set of solutions with y; > 4 and yo > 6, with similar
meaning for ANC, BN C and AN BN C. Now the number of non-negative
integer solutions of y1 + y2 + y3 = 12isn = (*~17'%) = 91. Further,
|A| = (3".1,”) = 36, |B| = (3_;*’5) = 21 and |C| = 0, since y3 < 13; and
similarly JANB| =1, |ANC| = |BNC| =0, |AN BN C| = 0. Hence, by
PIE, the required number of solutions is 91 — (36 + 21 + 0) + (1) — 0 = 35.

Example 4 A person starts from the origin O(0,0) in the X-Y" plane. He takes
steps of one unit along the positive X -axis or the positive ¥ -axis. Travelling
in this manner, find the total number of ways he can reach A(9,6) avoiding
both the points P(3,3) and Q(6,4).

Solution. We ‘use the following formula: the number of paths from (0, 0) to
(m,n) is (™1™). Let T(O, A) be the set of all paths from O(0, 0) to A(9, 6),
T(O, P, A) be the set of all paths from O to A via P, etc. Hence

IT(0, P, A)| = |T(O, P)| x |T'(P, A)|, where |T'(P, A)| is to be evaluated by
shift of origin to P. Now,

T(0, )|, = (9:;6)=5005,
3+3 6+3
|T(O,P,A)| = ( 3 )x( g )=20x84=1680,

S
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|T(0.Q. A)| = (614) x (3;2) = 210 x 10 = 2100,
IT(0, P,Q,A)| = (3;3) x(s-:l) " (3;’2) =20 x 4 x 10 = 800.

A

0

By the inclusion-exclusion principle, the required number of paths is given by

IT(0, 4)| - (IT(0, P, A)| +|T(0,Q, 4)|) + |T(0, A, Q, 4)]
= 5005 — 1680 — 2100 + 800 = 2025.

Exercise Set-4.5

1. Find the number of integers between 1 and 1000 inclusive which are not
divisible by any of 2,3, and 7.

2. How many integers between 1 and 1000,000 inclusive are neither perfect
squares, nor perfect cubes, nor perfect fourth powers?

3. (a) Show that forn > 2, D,, = (n - 1)(Dyp—1 + Dy_2).
(b) Show that D,, is even, if n is odd.
(c) Show that D, = nD,_;+ (—1)*,n > 2.

4. In how many ways can the letters M, A, D, I, S, O, N be written
down so that the word spelled completely disagrees with MADISON?

5. Prove that there exist 2" — 2 numbers that have n digits made up 6nly of
the numbers 1 and 2 and contain each digit at least once.

F]
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6. Find the number of positive integer solutions of ry + 22 + 73 = 15
subject to the conditions z; < 5, 1, < 6, T3 < 8.

7. Three identical black balls, four identical red balls and five identical
white balls are to be arranged in a row. Find the number of ways that

can be done if all the balls with the same colour do not form a single
block.

Solutions to Exercise set-4.5

1.286 2. Hint: The numbers between 1 and 10¢ which are perfect k'? powers
are the integers n such that 1 < n < 108/*. Ans. 998910,

4.5 Recurrence Relations

Definition: A recurrence relation for the sequence ag,a;, ... is an equation
that relates a., to certain of its predecessors ag, a1, . . .,an—1.

A recurrence relation defines the n th term of a sequence indirectly. We
give two examples of recurrence relations.

1. Fibonacci Sequence: Fy = 1, F} = 1 and for n >2,F, =F, 1+ F,_,.
This sequenceis 1,1,2,3,5,8, 13, ....

2. Derangeﬁnents: Dy, = (n—=1)(Dp-1 + Dp_3)
The following examples illustrate how to obtain the recurrence relations.

Examples

1. Find the number of regions n lines in general position in the plane divide
the plane into.

Solution. Here it is assumed that no two of the n lines are parallel and
no three intersect at the same point. Let a,, denote the required number
of regions into which the plane is divided. Thenag = 1,a; = 2, a; = 4,
a3z = 7.Infact,forn > 1, a,, = a,,_; +n. This happens because the nth
line is cut by the previous n — 1 lines in n segments and each segment
cuts a region into two new regions. Hence n regions are added to a,,_,
giving a,,. Now

ar=14+1, ax=a,+2, ... ceey Qp =Qqp_1+n,

Adding these equations we get a, = 1 + 3n(n + 1).

2. Find the number of binary sequences of length n having no 11. (In a
binary sequence every term is 0 or 1).
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Solution. Consider the set S, of all n— bit sequences with no 11. Let
n > 3. Decompose S, into S, 0 and S,, ; as follows:

Sn,0 = n— bit sequences starting with a zero and without 11,

Sn,1 = n— bit sequences starting with a one and without 11,

Clearly S, 5 is obtained by appending a zero at the beginning of elements
of Sp—1. Also in every element of S,, ; the second digit has to be 0 and
the remaining n — 2 bit-sequence must come from S, _». Let a,, denote
the number of elements in S,,. Then we gelan =an—1 +an-2, n>
3. (The recurrence relation is same as that for the Fibonacci sequence,
however the sequence a,, is different as the initial values are different:
a; = 2,a; =3.)

3. There are n necklaces such that the first necklace contains 5 beeds, the
second necklace contains 7 beeds, and in general the ith necklace con-
tains ¢ beeds more than the number of beeds in the (i — 1)st necklace.
Find the total numbers of beeds in all the n necklaces.

Solution. Let 7; denote the number of beeds in the ith necklace. Thus

for2<i<n
T = T +2
I3 = T5+3
T; = Tiy+i

Adding, T; = Ty +2+3+--- +i=4+ L je T, = 44 1(i2 +4)
This holds for 1 < i < n. Adding, we get

n n lﬂ lﬂ.
T, = 4+ ) P+
PSP P PRSP =
In(n+1)(2n+1) 1n(n+1)

2 6 T3 2

n(n+1)(n+2) _

- D n?
= 4n+ 5 _5["' + 3n + 26]

= 4n+

4. Tower of Hanoi: This is a puzzle consisting of three pegs mounted
on a board and n disks of different sizes. Initially all the n disks are
stacked on the first peg so that any disk is always above a larger disk.
The problem is to transfer all these disks to peg 2 with minimum number

-
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4.5. Recurrence Relations o

of moves, each move consisting of transferring one disk from any peg to
another so that on the new peg the transferred disk will be on top of a
larger disk. (Keeping a disk on a smaller disk is not allowed).

Tower of Hanoi

Solution. To accomplish this, let C; denote the minimum number of
moves required to transfer a heap of i disks from one peg to another
under the given conditions. First transfer uppermost n — 1 disks from
first peg to peg 3. This can be done in C\,_; moves (minimum number).
Now transfer the n*? disk from peg 1 to peg 2. Place the n — 1 disks from
peg 3 to peg 2 using C,—; moves. Thus we get the recurrence relation,

Exercise Set-4.6

1. Determine the recurrence relation for a,:

(i) a,, is the number of regions into which the plane is divided by n
circles, where each pair of circles intersects in exactly two points and no

three circles meet in a single point.

(i) In a singles tennis tournament, 2n players are paired off in n maitches;
an denotes the number of different ways in which this pairing can be

done.

2. n points are given on the circumference of a circle, and the chords deter-
mined by them are drawn. If no three chords have a common point, how
many triangles are there all of whose vertices lie inside the circle? (E.g.
one triangle when n = 6).

3. Let n be an integer > 3. Find a direct combinatorial interpretation of the

identity ((g ) = 3(“: 1).
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4. Suppose 5 points are given in the plane, not all on a line, and no 4 on
a circle. Prove that there exists a circle through three of them such that
of the remaining 2 points, one lies in the interior and the other is in the
exterior of the circle.

5. Show that for each n > 6, a square can be subdivided into n non-
overlapping squares.

6. If n is a power of 2, say 2*, find the largest value of m such that there is
an m—element subset A of {1,2,3,...,2*} such that
(i) The set A does not contain a power of 2 (not even 2° = 1), and
(i) No two elements of A adds upto a power of 2.

Solutions to Exercise Set-4.6

lLL(Dan=an_1+2n-2, a; =2. (ii)apn =(2n—1)an-1, a1 =1

2. (7).

4. Take n points on a circle with centre O. The number of chords formed from
these points is () and the number of pairs of chords is (( )) Now consider the
n + 1 points including given n points and the centre O. We can choose 4 points
out of these n + 1 points to get ("7') combinations. If such a combination
contains O, then we get 6 line segments of which 3 are radii and 3 are earlier
chords.

The 3 chords give rise to (3) = 3 pairs of chords with exactly one point
common to a given pair. E.g. {O, A, B, C} gives AB, AC, BC as three chords
and {AB, AC}, {AB, BC} and { AC, BC?} as three pairs of chords.

We next consider a collection of 4 points not including O. This gives (3) =

6 chords and hence ( = 15 pairs of chords. Out of these we take into account
only those pairs having no point common. (The pairs with one point common
have already been considered). These are again exactly 3. E.g. {A, B,C, D}
gives rise to the pairs {AB,CD}, {AD, BC} and {AC,BD}. In this way,
we have counted all the earlier pairs of chords. Hence the second method of
counting pairs of chords gives their number as 3("7 ).
Hint for 5. First show that two of the points, say A and B, can be chosen so
that the remaining points, say P, Q, R, lie on the same side of the line AB.
Show that the angles ZAPB, ZAQB, ZARB are all of different sizes. We
may suppose then that ZAPB < ZAQB < ZARB. Hence the circle through
A, B and Q contains R in its interior and P in its exterior.

Generalization: Consider 2n + 3 points. (5 is the case n = 1) then there is
a circle through 3 of the points with n points inside and n points outside the
circle.
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4.6. Miscellaneous Problems

- k-1 k _1}. Ans.
Hint for 6. Consider the set A = {2¥~1 4+ 1,2°7" +2,... 2k — 1}

m=2k—l_1. -

4.6 Miscellaneous Problems

., a1o be ten real numbers such that each is greater than

le5 Leta,,.. _
oy iy g the given numbers which

1 and less than 55. Prove that there are three amon
«form the lengths of the sides of a triangle.

Solution: Without loss of generality, we may take
14(1]'5023...50.10‘(55. (l)

Let, if possible, no three of the given numbers be the lengths of the sides of

any triangle. We will consider the triplets a;, @i+1, Qi+2, 1 <1< 8. Asthese
numbers do not form the lengths of the sides of a triangle, the sum of the

smallest two numbers should not exceed the largest number i.e. a; + @i41 <

ai+2. Hence,

i = 1 gives a; + a2 < a3 giving 2 < as.

i = 2 gives ap + a3 < aq4 giving 3 < ay.

i = 3 gives ag + a4 < as giving 5 < as.

i = 4 gives a4 + a5 < ag giving 8 < ag.

i = 5 gives as + ag < ay giving 13 < a7.

i = 6 gives ag + a7 < ag giving 21 < as.

i =7 gives a7 + ag < ag giving 34 < ag.

i = 8 gives ag + ag < ajp giving 55 < ajo,

contradicting (i).
Hence there exist three numbers among the given numbers which form the

lengths of the sides of a triangle.

Example 6 In a collection of* 1234 persons any two persons are mutual
friends or enemies. Each person has at most 3 enemies. Prove that it is possi-
ble to divide this collection into two parts such that each person has at most 1
enemy in his subcollection.

Solution. Let C denote the collection of given 1234 persons. Let { C;, Ca}
be a partition of C. Let e(C}) denote total number of enemy pairs in C;. Let
€(C2) denote the total number of enemy pairs in Cs.

Let e(C1,C2) = e(Cy) + e(C;) denote the total number of enemy pairs cor-
responding to this partition { C,,C, } of C. Note e(C}, Cy) is an integer > 0.
Hence by Well-ordering principle there exists a partition having the least v;luc
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of C(C] ' Cz)

Claim: This is a required partition.

If not, without loss of generality suppose there is a person P in C; having at
least 2 enemies in C'y. Construct a new partition { Dy, D2} of C as follows:
Dy =Cy - {P}and D; = C3 U { P}. Now

(D1, Dy) = e(Dy) + e(D3) < [e(Cy) — 2] + [e(C2) + 1] = e(Cy,C2) — 1
Hence, e(Dy, D;) < €(C}, Cz), contradicting the minimality of e(Cy, C2).
Example 7 A barrel contains 2n balls, numbered 1 to 2n. Choose three balls
at random, one after the other, and with the balls replaced after each draw.

What is the probability that the three element sequence obtained has the
properties that the smallest element is odd and that only the smallest element,
if any, is repeated?

Solution: The total number of possible outcomes is N = 2n x 2n x 2n = 8n3.
To find the total number of favourable outcomes we proceed as follows:

Let a be any odd integer such that 1 < a < 2n — 1 and let us count the
sequences having a as least element.

(i) There is only one sequence (a, a, a) with a repeated thrice.

(i1) There are 2n — a sequences of the form (a, a, b) with a < b < 2n. For
each such sequence there are three distinct permutations possible. Hence there
are in all 3(2n — a) sequences with a repeated twice.

(iii) When n > 1, for values of a satisfying 1 < a < (2n — 3), sequences
of the form (a, b, c) with a < b < ¢ < 2n are possible and the number of such
sequencesisrT =1+2+---+(2n—a—1) = 1(2n —a)(2n — a — 1). For
each such sequence there are six distinct permutations possible. Hence there
are 6r = 3(2n — a)(2n — a — 1) sequences in this case.

Hence, for odd values of a between 1 and 2n — 1, the total counts of pos-
sibilities S, S5, S5 in the above cases are respectively

S1=1+41+4--4+1=n, S5=3[1+345+---+(2n—1)] = 3n?,
S3 = 3[2><3+4x5+---+(2n—2)(2n—1)]=n(n-—1)(4n+1).

Hence the total number A of favourable outcomes is 4 — S1+ S+ 83 =
n +3n? + n(n — 1)(4n + 1) = 4n3. Hence the required probability is

A_4n3_1
N 8n% 2
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Regional Mathematical Olympiads in India

With a view 1o locate and then nurture Mathematical talent among school
going children in India, an elaborate scheme has been drawn up by the Na-
tional Board for Higher Mathematics (NBHM). Under this scheme, Regional
Mathematical Olympiads (RMO) are held in various regions across the coune

“try. More information and the exact date can be obtained from the concerned
regional/group coordinators. The list of the coordinators is given at the end of
this write up. Primarily, students of Std. XI and XII (first and second year of
Junior College) can appear for RMO. But the students of Std. VIII, IX or X
are also eligible to appear for RMO. The top 15 to 30 students from each re-
gion/group selected in RMO, including at most 6 students from Std. XII, will
be invited to write the Indian National Mathematical Olympiad (INMO).There
is no fixed syllabus for RMO or INMO. Problems asked are of a non-routine
type but within the capacity of a bright talented 15 year old student. The top
30 students of INMO (called INMO Awardees) would be invitéd 1o a Sufimer
Camp at HBCSE, Mumbai in May-June. All these students, and also INMO-
awardees of the previous years who are still pre-university students and who
show good performance in postal correspondence during the academic year,
would be eligible to be selected to the Indian team for participation in Interna-
tional Mathematical Olympiad (IMQ). The selection of the team is done during
the Summer Camp.

INMO awardees may take up any branch of study in future and if they give
evidence of their continued interest in mathematics, they will be eligible for
NBHM scholarships. NBHM organises Nurture Programs every year in sum-
mer vacation for these talented students.

National Coordinator, Prof. R. B. Bapat
Indian Statistical Institute, 7, S.J.S. Sansanwal Marg, New Delhi-110016.
email: rbb@isid.ac.in

List of Regional Co-ordinators

1. Region Costal AP & Rayalaseema Prof, David Kumar, Commission-
erate of Collegiate Education, Govt. of Andhra Pradesh, Opp. To Latha
complex, Namapally (Station ), Hyderabad -500 00]

Ph.: 040 - 2461 7469 Fax: 040 - 2460 2285, 2461 7469
E-mail: rdkumar1729@yahoo.com rdkumar1729@gmail.com

2. Region Telangana Prof. R. Kedareshwar Rao Dept. of Mathemat-
ics, Acharya Aryabhata University, Vignan Vidyalayam, Nizampet, opp.
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JNTU Kikatpally,Hyderabad - 500 072. Ph. (040) - 2461 7469, (040) -
2301 1853, e¢-mail:kedar_rudra@yahoo.co.in

3. Region South Bihar Prof R K Das Lal Bagh, Tilakamanjhi, Police Line
Road Bhagalpur 812 001, Bihar Ph.: (0641) - 261 1236.

4. Region North Bihar Azhar Hussain Dept. of Mathematics Veer Kun-
war Singh University Ara (Bihar) Email: hussainazhar@yahoo.com

5. Region Delhi Prof Amitabh Tripathi Dept of Mathematics IIT, Hauz
Khas, New Delhi 110 016 Ph.: (011) - 2689 6831 (011)- 2659 1-486
E-mail: atripath@maths.iitd.ernet.in at1089 @rediffmail.com

6. Region Gujarat Prof. 1. H. Sheth Dept of Mathematics, School of.
Sciences Gujarat University Navrangpura, Ahmedabad 380 009.
Ph.: (079) - 2630 1154 (O)
E-mail: ganit_spardha@yahoo.co.in, yisheth@yahoo.co.in

7. Region Jharkhand Dr. K. C. Prasad Dean faculty of science Ranchi
University, Dept. of Mathematics,Morabadi Campus, Ranchi 834 008
Ph.: 0651 -2233 877 / 2233 127 (O) Fax: 0651 - 2233 877.
e-mail: kcprasad1@rediffmail.com

8. Region Karnataka Dr. B. Sury (RMO) Stat math Unit Indian Statisti-
cal Institute 8th Mile Mysore Road, RV College Post Bangalore 560059
Ph: (080) 28483002/ 06 Extn. 445 (O) (080) 28484265 (F)

Email: sury@isibang.ac.in .

9. Region Karnataka Dr. A. K. Nandakumaran (INMO) Dept of Math-
ematics IISc Bangalore 560 012 Ph.: (080) - 2293 2265
e-mail: nands@math.iisc.ernet.in

10. Region Kerala Dr. Ambat Vijaykumar Reader Dept of Mathemat-
ics Cochin University of Science & Technology Cochin 682 022 Ph.:
(0484) - 2577 518 (O) e-mail: ambatvijay @rediffmail.com vijayam-
bat@member.ams.org vijay @cusat.ac.in

11. Region MP Shri Anantram R. Pathak Director, State Institute of Sci-

ence Education (SISE) P. S. M. Campus, Jabalpur 482 001 Ph.: (0761) -
2625 776 (O) Dr. Rajendra Pandey Fax: 0761 4004206

12. Region Chhattisgarh Dr. V. K. Pathak, Asst. Professor (Mathematics)
Govt. P.G. College, Dhamtari Chattisgarh : 493773 Ph. 07722-Fax:
07722- 237933 Email: vkpath21162@yahoo.co.in

Scanned by CamScanner



220

An Excursion in Mathematics

14.

13.

22

13,

16.

17.

18.

19.

20.

21.

Region Maharashtra & Goa Dr. V. V. Acharya c/o Bhaskaracharya
Pratishthan 56/14, Erandawane, V. Damle Path Off Law College Road
Pune 411 004. Ph.: (020) -2543 4547/2541 0724 (O)

E-mail: vvacharya@yahoo.com, rmomaha@yahoo.co.in,
rmomaths @gmail.com '

Region Mumbai Prof. Arvind Kumar / Prof. H. C. Pradhan HBCSE,
TIFR, V N Purav Road, Mankhurd 400 088.
E-mail: arvindk@hbcse.tifr.res.in, hcp@hbcse. tifr.res.in

Region North East Prof. M. B. Rege Dept of Mathematics, North-

Eastern Hill University Permanent Campus Mawlai, Shillong, Megha-
laya 793 022. Ph.; (0364) - 2550083.
e-mail: mb29rege @yahoo.co.in

Region Tripura Prof: Dipankar De, Asstt.Prof. (Sel. Gr.) Depart-

ment of Mathematics Ramthakur College Agartala-799003, Trighra L-
line:03812230295 Fax: (0381)2326503 ’ -

E-mail: rtc_tu@yahoo.com; dipankardee @yahoo.co.in.

Region North West Dr. V. K. Grover Dept of Mathematics,Panjab Uni-
versity, Chandigarh 160 014. Ph.: 0172 - 2534 510 (0) 2711 317 R)
98884 86387 (m) e-mail: grovervk@pu.ac.in vk_gvr@yahoo.com

Region Rajasthan Dr. A. K. Mathur Regional Coordinator, INMO,
Dept of Mathematics, University of Rajasthan, Jaipur 302 004
Ph.: 0141 - 3708 392 (0) 2550 377 (R) 93145 29855 M)

Region Orissa Prof. Sudarshan Padhy Dept of Mathematics,Utkal
University, Bhubaneshwar 751 004

Ph.: (0674) - 2582 301 (O) E-mail: spadhy @sancharnet.in

Tamilnadu Prof. K. N. Ranganathan Dept of Mathematics Ramkr-
ishna Mission’s Vivekananda College, Chennai 600 004 Ph.: (044) -
28342651 e-mail: hurrrahs@vsnl.com knranga@dataone. i

UP Prof. D. P. Shukla Dept of Mathematics &
University Lucknow 226 007, Ph.: (0522) - 27
shukla3 @gmail.com

Region Uttarakhand Prof. M. C. Joshi Dept of Maths, Stats & Comp.

Science, Gobind Ballabh Pant Agri. & Tech. University, Pantnagar 263
145, Uttaranchal. Ph.: (05944) - 234 559 (R).

e-mail: mcjoshi69@gmail.com, mcjoshi @gmail.com

n

Astronomy Lucknow
40 019 (O) Email dp-

Scanned by CamScanner



An Excursion in Mathematics 221

7 Region WB Dr. Pradipta Bandyopadhyay ISI,202B T Road, Kolkata
700 108. Ph. (033) - 2575 3422, Fax : 91 - 33 - 2577-3071. e-mail:
pradipta@isical.ac.in e-mail: pradipmbandyo@yahoo.co.uk

24. Region J & K Dr. Bashir Ahmed Zargar Department of Mathematics
University of Kashmir Srinagar - 1900G6 Ph. (0952) 257347 e-mail :

zargarba3 @yahoo.co.in

25. Region KVS Mr. G.S. LawaniaKVS Mathematics Olympiad, Kendriya

Vidyalaya NTPC, Badarpur New Delhi 110 044.
Ph.- 98914 26013 E-mail: gslawania@rediffmail.com

26. Region CBSE Director (Academic) Central Board of Secondary Edu-
cation Shiksha Kendra Bhavan 2, Commercial Centre, New Delhi 110

092. Ph: 2322 0154 (Dir) / 2251 5829

27. Region NVS Prof. H.N.S. Rao Dy. Commissioner, Navodalaya
: * Vidyalayd of Navodaya Vidyalaya Samiti Regional Office A-28, Kailash
Colony New Delhi 1 10 048. Ph.: (011) 2642 4162(0) ¢
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Addition Principle, 141
AM-GM Inequality, 67
- Amplitude, 59

Apollonius Circle, 115
Apollonius’ Theorem, 110
Arithmetic Function, 30

Bezout's Theorem, 3
Bijection Principle, 143
Binomial Theorem, 8, 148

Cauchy-Lagrange identity, 70
Cauchy-Schwartz inequality, 70
Cauchy-Schwarz Inequality, 69, 70
Centroid; 110
Ceva's Theorem, 98
Ceva’s Theorem
Trigonometric Form, 100 .
Chinese Remainder s
Theorem, 25
Circumcentre, 112
Combination, 148
Combinations with repetitions, 157
Complete Residue System, 20
congruence, 14
Coprime integers, 3
Cosine Rule, 109

de Polignac’s Formula, 29
Degree of a Polynomial, 49
Divisibility, 1
Division Algorithm, 2
Division Algorithm

for Polynomials, 49

Elementary Symmetric
Polynomials, 53

Euclid’s Lemma, 7

Euclidean algorithm, §

Euler Line, 113
Euler's Theorem, 21, 118
Euler’s Totient Function, 20

Factor Theorem, 50
Fermat Numbers, 8
Fermat primes, 8

. Fermat’s Little Theorem, 8

Fermat’s Theorem, 21

Fundamental Theorem
of Algebra, 50

Fundamental theorem
of Arithmetic, 9

Gergonne point, 101
Greatest Common Divisor, 3
Greatest Integer Function, 28

Heron’s Formula, 125

Incentre, 114
Inverse of an element, 22

Lagrange’s Theorem, 24
Least Common Multiple, 10

Mobius function, 30

Mobius Inversion Formula, 30
Menelaus Theorem, 104
Monic Polynomial, 49
Multiplication Principle, 141
Multiplicative Function, 30

Nine-point Circle, 116

Order of an element, 26
Orthocentre, 112

Pedal Line, 119
Pedal triangle, 112
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Permutation, 147 .
Permutations with repetitions , 157
Pigeonhole Principle, 163
Polar form, 59
Polynomial, 49
Primitive root, 26 -
Principle of Inclusion

and Exclusion, 179
Principle of Mathematical

Induction, 1

Induction

Strong Form, |

Ptolemy’s Theorem, 63
Ptolemy’s theorem, 121
Pythagorean Triple, 33

Reduced Residue System, 20
Remainder Theorem, 50
Representation of a

positive integer, 34
RMS-AM inequality, 72
Root of a Polynomial, 50

Similar Polygons, 93
Simson Line, 119
Stewart’s Theorem, 109

Tchebycheff’s Inequality, 71
Tower of Hanoi, 184

Well Ordering Principle, 1
Wilson's theorem, 23

Scanned by CamScanner



