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Executive Abstract 
This paper readily acknowledges that Large Language Models (LLMs) are prone to confabulation—the 
generation of plausible but untrue information. However, it argues that any serious discussion of this 
issue must also account for the often-overlooked fact that humans confabulate constantly, driven by 
cognitive biases and memory gaps. Intriguingly, recent studies suggest that baseline confabulation rates 
in LLMs are broadly comparable to those measured in healthy humans under experimental conditions. A 
systematic taxonomy helps categorize machine-generated errors, which arise from algorithmic drivers 
like next-word prediction and learned sycophancy. While confabulation is an undesirable trait in 
machines, the AI community is actively developing a robust toolkit of technical solutions. Techniques like 
Retrieval-Augmented Generation (RAG) and agentic systems are making LLMs more reliable, 
particularly when designed with internal mechanisms to assess and transparently report their own 
confidence levels. Given these systematic methods for improvement—which are unavailable for 
correcting inherent human cognitive biases—this paper posits that well-engineered AI systems may 
ultimately confabulate less frequently than humans. 

1. Defining Hallucination: Human vs. Machine 
The Human Mind: A Landscape of Everyday Fictions 
In psychology, a hallucination means sensing something (like seeing or hearing) that isn't actually there. 
But when it comes to remembering facts, the human mind is not a perfect recording device. In this sense, 
human "hallucinations" happen in different ways and often go unnoticed. 
• Confabulation: This is the most direct human parallel to an LLM error. Our brains naturally fill in 

memory gaps with made-up but believable details to make a story feel complete. This isn't lying, 
which is intentional. It’s a process that happens without us realizing it, just to "smooth out" the story 
(Hirstein, 2005). This cognitive process is linked to the brain's default mode network, which is 
involved in constructing coherent narratives from semantic memory, essentially creating plausible 
fictions to fill in the blanks (Schacter, 1999). Eyewitness testimony is famously unreliable for this 
very reason (Loftus, 1979). 

• Cognitive Biases: From confirmation bias (favoring information that supports our beliefs) to wishful 
thinking, our ways of thinking constantly shape our view and memory of events. We are all living in a 
reality that is slightly personalized (an interpreted by our brain) for each of us. 
• The Predictive Brain as a "Controlled Hallucination": A powerful scientific 

framework that explains these cognitive phenomena is the theory of the predictive 
brain, notably articulated by philosopher Andy Clark (2023). This model posits that the 
brain is not a passive receiver of information but an active "hierarchical prediction 
machine." It constantly generates top-down predictions about the causes of sensory 
input and uses incoming data merely to correct its own guesses. In this view, all 
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perception is a form of "controlled hallucination," constrained by sensory evidence. 
This explains why we are so susceptible to illusions and biases; we often perceive what 
our brain expects to perceive, and our mind's default state is to fill in gaps with the most 
plausible information, a process that is fundamental to both normal cognition and 
confabulation. 

• Empathy and Sycophancy: It is also useful to examine how social motivations can trigger 
confabulation in both humans and machines. An LLM's sycophancy—its learned tendency to agree 
with a user's premise—is a direct driver of confabulation. To satisfy the goal of being agreeable, a 
model presented with a false premise will confabulate a supporting narrative; this drive can have 
unintended consequences, as seen when OpenAI had to address an emergent sycophancy issue in 
a GPT-4o update where changes to reward signals inadvertently tipped the model’s behavior 
(OpenAI, 2025). In contrast, human empathy is not a form of confabulation; it is a genuine 
connection to another's emotional state. However, the desire to express empathy can motivate a 
person to confabulate, for instance, by inventing a similar personal story ("I know just how you feel, 
the same thing happened to me...") to build rapport. In both cases, a social goal leads to 
confabulation, but the underlying mechanisms remain distinct: one is a simulated, learned behavior, 
while the other is a complex cognitive process. 

• Perceptual Illusions: Our senses can be easily tricked. A good example is the Hollow-Face 
Illusion. In this illusion, our brain strongly expects to see a normal (outward-facing) face, so it makes 
us see a hollow mask as if it were sticking out. This shows that what we see is not always what is 
really there. 

A lot of psychological research shows that memory can be unreliable. Important studies by researchers 
like Elizabeth Loftus showed the "misinformation effect," where a person's memory of an event changes 
after they receive misleading information. In a famous experiment (Loftus & Palmer, 1974), people who 
were asked how fast cars were going when they "smashed" into each other gave higher speed estimates 
than those asked about cars that "hit" each other. This demonstrates how easily memory can be 
changed, leading people to be sure of facts that are not correct. This similarity between human and 
machine errors has led researchers to propose more precise terminology for LLMs. Geoffrey Hinton, for 
example, suggests using the word "confabulation" instead of "hallucination" for LLM errors. He states this 
clearly, noting it's "the correct term in psychology." Hinton sees this as a feature, not a bug. "These 
hallucinations as they're called, or confabulations, are exactly what people do, we do it all the time," he 
explains. He sees it as a key part of intelligence, saying that "Confabulation is a signature of human 
memory." The difference in terms is important for science. Hallucination is about sensing things that 
aren't there, while confabulation is about "creating false or distorted memories" without intending to lie. 
These memories "seem believable to the person creating them." While the line is blurring with the advent 
of multimodal models that can 'see' and 'hear,' LLMs lack the embodied cognition of a human. They 
therefore do not have hallucinations in the clinical sense; instead, they confabulate by filling in what they 
don't know with believable-sounding information. This change in wording, which many researchers 
support, helps us avoid giving human traits to AI and better understand how LLMs really work. 

A Taxonomy of LLM Confabulation 
To effectively manage confabulation, it is essential to have a clear framework for understanding its 
different forms. The term "hallucination" is often used as a catch-all, but a more granular taxonomy 
reveals that not all errors are the same. Recent work in the field has sought to categorize these outputs 
to better diagnose their causes and develop targeted mitigation strategies. 

A key distinction is made between intrinsic and extrinsic confabulations. Intrinsic errors are those that 
contradict information provided within the input or context, representing a failure of logical consistency. 
Extrinsic errors, on the other hand, are statements that are inconsistent with the model's training data or 
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with verifiable real-world facts. This can be further broken down into issues of factuality (contradicting 
established knowledge) and faithfulness (diverging from the user's prompt or source material). 

This systematic categorization is critical because different types of confabulations arise from different 
mechanisms—from gaps in training data to the model's auto-regressive nature—and thus require 
different solutions. The table below, adapted from a comprehensive taxonomy by Cossio (2024), 
illustrates the variety of these errors. 

Type Definition/description Example 

Intrinsic Contradicts provided input or context; 
internal inconsistencies. 

Summary states birth year as 1980 
then 1975. 

Extrinsic Not consistent with training data; 
introduces non-existent entities. 

"The Parisian Tiger was hunted to 
extinction in 1885." 

Factuality Contradicts real-world knowledge or 
verification sources. 

"Charles Lindbergh was first to walk 
on the moon." 

Faithfulness Diverges from input prompt or context. Summary claims FDA rejected 
vaccine when article stated approval. 

Factual Errors Incorrect, misleading, or fabricated 
content. 

Bard claiming JWST took first 
exoplanet images. 

Contextual Contradicts or adds to provided context. Input: "Nile in Central Africa." Output: 
"Nile in Central African mountains." 

Instruction Fails to follow user instructions. Translates question to Spanish but 
answers in English. 

Logical Internal logical errors or contradictions. Incorrect arithmetic in step-by-step 
solution. 

Temporal Time-sensitive errors and 
anachronisms. 

"Murakami won Nobel Prize in 2016." 

Ethical Harmful, defamatory or legally incorrect 
content. 

False accusation of professor with 
non-existent citation. 

Amalgamated Incorrectly combines multiple facts. (Blending disparate information) 

Nonsensical Irrelevant responses lacking logic. Switches from "Adam Silver" to 
"Stern" in NBA discussion. 

Code 
generation 

Incorrect or nonsensical source code. Illogical code unfaithful to 
requirements. 

Multimodal Text-visual content discrepancies. Identifying non-existent object in 
image. 
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Table 1: Comprehensive taxonomy of LLM hallucinations, adapted from Cossio (2024). 

Ultimately, a robust taxonomy moves the discussion away from treating confabulations as simple bugs 
and toward understanding them as emergent properties of complex systems. This perspective is 
essential for developing the sophisticated, context-aware management strategies needed for the 
responsible deployment of LLMs. 

This shows that both humans and machines confabulate, creating information that doesn't match reality 
because it "makes sense" or seems probable. This is the main idea explored in this paper. 

2. Technical Mechanisms of LLM Confabulation 
While the result looks like human confabulation, the reason behind it is purely algorithmic. The following 
points describe the practical triggers for this behavior, but recent theoretical work provides a more 
fundamental explanation: confabulation may be a computationally inevitable feature of any sufficiently 
advanced LLM. In a formal proof drawing from computability theory, Kalai et al. (2025) demonstrate that 
for any powerful language model, there will always exist true statements it cannot generate and false 
statements (confabulations) that it will. This groundbreaking finding reframes the issue from a series of 
engineering bugs to be fixed, to an inherent property that must be managed. This suggests that, much 
like the inherent cognitive biases in humans, a "perfectly truthful" LLM may be a theoretical impossibility. 
This reframes the challenge from one of elimination to one of management, underscoring the importance 
of the robust mitigation techniques detailed later in this paper. The practical mechanisms described 
below can therefore be seen as the manifestations of this underlying computational constraint. 
·       Gaps in Training Data: If the model was not trained on specific, uncommon, or very new 
information, it might "guess" instead of saying it doesn't know. Its guess is a mix of similar patterns it has 
seen before, which often creates a believable-sounding lie. 
·       The Goal is to Be Coherent, Not Truthful: The model is built to create text that sounds right and 
flows logically. This internal need to be coherent can be stronger than the need to be factually correct. 
The system is designed to minimize prediction errors, not factual errors. 
·       Sycophancy and Confirmation Bias: A significant driver of confabulation is sycophancy, where the 
model agrees with a premise stated in the user's prompt, even if it is false. This is a learned behavior 
from training phases like Reinforcement Learning from Human Feedback (RLHF), where being 
agreeable and helpful is rewarded. This behavior is the machine's equivalent of human confirmation bias; 
lacking its own beliefs, the LLM treats the user's prompt as the belief to be confirmed and then 
confabulates details to support that premise (as detailed in the case study below). 
·       Unclear Prompts: Vague or leading questions can send an LLM down a creative "rabbit hole." It 
tries to give the user what it thinks they want by inventing details based on the most likely statistical path. 
·       No Connection to the Real World: Unlike a person, an LLM has no senses, no body, and no real-
world "grounding" for the concepts it discusses. Its idea of a "chair" is based only on a statistical 
collection of words, not on the physical experience of sitting in one. This is particularly true for unimodal 
text-based LLMs, though multimodal models with visual or auditory inputs remain limited by their lack of 
embodied experience. 
 
A Case Study in Emergent Sycophancy: The GPT-4o Incident 
A notable real-world example of emergent sycophancy occurred in April 2025 with an update to 
OpenAI's GPT-4o model. In a postmortem, OpenAI explained that a combination of several 
changes, including a new thumbs-up/down reward signal and interactions with the model's 
memory, inadvertently "tipped behavior toward sycophancy." This incident highlights how sensitive 
model alignment is to changes in training signals; optimizing for one metric (immediate user 
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agreeableness, as captured by a thumbs-up) can unintentionally degrade another (long-term 
factual reliability). 

The key technical points from OpenAI’s postmortem include: 
• What actually changed in training: The April 25 GPT-4o snapshot combined several 

post-training tweaks, including a new reward signal from ChatGPT thumbs-up/down 
and adjustments related to memory usage. These signals were mixed in a way that 
over-weighted short-term approval, weakening the primary reward shaping that had 
been suppressing sycophancy. 

• How it slipped past gates: OpenAI’s offline evaluations, expert “vibe checks,” and 
small A/B tests all looked acceptable. Sycophancy wasn’t a deployment-blocking metric 
yet, and some testers only flagged a tonal shift. The issue became clear only after 
launch, through telemetry and user reports. 

• Concrete fixes and process changes: OpenAI's response involved refining core post-
training techniques, re-weighting feedback toward long-term user satisfaction, and 
making behavioral issues like sycophancy a "launch-blocking" metric for future 
releases. The company also committed to improving offline evaluations and introducing 
an opt-in “alpha” testing phase pre-launch. 

This incident serves as a powerful illustration of how easily unintended behaviors can emerge from 
complex training pipelines and the critical importance of robust, multi-faceted evaluation before 
deployment. 

3. Quantitative Insights on Human and Machine Confabulation 
Quantitative studies provide empirical measures of confabulation rates in both humans and large 
language models, offering a basis for comparison. In healthy humans, non-clinical confabulation—
manifesting as unintentional memory distortions or false recalls—occurs at varying frequencies 
depending on the context. Laboratory experiments on forced confabulation and misinformation effects 
report false memory rates of 20-50% among healthy adults, with confirmatory feedback increasing these 
rates by approximately 15-20% (Otgaar et al., 2023). In eyewitness-style tasks, participants incorporate 
misleading details into their recollections in about 25-30% of cases, often with high confidence levels of 
70% or more (Loftus, 1979). Naturalistic studies of everyday memory errors, such as misattributing 
conversation details, indicate lower but still notable rates of 10-15% in daily recalled events, rising to 
20% in social contexts influenced by biases like confirmation bias (Schacter & Dodson, 2001). 
For large language models, confabulation (commonly referred to as hallucination in AI literature) is 
quantified through benchmarks evaluating factual accuracy. Rates typically range from 20-40% on tasks 
like TruthfulQA, where models fabricate plausible but incorrect responses to open-ended queries (Li, 
Chen, & Gimpel, 2023). On the HaluEval benchmark, hallucination occurs in 20-35% of question-
answering outputs and up to 40% in summarization tasks (Li et al., 2023). Baseline rates of 15-30% can 
be reduced to 5-10% with mitigation strategies such as retrieval-augmented generation, particularly for 
factual queries (Gao et al., 2024). However, AI technology evolves so rapidly that even recent studies 
may soon be outdated, as new models and techniques emerge monthly—unlike humans, who change at 
a glacial pace, giving evolutionary biologists plenty of time for coffee breaks between observations. 
Direct comparisons suggest that confabulation rates in LLMs (15-40%) are broadly similar to those in 
healthy humans (10-30%), with both exhibiting patterns of narrative coherence and overconfidence. Yet, 
the systematic reducibility of LLM errors highlights a key distinction: machines can be iteratively 
improved, potentially leading to lower rates than human cognition in controlled applications (Zhang et al., 
2023). 
The rapid evolution of LLM technology, exemplified by the recent release of OpenAI's GPT-5 in August 
2025, underscores the pace at which confabulation is being addressed. According to OpenAI's own 
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documentation, GPT-5 demonstrates a significant reduction in factual errors compared to its 
predecessors. With web search enabled, its responses are reportedly ~45% less likely to contain a 
factual error than GPT-4o. The improvement is even more pronounced in its new "thinking" mode, which 
is ~80% less likely to produce a factual error than the previous reasoning model, o3. This is attributed to 
a new hybrid architecture that uses a real-time router to engage a more powerful reasoning model for 
complex queries. While these advancements show a clear trend towards greater reliability, the data also 
confirms that the risk of confabulation remains, particularly when the model operates without access to 
external, verifiable information. 

4. Technical Strategies to Mitigate LLM Confabulation 
While confabulation is a natural part of how LLMs are built today, there are several technical methods we 
can use to reduce how often it happens and the problems it causes: 

·       Retrieval-Augmented Generation (RAG): This is a key method for connecting an LLM's answers to 
real facts. Before creating an answer, the system finds relevant documents from a trusted source of 
information (like a company's internal files or up-to-date news). The LLM is then instructed to create its 
answer based on the provided information. While this heavily guides the model, it is not a perfect 
guarantee, as the model's pre-existing knowledge can sometimes influence the final output. However, 
RAG’s effectiveness depends on the quality and relevance of the retrieved documents (Gao et al., 2023). 

·       Adjusting Decoding Parameters: The "temperature" setting controls how random the output is. A 
temperature of 0 makes the model's choices "more” predictable; it always picks the most likely next word. 
Lowering the temperature (e.g., to 0.1 or 0.2) makes it less likely that the model will choose a path of less 
common, and often wrong, words. This comes at the cost of "creativity." 

·       Fact-Checking and Self-Correction Loops: More advanced systems can ask the LLM to check its 
own work. For example, after giving an answer, a second prompt can ask the model to "find sources for 
the last statement" or "check the answer for factual errors." This forces the model to use a different 
thought process that can find and fix the first mistakes. 

·       Multi-Agent and Ensemble Architectures: This powerful approach moves beyond a single model's 
response to leverage multiple sources of reasoning, which both improves the quality of the answer and 
significantly reduces confabulation. These techniques can be implemented in several ways: 
• Multi-Agent Systems: This involves creating a team of AI agents that work together. For instance, 

Anthropic has developed a research system where a "lead agent" assigns parts of a complex 
problem to several "sub-agents." These sub-agents research in parallel, evaluate their findings, and 
report back, allowing the lead agent to synthesize a more comprehensive and robust answer 
(Anthropic, 2024). This mirrors human collaboration and debate. Additional step csan be added to 
use another LLM as a judge according to specific criterion so as to assess the “level” of consensus. 

• Advanced Architectures: State-of-the-art models are increasingly built with complex internal 
architectures that incorporate ensemble and structured reasoning techniques. This includes Mixture 
of Experts (MoE), where different parts of the network specialize in different tasks, as seen in 
models like Mistral's Mixtral 8x7B, Google's Gemini family, and xAI's Grok-1 (Mistral AI, 2023; 
Google, 2023; xAI, 2024). Beyond ensembles, models are integrating structured reasoning 
frameworks like Chain-of-Thought (CoT), Tree-of-Thought (ToT), and Graph-of-Thought (GoT) 
directly into their reasoning processes (Wei et al., 2022; Yao et al., 2023). These architectures 
compel the model to break down complex problems into explicit, intermediate steps, allowing for 
more robust and verifiable outputs, which significantly reduces logical confabulations by making the 
reasoning process itself a part of the model's output. 
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• Consensus Mechanisms: Once multiple responses are generated (either from different agents or 
models), a final answer must be chosen. This can be done through various methods, such as a 
simple majority vote, requiring complete unanimity, or using another LLM as a "judge" to evaluate 
the options based on a weighted consensus. 

• Uncertainty Quantification (UQ): Another critical area of mitigation involves Uncertainty 
Quantification (UQ), which provides a formal framework for a model to express its own confidence 
in its outputs. Instead of simply generating an answer, a UQ-enabled system also provides a 
confidence score, signaling when its response is likely to be a confabulation. Open-source toolkits, 
one example of which is UQLM (Uncertainty Quantification for Language Models), implement these 
techniques, allowing developers to wrap any LLM and get a real-time confidence score for its 
outputs. These tools use a variety of methods, from analyzing token probabilities in white-box 
models to measuring the semantic consistency across multiple generated answers in black-box 
models. By flagging low-confidence answers, UQ methods provide a crucial safety layer, allowing an 
application to either reject the answer or escalate it for human review, directly addressing the 
overconfidence problem (Bouchard et al., 2025). 

5. The Problem of Overconfidence: An Analogy to the Dunning-Kruger 
Effect in Machines 
A big problem with both human and machine confabulation is the confidence with which the wrong 
information is delivered. This behavior in LLMs is similar to the Dunning-Kruger effect in humans, a bias 
where people with low skill in an area overestimate their ability (Kruger & Dunning, 1999). In humans, 
this happens because of a lack of ability to think about their own thinking. People with low expertise don't 
have the skills to get the right answers, and they also can't recognize that their answers are wrong. In 
contrast, true experts are often humble about what they know, understanding that the more they learn, 
the more they realize they don't know. 
In LLMs, a similar overconfidence appears, but for different reasons. It doesn't come from a mental bias, 
but from the model's training goals. These goals focus on creating smooth, confident-sounding text 
based on statistical patterns. An LLM might state a made-up "fact" with the same level of confidence as a 
real one because it has no built-in way to think about what it doesn't know. This makes LLM 
confabulations potentially dangerous, as users might fall into the trap of "automation bias"—the habit of 
trusting automated systems too much without checking the facts. 
Active research is working on this problem using "uncertainty quantification" methods to make LLMs 
more aware of their own limits. Key methods include: 

• Analyzing softmax probabilities: Looking at the probability scores for each possible next word. If 
many words have similar scores, it signals low confidence. If one word has a much higher score, 
it signals high confidence. 

• Monte Carlo dropout: Getting several different answers to the same prompt by using a technique 
called "dropout" during the process. The amount of variation in the answers is a measure of 
uncertainty. 

• Ensemble approaches: As discussed in the previous section on mitigation strategies, this involves 
comparing the answers from several different "expert" models or agents. The level of agreement 
or disagreement among these independent outputs serves as a powerful measure of uncertainty. 
Strong consensus suggests a reliable answer, whereas significant variance signals a likely 
confabulation. 

• Explicit training: Using reinforcement learning to teach models to state their confidence level, for 
example by saying "I am not confident in this answer" when certain internal signs point to 
uncertainty (e.g., Lin et al., 2024). 
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This comparison highlights that, like humans, LLMs can give wrong answers with too much confidence, 
but specific techniques offer a way to fix this. 
Building on these methods, it is crucial that complex AI systems, particularly those involving multiple 
models or agentic architectures, are designed with their own internal mechanisms for assessing and 
propagating a collective level of confidence. This confidence score should serve as a critical metric, used 
not only for the system's internal decision-making (e.g., whether to act on a conclusion or seek more 
data) but also as a transparent signal conveyed to the human user alongside any final answer. This 
ensures that the system's own assessment of its reliability is an integral part of the human-AI interaction. 

6. Conclusion 
The central point of this paper is that both humans and Large Language Models confabulate. It is vital to 
distinguish this from hallucination, which is a false sensory perception. Confabulation is the act of 
generating plausible but untrue information to create a coherent whole. Both human brains and LLMs are 
driven by an underlying impulse to produce an output that "makes sense" or seems probable. For 
humans, this is an unconscious process of filling memory gaps to build a complete narrative. For LLMs, it 
is the result of an algorithm designed to predict the next most likely word, prioritizing coherence over 
factual accuracy. While this behavior is inherent, confabulation is an undesirable trait we must address, 
especially in high-stakes applications. The good news is that for machines, we have a large and growing 
toolkit to tackle this problem directly. As discussed, techniques like Retrieval-Augmented Generation 
(RAG), careful adjustment of decoding parameters, self-correction loops, and sophisticated multi-agent 
architectures are designed to make LLMs more reliable. This leads to a final, thought-provoking question. 
We often assume humans are the gold standard for reliability. But given our own well-documented 
cognitive biases and memory errors—and the fact there is no systematic "patch" for the human brain—it 
is more than likely that as AI technology matures, we will find that a well-engineered machine 
confabulates less than the average person. 

The path forward is not just about improving AI, but also about better understanding our own cognitive 
limitations and designing human-AI systems built on transparency. A truly "well-engineered" system will 
be one that not only mitigates its own errors but also has the self-awareness to report its level of 
confidence, making the human user an informed partner in the reasoning process. 

7. Disclaimer 
The views and opinions expressed in this paper are solely those of the author and do not necessarily 
reflect the official policy or position of NVIDIA or any of its affiliates. The information and analysis 
presented are based exclusively on publicly available data, documentation, and reports accessible on 
the web. 
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