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Executive Abstract 
For too long, Artificial Intelligence has pursued the wrong goal: building machines that think like humans and 
judging them by their proximity to human intelligence, rather than their usefulness. This paper argues that this 
anthropocentric goal is a strategic error. The true value of AI lies not in imitation, but in innovation that leads to 
usefulness. Intelligence is not a singular, human-like essence, but a plural and contextual capability. The obsession 
with mimicking human cognition has distracted from what really matters: building systems that solve urgent 
problems and open new frontiers. 

It is time to change our metrics for success. While building them requires heavy engineering, the benchmarks we 
need are not Turing Tests, but measures of real-world contribution: scientific discoveries accelerated, diseases 
detected earlier, energy systems optimized, quality of code produced, complex autonomous systems built, to name 
a few. We must stop asking, "How close is AI to thinking like a person?" and instead ask, "What new capabilities 
can we create to augment human potential?" The goal is not to imitate minds, but to build tools that change the 
world—through systems that are not human-like, but profoundly, undeniably useful. 

Introduction 

The field of Artificial Intelligence stands at a crossroads. One path leads toward creating mirrors of human 
intelligence, driven by the long-held dream of a machine that thinks like a person. The other path leads toward 
creating tools: systems that possess novel forms of intelligence designed to solve problems beyond human 
capacity. This paper argues for the latter, making the case that the future of AI does not lie in mimicry, but in 
functional, targeted, and ultimately useful innovation. 

1. Intelligence: The Myth of a Singular Measure 

1.1. Intelligence, General Intelligence, and Superintelligence 

The concept of intelligence has long been the subject of extensive debate across disciplines such as psychology, 
philosophy, neuroscience, and computer science. Despite over a century of research, there is still no universally 
accepted definition of intelligence. In the context of artificial intelligence, this lack of consensus has profound 
implications. When we speak of Artificial General Intelligence (AGI) we risk importing flawed assumptions and 
overly narrow definitions of what it means to be intelligent. This section unpacks the multidimensional nature of 
intelligence, critiques anthropocentric metrics, and argues that our framing of intelligence deeply shapes the goals 
and (potential) limitations of AI development. 

1.2. The Multi-Dimensional Nature of Intelligence 

The purpose of this paper is not to resolve the long-standing debate over the definition of intelligence. Instead, it 
acknowledges that intelligence is not a monolith. Decades of research in psychology and biology support this 
pluralistic view, from Howard Gardner's theory of multiple intelligences to the diverse, domain-specific abilities seen 
in the animal kingdom (Gardner, 1983; Shettleworth, 2010). Intelligence is better understood as a spectrum of 
cognitive skills that vary by context, species, and task. 

This diversity complicates any effort to encode or emulate intelligence in machines. Most contemporary AI systems 
excel in narrow tasks but falter when expected to generalize across contexts. That failure is often viewed as a 
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deficit when compared to human cognition—but such a view presumes that human-like generalization is the gold 
standard. Instead, we should ask: is this even the right benchmark? 

1.3. Intelligence as a Human-Centric Illusion 
Artificial General Intelligence is often framed as an endpoint: a system that can perform any intellectual task that a 
human can. But this framing assumes that the spectrum of human cognition represents the pinnacle—or at least 
the template—of what intelligence should be. This anthropocentric bias not only limits innovation but also 
misrepresents the nature of intelligence itself. AGI becomes a mirror we hold up to ourselves, rather than a tool to 
explore forms of cognition unlike our own. 

A chess-playing AI is not inferior because it cannot fold laundry nor is a cat less intelligent because it cannot play 
chess. In this light, the pursuit of AGI as abstract ideals may be less important than the design of systems that are 
useful, complementary, and functionally aligned with human needs. 

1.4. Toward a Functional Framing 
If we accept that intelligence is inherently plural and situated, then it follows that AI should not be judged by how 
well it mimics humans, but by how effectively it performs in specific roles. The next sections argue for a functional, 
task-oriented approach to AI that prioritizes usefulness over imitation. Rather than chasing an ill-defined notion of 
generality, we should build systems that excel precisely because they are not like us. The cost of chasing the 
mirage of human-like AI is significant, diverting research attention and funding from efforts that could yield 
measurable, real-world benefits. 

In short: the question is not whether machines can think like humans, but whether they can do things that 
matter. 

2. From Analogy to Application: A Survey of Biologically-Inspired AI 
Despite the critique of anthropocentric metrics, it is essential to acknowledge that drawing inspiration from biology 
has led to valuable innovations in AI. To be clear, mimicking human cognition is not in my opinion inherently 
flawed—it remains a scientifically fruitful approach when framed correctly. This section provides a few examples of 
ongoing efforts to replicate and integrate principles from neural and biological systems, highlights recent 
advancements, and critically examines their benefits and limitations as a means to an end, not the end itself. 

2.1. Neuromorphic Computing: Hardware Inspired by the Brain 
Neuromorphic computing exemplifies a bio-inspired strategy, designing hardware that emulates spiking neural 
networks to enable real-time, energy-efficient computation. The field includes a wide range of prominent initiatives: 

• Major Technology Firms: Intel's Loihi 2 and IBM's TrueNorth are foundational research chips demonstrating 
on-chip learning and low-power pattern recognition. 

• Large-Scale Academic Projects: The SpiNNaker (University of Manchester) and BrainScaleS (Heidelberg 
University) platforms focus on large-scale brain emulation and modeling cortical dynamics. 

• Specialized Commercial Hardware: Companies like Prophesee, SynSense, and Innatera are developing 
low-power neuromorphic sensors and accelerators for edge AI applications like robotics and real-time sensor 
fusion. 

• Research Institutions & Consortia: Stanford's Neurogrid and work at national labs like LANL and 
universities like the University at Buffalo continue to push the boundaries of brain-like efficiency and complex 
processing. 

While still an emerging field, research in neuromorphic computing continues to advance, with some systems scaling 
to over one billion neurons for specialized tasks like edge computing and sensor fusion (Quantum Zeitgeist, 2025). 
This approach shows promise for energy efficiency, and novel materials mimicking synaptic behavior are being 
developed with the goal of overcoming traditional von Neumann bottlenecks (Wang et al., 2025). 
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2.2. Bio-Inspired Models and Algorithms 
Beyond direct hardware emulation, another strand of AI draws inspiration from higher-level biological principles like 
evolution and sensory learning. 

• Evolutionary and Swarm Intelligence: Sakana AI, for instance, has pioneered evolutionary algorithms for 
model merging. In 2025, it released TreeQuest, an open-source system enabling LLMs to collaboratively solve 
problems, and AB-MCTS, a bio-inspired algorithm for multi-agent coordination (Sakana AI, 2025a; 2025b). 

• Models of Biological Learning: Research at institutions like Cornell University focuses on modeling sensory 
learning for adaptive robotics, while UCLA investigates neural synchronization patterns to bridge biological 
and artificial systems. 

• Physics-Based Approaches: Companies like Extropic.ai apply principles from thermodynamics and 
reversible computing to develop energy-efficient, bio-mimetic AI, demonstrating that inspiration can come from 
the fundamental physics of biological systems, not just their emergent structure. 

• Hybrid Systems: Integrating Biological and Digital Computation: The most direct form of mimicry involves 
integrating living neurons with digital architectures. This frontier is exemplified by the highly experimental field 
of Organoid Intelligence, which uses lab-grown brain organoids for computation. A notable example is the 
work from Cortical Labs with its CL1, a biological computer embedding up to 800,000 human neurons for 
applications in AI model exploration and pharmacology (Kasianov, 2025; New Atlas, 2025). These platforms, 
while still in early research stages, offer unique access to learning dynamics not currently reproducible in 
silicon-only systems (Smirnova et al., 2023). 

2.3. A Critical Assessment: The Benefits and Limits of Mimicry 
The overarching goal remains: to design systems that are useful—not necessarily human-like—in solving problems 
beyond our current capacity. The next section explores the implications of embodiment and animal cognition in 
further challenging the anthropocentric framing of intelligence. 

3. The Moravec's Paradox and the Cat 
A key idea in AI, Moravec's Paradox, notes that AI excels at tasks humans find hard, like complex math, but 
struggles with what we find easy, like basic movement and perception (Moravec, 1988). This isn't a failure of 
abstract thought, but a gap in physical competence. 

Nowhere is this paradox more apparent than in what could be called the "Cat Paradox." A common house cat, 
with no formal training, can effortlessly navigate a cluttered room, hunt, and adapt to unpredictable physical 
conditions. These behaviors—which rely on real-time sensorimotor integration and embodied learning—remain 
extraordinarily challenging for even the most advanced AI and robotic systems. The cat's abilities reveal a deeper 
truth: intelligence is not merely a disembodied process of symbolic manipulation but is profoundly embodied—it 
emerges from the dynamic interaction between an agent, its body, and its environment. 

This embodiment gap has direct implications for AI's real-world usefulness. For AI to move beyond digital screens 
and operate effectively in the physical world—in robotics, logistics, and scientific exploration—it must be able to 
perceive, act, and learn within it. 

The key takeaway is not that AI should be built to replicate a cat, but that the paradox is a crucial reminder of what 
is missing. This conceptual shift is already underway, gaining momentum under the banner of Physical AI. This 
emerging field aims to unify large-scale models with embodied agents that learn directly through interaction with the 
world, often trained in rich simulations before deployment. Initiatives like NVIDIA’s GR00T project for humanoid 
robots, Google DeepMind’s work on visuomotor policies, and Meta's Habitat simulation environment are at the 
forefront of this effort. By learning from the principles of embodied experience, the field is beginning to bridge the 
gap—shifting the focus from creating systems that can think to creating systems that can do. 

4. Usefulness: The Only Metric That Matters 
The previous sections have argued that intelligence is multifaceted and that the pursuit of human-like AGI is a 
flawed goal. It follows, then, that usefulness, not resemblance to human cognition, should be the guiding metric for 
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AI development. The value of this approach is already clear. AI is uniquely positioned to process vast amounts of 
data to find patterns invisible to the human eye, perform complex reasoning to solve intractable scientific problems, 
and accelerate discovery at an unprecedented scale. We see this in biology, where DeepMind's AlphaFold has 
revolutionized protein folding, a problem that stumped scientists for decades. We see it in healthcare, where AI 
assists in diagnostics and drug discovery, and in materials science, where systems like Google DeepMind's 
GNoME have discovered hundreds of thousands of new stable materials, dramatically accelerating the design of 
novel technologies (Merchant et al., 2023). These are not incremental improvements; they are transformative 
capabilities that arise precisely because AI does not 'think' like a human. 

4.1. Functional Intelligence Across Domains 
The fixation on mimicking human cognitive traits—language fluency, reasoning patterns, emotional resonance—
obscures a fundamental truth: AI does not need to be human-like to be valuable. In fact, its greatest contributions 
may arise precisely from its differences. Machines can ingest, process, and analyze terabytes of multimodal data in 
real time, perform massively parallel simulations, or discover correlations invisible to human intuition. 

These capabilities are already extending human potential across numerous fields. In medicine, AI now assists in 
everything from early cancer detection and radiological triage to protein design and personalized treatment 
planning. In climate science, AI enables faster, more granular modeling of atmospheric dynamics. In software 
development, AI copilots and agentic systems generate, debug, and optimize complex code, acting as powerful 
force multipliers. Even highly specialized domains are being transformed; in neuroscience, AI tools are used to 
reverse-engineer brain circuits, while in agriculture, AI-driven systems manage autonomous farming machinery and 
optimize irrigation. 

Perhaps one of the most powerful examples of this paradigm is using AI to understand the brain itself. Rather than 
trying to build a synthetic brain, researchers are using AI as a tool to model and test hypotheses about neural 
computation. A leading example is the work of Professor Martin Schrimpf and his colleagues, who developed 
Brain-Score, a platform that quantifies how well artificial neural networks predict neural and behavioral data from 
the primate brain (Schrimpf et al., 2020). This approach treats AI models not as aspiring replicas of the brain, but as 
scientific instruments for understanding it—a perfect embodiment of prioritizing usefulness over mimicry. 

As yet another illustration, AI is becoming the engine of 'AI factories': massive data centers built specifically for 
training and inference, which will serve this vast array of use cases. 

4.2. A Platform-Level Case Study: The NVIDIA Ecosystem 
To see this principle in action at scale, it is useful to move beyond individual applications and examine an entire 
industrial ecosystem built on the philosophy of augmenting human capabilities. The portfolio of a single company 
like NVIDIA serves as a compelling case study for this utility-driven approach, with tools designed to solve specific, 
high-impact problems across the full stack of AI development: 

• CUDA has become the de facto programming interface for high-performance GPU computing, enabling 
breakthroughs in deep learning, simulation, and scientific computing. 

• NVIDIA DGX systems provide enterprise-grade AI supercomputing for model training and scientific research, 
drastically reducing time to insight. 

• Triton Inference Server allows scalable, real-time model serving with support for multiple frameworks, helping 
operationalize AI in production environments. 

• NVIDIA Clara supports AI-powered medical imaging and genomics workflows, assisting clinicians in 
diagnostics and treatment planning. 

• NVIDIA Modulus enables physics-informed machine learning for real-time simulations in engineering and 
climate modeling. 

• NVIDIA Omniverse integrates AI with simulation, digital twins, and robotics development—supporting complex 
industrial automation pipelines. 

• NVIDIA cuQuantum accelerates quantum computing research by simulating quantum circuits on classical 
hardware, speeding up algorithm prototyping. 
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• GR00T and Isaac Sim offer embodied AI platforms that merge large models with physical robotics, paving the 
way for generalist agents in the real world. 

These examples reflect a consistent focus on amplifying human capability rather than mimicking it. 

4.3. Task-Alignment as a Design Principle 
From an engineering perspective, usefulness can be framed as task-alignment: how well does an AI system 
perform relative to the goals defined by its operational context? This includes: 

• Accuracy and efficiency 
• Robustness to uncertainty 
• Adaptability to new data 
• Scalability across environments 
• Interoperability with human workflows 
• Consistency and Reliability 
• Trustworthiness 

These are practical measures tied to real-world engineering and business results. Unlike philosophical AGI 
benchmarks that ask 'is it intelligent?', this approach asks a simpler, more important question: 'does it work?'. Task-
alignment is about engineering valuable systems. 

5. Conclusion: Don't Imitate — Innovate 
Artificial Intelligence is not—and should never be—about building synthetic replicas of human minds. For too long, 
the field has been oriented toward an anthropocentric fantasy: constructing machines that think like us, talk like us, 
and eventually surpass us. This narrative, centered on AGI is conceptually flawed, scientifically vague, and 
strategically limiting. 

The argument of this paper is that the value of AI lies in useful innovation, not imitation. While defining and 
measuring usefulness requires significant engineering effort, it reorients the field toward what truly matters. The 
obsession with benchmarking machines against human capabilities has been a distraction from the real goal: 
building systems that extend our reach, solve urgent problems, and open new frontiers. 

We have shown that useful AI is already transforming science, medicine, climate research, engineering, and 
creativity—not by thinking like humans, but by doing what humans cannot. 

This is not about redefining intelligence—it is about liberating it from outdated constraints. The goal of AI should not 
be to pass as a person, but to perform as a powerful collaborator. The benchmarks we need are not Turing Tests, 
but measures of contribution: scientific discovery accelerated, diseases detected earlier, energy systems optimized, 
lives improved. 

As researchers, engineers, and policymakers, we must stop asking: How close are we to replicating human 
cognition? and start asking: What new capabilities can we create, how can they be 
aligned with critical tasks, and for whom will they deliver measurable value? 
Let us not chase minds. Let us build tools that change the world—through systems that are not human-like, but 
profoundly, undeniably useful. 

6. Disclaimer 

The views and opinions expressed in this paper are solely those of the author and do not necessarily reflect the 
official policy or position of NVIDIA or any of its affiliates. The information and analysis presented are based 
exclusively on publicly available data, documentation, and reports accessible on the web. 
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