
Time to Revisit the Internet Layering Principle: AI-Driven Cross-
Layer Optimization 

 

 

JP Vasseur, PhD 

Sr Distinguished Engineer NVIDIA jvasseur@nvidia.com 

July 2025 

Executive Abstract 
The foundational principle of layered architecture, a cornerstone of the Internet's success, now 
creates a performance barrier for high-value, modern applications due to its strict information 
isolation. Each layer operates with an architectural blind spot, optimizing its behavior using only the 
information available within its own domain. This paper argues that the time has come to augment 
this model with AI-driven cross-layer intelligence. By training machine learning models on holistic, 
multi-layer telemetry—including direct user experience feedback—systems can move beyond 
optimizing isolated network metrics. The new paradigm is to learn and predictively optimize for the 
high-level Service-Level Objectives (SLOs) that truly define performance, such as Quality of 
Experience (QoE) and Job Completion Time (JCT). This approach does not replace the layering 
principle, which remains essential for many tasks, but complements it through a non-disruptive 
"soft layering" model. It represents a practical and necessary evolution for engineering the next 
generation of adaptive, high-performance systems. 

1. The Layered Architecture: A Foundation of Modern Networking 
The principle of layered Internet protocol architecture is a cornerstone of modern network and 
system design. It provides a formal methodology for decomposing the complexity of data 
communication into a set of distinct, hierarchical layers. Each layer is designed to perform a 
specific set of functions, relying on services provided by the layer below it and, in turn, offering its 
own services to the layer above. This abstraction is most famously conceptualized in the seven-
layer Open Systems Interconnection (OSI) model and is practically implemented in the dominant 
TCP/IP protocol suite that underpins the global Internet. 

The success and longevity of this layered approach are attributable to several key contributions. 
First, it introduces profound modularity. By encapsulating the functions of a given layer, it hides 
underlying complexity. An application developer, for instance, can utilize the Hypertext Transfer 
Protocol (HTTP) at the application layer without needing to understand the intricacies of TCP's 
congestion control algorithms at the transport layer or the specific modulation schemes used by 
Wi-Fi at the physical layer. This separation of concerns simplifies development and accelerates 
innovation. 

A similar abstraction is evident in High-Performance Computing (HPC) and large-scale AI data 
centers, illustrating the power of layering in non-IP environments like the InfiniBand Architecture. A 
computational scientist using libraries such as MPI (Message Passing Interface) or NCCL for 



distributed training can focus entirely on their parallel algorithm logic. They are shielded from the 
complexities of the InfiniBand fabric, whose lower layers manage critical functions like kernel-
bypass communication. The InfiniBand link layer itself provides robust, hardware-level capabilities 
including credit-based flow control to ensure lossless behavior, as well as error detection and 
automatic retransmission mechanisms, as defined in its official specification (InfiniBand Trade 
Association, 2022). These sophisticated features are handled transparently by the fabric, enabling 
developers to achieve high performance without being experts in the underlying network transport. 

Second, layering is the bedrock of standardization and interoperability, a principle critical to the 
Internet's explosive growth over the past three decades. By defining a common set of rules, it 
dismantled proprietary, single-vendor network models, fostering a competitive multi-vendor 
ecosystem that lowered costs and broke vendor lock-in. This open foundation enabled 
"permissionless innovation," allowing anyone to create new applications and services with the 
confidence they would run on any standard network. Most importantly, it provided a common 
“language” especially IP that allowed thousands of different networks to connect, creating a single, 
seamless global network instead of many isolated digital islands. This interoperability, defined by 
clear interfaces between layers, was a prerequisite for the growth of decentralized, global-scale 
networks. 

Finally, this architecture facilitates independent evolution. Protocols and technologies at one layer 
can be upgraded or replaced without necessitating a complete redesign of the entire stack. The 
transition from 1-Gbps to 10-Gbps to 100s-Gbps Ethernet, the introduction of new Wi-Fi links 
standard, or the development of new transport protocols (e.g., TCP, UDP, SCTP, MPTCP, and 
QUIC (Iyengar & Thomson, 2021)) can all occur independently. This capacity for incremental, non-
disruptive innovation has been fundamental to the Internet's ability to scale and adapt over several 
decades. 

In summary, the layered architecture was a necessary and highly successful paradigm. It provided 
the stable, scalable, and interoperable foundation—codified in foundational standards like IP 
(Postel, 1981a) and TCP (Postel, 1981b)—upon which the Internet evolved and grew. However, 
while the benefits of this model are substantial, its rigid enforcement of isolation introduces 
constraints that are increasingly challenged by the performance and dynamism required in 
contemporary network environments, at least for some applications. 

2. Early Attempts at Cross-Layer Communication 
Despite the principle of strict layer isolation, the need for richer communication between 
applications and the network was recognized early in the Internet’s history. It was clear that a 
purely "best-effort" service model was insufficient for emerging real-time applications. This led to 
the development of sophisticated architectures designed to allow applications to signal their 
performance requirements to the network, representing formal, if ultimately unsuccessful, attempts 
at cross-layer communication. 

The most prominent example in the IP world was the Integrated Services (IntServ) architecture, 
which used the Resource Reservation Protocol (RSVP) as its signaling mechanism. The model 
allowed an application (Layer 7) to request a specific Quality of Service (QoS)—such as 
guaranteed bandwidth and bounded delay—for a particular data flow. RSVP would then carry this 
request through the network (Layer 3), and each router along the path would attempt to reserve 



the necessary resources. This provided a direct communication channel from the application to the 
network infrastructure. 

A more scalable, albeit less granular, approach was Differentiated Services (DiffServ). Here, traffic 
is classified and marked at the edge of a network with a specific code point (DSCP) in the IP 
header. Core routers then apply different "per-hop behaviors" based on these markings, giving 
preferential treatment to priority traffic. While the signaling is less explicit than RSVP, DiffServ still 
represents a form of cross-layer communication, where an application's requirements are 
translated into a network-layer marking that influences forwarding behavior. 

These concepts were not limited to the IP world. Connection-oriented technologies like 
Asynchronous Transfer Mode (ATM) had powerful, built-in QoS capabilities at their core, allowing 
applications to request service classes with specific performance guarantees. 

However, these early architectures failed to gain widespread adoption across the public Internet, 
primarily due to issues of scalability and complexity. The per-flow state required by IntServ/RSVP 
was deemed untenable for Internet-scale routers. DiffServ, while more scalable, proved difficult to 
manage consistently across different administrative domains, limiting its utility to private enterprise 
networks. Ultimately, the simpler, stateless, best-effort model prevailed. Thus, while the need for 
cross-layer signaling was well understood, the fundamental challenge of implementing it in a 
scalable and deployable manner remained unsolved. 

3. The Isolation Principle: Emerging Limitations in High-Demand Systems 
The failure of early QoS architectures to be widely deployed meant that the strict encapsulation of 
the layered model remained the de facto standard. Each layer operates with an architectural 
blind spot, optimizing its behavior using only the information available within its own domain. This 
leads to locally optimal decisions that are often globally suboptimal for the end-to-end service. This 
information boundary prevents a holistic view of the system, leading to significant inefficiencies, 
particularly in environments with demanding performance requirements or constrained resources. 
Several well-understood examples illustrate this structural problem. 

Wireless Networks: A classic case is the performance of TCP over wireless links (e.g., Wi-Fi, 
5G). TCP's congestion control algorithms were designed for wired networks, where packet loss is 
almost exclusively a signal of network congestion. In a wireless environment, however, loss is 
frequently caused by factors at the physical (PHY) and MAC layers, such as radio interference or 
signal fading. Because the transport layer is unaware of the root cause, it reacts incorrectly, 
throttling throughput unnecessarily (this issue was historically addressed through specialized 
workarounds like performance-enhancing proxies that split the TCP connection, or robust link-layer 
retransmission schemes designed to hide wireless errors from the transport layer). 

Video and Real-Time Media: The quality of experience (QoE) for real-time applications is highly 
sensitive to network conditions. Networks often provide static QoS guarantees, but the 
application's tolerance to impairments is dynamic. A high-motion 4K video stream is far more 
sensitive to jitter than a static presentation. A lack of direct, real-time communication from the 
network layers prevents proactive, content-aware resource allocation by the application's adaptive 
bitrate (ABR) codecs. 



Semantic-Aware Routing in IoT: In low-power and lossy networks (LLNs), traditional routing 
based on simple network-layer metrics like hop count is insufficient. Semantic-aware routing, which 
considers the content and criticality of the data, is often required. While the IETF's RPL (Winter et 
al., 2012) is a notable departure from strict layering, the broader field has seen extensive research 
into cross-layer solutions for wireless sensor networks to address these challenges (Lin et al., 
2017). These solutions allow routing decisions to incorporate application-layer metadata and 
physical-layer metrics, such as a node's remaining energy. 

Delay Tolerant Networks (DTN): In Delay Tolerant Networks (DTNs), which operate in 
environments with intermittent connectivity such as space or vehicular systems, the bundle layer 
(above the transport layer) handles store-and-forward mechanisms. Forwarding decisions at this 
layer can be improved by incorporating physical layer information about future link availability or 
contact durations. For example, research has shown that a joint routing and scheduling policy that 
uses cross-layer information can optimize message delivery based on predicted contact 
opportunities (Krifa et al., 2008). 

Data Center Networking for ML/HPC: Modern data centers designed for large-scale AI, 
sometimes referred to as "AI Factories," (NVIDIA, 2024) represent a pinnacle of system complexity 
where the limitations of strict layering are particularly acute. Training a large language model (LLM) 
often involves thousands of GPUs operating in concert using sophisticated techniques like 3D 
parallelism (tensor, pipeline, and data parallelism). This process involves a cascade of layered, yet 
interdependent, systems. A high-level job scheduler initiates the process, assigning workloads to 
specific GPUs. However, its decisions are deeply impacted by underlying physical topologies: 
GPUs may be tightly coupled within a chassis via high-speed NVLink, or distributed across racks 
connected by an InfiniBand or Ethernet fabric, typically in a CLOS architecture. Each of these 
physical connection types has its own distinct topology. On top of this, the NVIDIA Collective 
Communications Library (NCCL), which manages the fundamental communication primitives 
between GPUs, operates with its own logical communication topology. Furthermore, the network 
fabric itself has its own mechanisms for detecting congestion, handling errors, and retransmitting 
data. This multi-layered system—from the scheduler to NCCL to the physical network—is a perfect 
example where strict isolation is detrimental. Optimizing for Job Completion Time (JCT) requires 
coordination across these layers; for instance, the scheduler's placement decisions are far more 
effective if it is aware of both the NCCL communication pattern and the underlying network 
topology. As a result, new approaches that facilitate this cross-layer knowledge sharing are 
beginning to emerge to tackle this complexity. 

Redundant Reliability Mechanisms: In many communication stacks, reliability mechanisms are 
implemented independently at multiple layers, each with its own timers. For example, a wireless 
link layer may use a Hybrid ARQ protocol to recover from transmission errors, while the transport 
layer (e.g., TCP) implements its own retransmission logic. The core issue is that these timers are 
uncoordinated. Without a holistic view, it is difficult to ensure that the transport-layer timer is always 
longer than the maximum possible link-layer recovery time, often requiring careful, manual tuning 
by network administrators. If the timers are misaligned, a packet that is simply delayed during link-
layer recovery may be presumed lost by TCP, triggering a redundant and wasteful retransmission 
that adds to congestion and latency. 



Challenges of End-to-End Encryption: The widespread adoption of end-to-end encryption is 
essential for security but renders traditional deep packet inspection (DPI) ineffective. Modern 
protocols like TLS 1.3 (Rescorla, 2018) encrypt most of the connection metadata, preventing 
network devices from inspecting payloads to classify traffic for QoS or security monitoring. This 
forces a reliance on less precise heuristics, limiting the network's ability to differentiate between 
critical and non-critical flows without some form of cross-layer signaling. 

These examples reveal a common pattern: for a growing and critical class of applications, rigid 
adherence to layer isolation is no longer a virtue but a fundamental impediment to performance. 
The issue is not that layering is obsolete—it remains a powerful principle for general-purpose 
networking. The issue is that for these specific, high-stakes use cases, a more flexible and 
intelligent approach is now required. The historical challenge was never the desire for cross-layer 
optimization, but the absence of a technology capable of managing its immense complexity in a 
scalable way. As the next section will argue, that technology has now arrived. 

4. AI-Driven Cross-Layer Intelligence: A New Optimization Paradigm 
Overcoming the limitations of strict layering requires a mechanism that can process information 
across architectural boundaries in a dynamic and scalable manner. While specialized cross-layer 
protocols have demonstrated clear benefits in niche applications, a general-purpose solution has 
remained elusive. Furthermore, it has been argued that while machine learning techniques have 
been available for over a decade, their application to complex network optimization problems has 
been slow, representing a significant missed opportunity to address these long-standing 
challenges (Vasseur, 2025). 

The emergence of advanced artificial intelligence (AI) and machine learning (ML) systems provides 
a powerful new toolkit to address this challenge, enabling a shift from static, isolated control to 
dynamic, holistic optimization. 

The core function of this AI-driven approach is to create a system-wide control loop that operates 
on three principles: 
1. Holistic Observability: An AI model can ingest and process high-dimensional telemetry 

streams gathered concurrently from every layer of the stack. This includes physical-layer 
metrics like signal-to-noise ratio, MAC-layer retransmission statistics, network-layer latency 
and jitter measurements, transport-layer round-trip times, and—critically—application-layer 
performance indicators such as transaction success rates or video quality scores. 

2. Learning Complex System Dynamics: The primary value of an ML model, particularly a 
deep neural network (DNN), is its ability to learn the complex, non-linear relationships between 
these disparate data points. It can discover correlations that are intractable to define with 
static formulas or manual heuristics—for example, how a subtle increase in PHY-layer 
interference patterns predicts a future drop in application-level QoE. This transforms the 
system from a collection of independent components into a single, observable entity. 

3. Predictive and Proactive Control: By understanding these deep system dynamics, the 
model can move beyond reacting to past failures (e.g., TCP responding to a dropped packet) 
to predicting future states. This enables proactive control actions. The system can anticipate 
performance degradation and make corrective adjustments—such as rerouting traffic, 



adjusting QoS parameters, or signaling an application to adapt—before a service-level 
objective is breached. 

This methodology facilitates a fundamental change in the goal of network management: a-shift 
away from optimizing intermediate network KPIs (e.g., minimizing packet loss) and toward directly 
optimizing the high-level Service-Level Objectives (SLOs) that reflect true user or business 
outcomes. 

QoE-Centric SLA Definition and Enforcement: A more profound application of this paradigm 
moves beyond simply predicting outcomes. Consider training a Deep Neural Network not just on 
network telemetry but also on explicit user feedback signals (e.g., satisfaction ratings, application 
usage patterns). The objective is to create a comprehensive model of user-perceived Quality of 
Experience (QoE). The primary function of such a a model is to dynamically learn the precise set of 
lower-layer SLAs (latency, jitter, loss) required to achieve a high level of user satisfaction for a 
given application context. This replaces the static, one-size-fits-all SLA with a dynamic, context-
aware one derived directly from user experience. Once defined, this QoE model can be used in a 
cognitive control loop to actively orchestrate the network—adjusting routing, QoS queues, or even 
application codecs—to continually meet these bespoke SLAs, a concept central to cognitive 
networking (Vasseur, 2023). 

Workload-Aware Data Center Optimization: In a distributed ML environment, an AI model can 
learn to recognize the unique network traffic "fingerprints" of different workloads and their phases. 
This allows the system to optimize directly for high-level KPIs like Job Completion Time (JCT) for 
training or Time to First Token (TTFT) for inference. For example, a reinforcement learning agent 
could tune job scheduling policies based on their observed impact on network congestion and end-
to-end throughput, orchestrating the fabric to anticipate bandwidth-intensive phases and minimize 
expensive compute stalls. 

Importantly, this AI-driven approach does not mandate the abandonment of modularity. Instead, 
cross-layer intelligence can be introduced with minimal disruption through a form of "soft 
layering." This involves creating telemetry fusion layers that aggregate and unify metrics from 
across the stack into a common data plane for model consumption. The AI model's output can then 
be fed back into the system via intelligent control loops, guiding the decision-making of existing 
protocols at specific layers (e.g., adjusting congestion control parameters or traffic shaping 
policies) through well-defined APIs or metadata channels. 

In essence, AI provides a scalable and adaptive mechanism to intelligently violate the strict 
information boundaries of the layered model without discarding its architectural benefits. This 
approach is not intended as a universal replacement for intra-layer optimization, as many 
technologies are most effectively managed within their own domain. Instead, it offers a powerful, 
complementary strategy for complex scenarios where system-level performance is clearly 
constrained by a lack of cross-layer context. It allows the system to retain its modular structure 
while operating with a level of holistic awareness that was previously unattainable. 

5. Conclusion 
The layered architecture, a foundational principle of networking, provided the modularity and 
standardization necessary to build the global Internet. Its core design trade-off—the strict isolation 



of layers—was instrumental to this success. However, as this paper has argued, while the layering 
principle remains effective for general-purpose networking, its strict enforcement of isolation has 
become a structural impediment for a critical class of modern systems. In these dynamic, resource-
constrained, and performance-sensitive environments, each layer operates with an architectural 
blind spot, optimizing its behavior using only the information available within its own domain, which 
prevents globally optimal behavior. 

Artificial intelligence offers a practical and powerful paradigm to transcend these limitations. By 
ingesting and analyzing holistic, multi-layer telemetry, ML models can learn the complex dynamics 
of an entire system. This enables a transformative shift from reactive, KPI-driven management to 
predictive, SLO-focused optimization, where the primary goal is to directly enhance end-to-end 
outcomes such as user Quality of Experience or Job Completion Time. This can be achieved 
without a disruptive architectural overhaul, using "soft layering" techniques that augment existing 
modular systems with intelligent control loops. 

Moving forward, the integration of AI-driven cross-layer intelligence represent a necessary 
evolution in system design. Realizing its full potential will require continued innovation in areas 
such as standardized, high-resolution telemetry frameworks and open, programmable control 
interfaces. Embracing this paradigm is not about abandoning the layered model, which remains 
essential for many tasks, but about augmenting it with the holistic intelligence required to meet the 
demands of the next generation of applications. 

The views and opinions expressed in this paper are solely those of the author and do not 
necessarily reflect the official policy or position of NVIDIA or any of its affiliates. The information 
and analysis presented are based exclusively on publicly available data, documentation, and 
reports accessible on the web. 

6. References 
InfiniBand Trade Association. (2022). InfiniBand™ architecture specification, volume 1, release 
1.5. 

Iyengar, J., & Thomson, M. (Eds.). (2021, May). QUIC: A UDP-based multiplexed and secure 
transport (RFC 9000). IETF. 

Krifa, A., Barakat, C., & Spyropoulos, T. (2008). An optimal joint routing and scheduling policy for 
Delay Tolerant Networks. In IEEE INFOCOM 2008 - The 27th Conference on Computer 
Communications. 

Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on cross-layer 
solutions for wireless sensor networks. IEEE Communications Surveys & Tutorials, 19(1), 571-595. 

NVIDIA. (2024). NVIDIA DGX SuperPOD: The blueprint for AI factories. 

Postel, J. (1981a, September). Internet protocol (RFC 791). IETF. 

Postel, J. (1981b, September). Transmission control protocol (RFC 793). IETF. 



Rescorla, E. (2018, August). The Transport Layer Security (TLS) protocol version 1.3 (RFC 8446). 
IETF. 

Vasseur, J. P. (2023). Cognitive networking: The new networking paradigm. Retrieved from 
https://assets.zyrosite.com/A1aglvGGy1F64BNz/wp-cognitive-networks-mv05jQOpq0CJ7eNd.pdf 

Vasseur, J. P. (2025, July). Beyond protocol: A decade of missed opportunities in network AI. 
Retrieved from https://assets.zyrosite.com/A1aglvGGy1F64BNz/beyondprotocol-july2025-
m7VbXp2BLKTx071B.pdf 

Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J. 
P., & Alexander, R. (2012, March). RPL: IPv6 routing protocol for low-power and lossy networks 
(RFC 6550). IETF. 

 
 


