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Abstract: for the past decade, Artificial Intelligence (AI) and Machine Learning (ML) have been 
applied to networking in narrow, isolated ways—mostly anomaly detection, traffic forecasting, failure 
prediction—but the impact remains surprisingly and unfortunately too marginal. Core operations like 
troubleshooting, root-cause-analysis, and network optimization still depend on outdated, manual 
methods. Meanwhile, Generative AI (GenAI) and large language models (LLMs) are reshaping entire 
industries with agentic systems, tool learning, reasoning models, and real-time decision-making. 
Networking is lagging behind. Today’s uses—chatbots and config assistants—barely scratch the 
surface of what’s possible. This paper argues that the biggest opportunity in networking today is not 
another protocol or some algorithmic optimization—but a shift to intelligent, distributed, AI-driven 
systems. GenAI can unlock self-healing fabrics, predictive diagnostics, and cross-layer optimization 
at global scale. But the gap between potential and reality is widening fast. Now is the moment to act. 
The future of the Internet will be built by networks that learn, reason, and adapt. Those that don’t will 
be left behind. 

1. Introduction 

The Internet has experienced unprecedented growth in scale and complexity over the past four 
decades. Global internet traffic is now measured in hundreds of exabytes per month, driven by a 
proliferation of high-bandwidth applications and cloud-based services. The number of connected 
devices is projected to exceed 30 billion by 2025, each contributing to the data deluge. This demand 
is met by an explosion in bandwidth rates, with multi-gigabit speeds becoming common, and 
supported by a global footprint of over 900 hyperscale data centers. This expansion has led to 
networks that are more heterogeneous than ever, with diverse architectures spanning edge, core, 
and massive data center environments interconnected by a myriad of protocols and technologies. 
Consequently, designing, managing, and operating these systems has become incredibly 
challenging, as traditional manual approaches struggle to handle the dynamic nature of modern 
workloads and complex failure modes. 
It is therefore difficult to understand why a technology such as ML/AI has been so poorly adopted, a 
topic we will review in the next section. 
2. Limited Adoption of ML/AI 



During the past decade, despite advancements in ML/AI, their integration into networking remains 
limited. Factors contributing to this include the need for high-quality labeled data, which is sometimes 
not available (or require significant effort) in operational networks, integration challenges with legacy 
infrastructure but also resistance to change and skepticism from network engineers. Still, the next 
section highlights specific instances where ML/AI has been successfully adopted, providing context 
for the discussion on untapped potential. 

3. Pockets of ML/AI Adoption in Networking 

3.1 ML/AI Use Cases in Network Technologies 

This section examines specific instances where ML/AI have been integrated into operational 
networking systems. The focus is on documented deployments, with contrasts to research-oriented 
applications where relevant. 

Wi-Fi Networks: IEEE 802.11 ML/AI applications in Wi-Fi networks are deployed primarily for 
network management and troubleshooting in commercial products. Standardization efforts, such as 
the IEEE 802.11 AI/ML Topic Interest Group (TIG), have produced reports influencing standards like 
802.11bn (Wi-Fi 8), but deep integration from standards at PHY/MAC layers remains in research. 
That being said, Wifi ML/AI have been widely deployed on premise and in the cloud allowing to 
deploy a variety of use cases for million of Access Points (AP). Key deployed use cases involve 
anomaly detection, where ML models identify deviations in radio frequency (RF) and upper layer 
metrics flagging potential malfunctioning devices impacting the user experience, and automated 
configuration, such as dynamic channel selection using optimization algorithms. For the sake of 
illustration, Cisco's AI Network Analytics, part of Catalyst Center Assurance, employs advanced ML 
techniques for establishing dynamic baselines of key performance indicators (KPIs). Cisco’s AI-
based dynamic baselining is derived from rolling four-weetelemetry windows and includes metrics 
such as onboarding latency, signal-to-noise ratio, and application response time. It utilizes 
unsupervised learning to cluster normal network behaviors from anonymized telemetry data, and 
deviations are computed by comparing new incoming values against these percentile-based 
statistical models. Time-series forecasting uses exponential smoothing and regression ensembles 
to predict threshold crossings, with corrective suggestions integrated into the Assurance dashboard. 
Juniper Mist AI applies a combination of machine learning techniques for Wi-Fi assurance, based 
on public Juniper documentation. Reinforcement learning is employed for radio resource 
management, where agents dynamically optimize RF parameters such as channel selection, 
transmit power levels, and bandwidth allocation in real time. Mist’s RL agents operate globally in the 
cloud with daily learning cycles and reward functions tied to packet loss, retransmission rate, and 
bandwidth consumption. Adjustments are applied in real-time with fallback to rule-based logic if the 
learned policy violates operational thresholds. Unsupervised learning supports anomaly detection 
by clustering network telemetry data to identify deviations from normal patterns, enabling proactive 
identification of issues like connectivity drops or unusual traffic spikes. Additionally, unsupervised 
methods are used in virtual Bluetooth Low Energy (vBLE) location services; Juniper’s vBLE uses 
unsupervised Gaussian mixture models and density-based clustering (similar to DBSCAN) to resolve 
locations within 1–3 meters without requiring fixed beaconing hardware. 

Cellular Networks: 5G Deployments and Pathways to 6G 



5G networks incorporate ML/AI in operational settings for network optimization, traffic prediction, and 
fault detection. For instance, 3GPP Release 18 standards enable ML-based enhancements in radio 
access networks (RANs), including mobility optimization and resource slicing. These leverage 
supervised learning for predictive tasks, such as forecasting handover decisions based on historical 
mobility data, and unsupervised learning for clustering channel states to improve load balancing 
(3GPP TR 28.908). Deployed implementations demonstrate reduced handover failures through real-
time adaptation to user patterns. In contrast, sixth-generation (6G) concepts remain primarily in 
research and early standardization phases. Initial stages, termed "AI for Network," explore ML for 
spectrum allocation and operations and maintenance (O&M) optimization, utilizing reinforcement 
learning (RL) for dynamic policy adjustments in simulated environments. Key ML techniques in 
deployed 5G systems include supervised learning for resource prediction and unsupervised learning 
for anomaly detection in modulation schemes. Reinforcement learning (RL) and federated learning 
(FL) are explored in research for dynamic environments, such as beamforming—where RL agents 
learn optimal beam selections via trial-and-error interactions with channel feedback—and privacy-
preserving model training across distributed nodes. Generative AI, including large language models 
(LLMs), is investigated for semantic communication, where models compress data by extracting 
semantic features, but lacks widespread deployment. 

NVIDIA Aerial for AI-Native Wireless R&D and Deployment 

NVIDIA's Aerial platform supports both research and commercial deployments in 5G RANs. The 
CUDA-Accelerated RAN framework enables software-defined, GPU-accelerated networks, with full-
inline acceleration of L1 and L2 layers. It incorporates ML techniques such as neural networks for 
beam management and channel state information (CSI) compression, where autoencoders reduce 
feedback overhead by learning compact representations of a channel data (see NVIDIA Aerial 
Documentation). The Omniverse Digital Twin (AODT) facilitates simulation for ML algorithm testing, 
supporting training of models like those for positioning via unsupervised clustering of signal patterns. 

ML/AI in WAN And SD-WAN Predictive networks employ machine learning techniques to forecast 
network failures and SLA violations before they occur, contrasting with traditional reactive 
approaches that respond post-detection, based on Vasseur (2023). For failure prediction, models 
like Gradient Boosted Trees (GBT) incorporate features to identify patterns indicative of dark failures 
(complete connectivity loss) or grey failures (degraded performance). These algorithms are trained 
on large datasets from millions of paths across MPLS, Internet, DSL, fiber, satellite, and 4G links, 
optimizing for high precision to minimize “false positives”. Challenges involve balancing precision 
against recall ensuring robust alternate path testing to avoid oscillations. Deployed in hundreds of 
networks globally since 2023, these techniques improve Service Level Objectives (SLOs) and 
Quality of Experience (QoE), though specific model hyperparameters are not detailed in public 
sources. An example of predictive networking is implemented in Cisco's Catalyst SD-WAN WAN 
Insight feature, which applies similar ML/AI for analytics in software-defined wide area networks. 
Moreover, for bandwidth forecasting, statistical time-series forecasting models process historical 
usage data, including ingress and egress metrics aggregated daily, to predict future needs. These 
models incorporate seasonality and trend analysis, requiring weeks of historical data for generation, 
and output lower, upper, and mean bandwidth levels for comparison with actual usage (Cisco 
Catalyst SD-WAN Analytics Documentation). 

ML/AI in Datacenters 



NVIDIA’s data center networking technologies apply ML/AI in several domains such as for 
congestion control, a power management, and predictive maintenance in AI workloads, based on 
public NVIDIA documentation and peer-reviewed research publications. For congestion control, 
reinforcement learning (RL) models—specifically deep RL with policy gradient optimization—learn 
optimal packet scheduling policies by processing network state inputs such as queue lengths, link 
utilization, and flow priorities to minimize latency and packet drops in RDMA over Converged 
Ethernet (RoCE) environments. These policies are distilled into decision tree representations to meet 
real-time performance constraints and are deployed efficiently on programmable network interface 
cards (NICs) such as ConnectX-6Dx. This distillation reduces inference latency by approximately 
500×, enabling sub-2 µs decision times on NICs. Demonstrated in prototype clusters of up to 64 
hosts operating at 100 Gbps with Spectrum-2 Ethernet switches, these RL-based congestion control 
systems outperform traditional approaches such as DCQCN and Swift in terms of latency, 
throughput, and fairness during AI training workloads (NVIDIA RL-CC, 2022; ML for Systems @ 
NeurIPS). For power management, supervised learning algorithms analyze telemetry data from 
GPUs and switches to predict and dynamically optimize power states. These models process metrics 
such as GPU load, temperature, and power draw to anticipate energy demands and adjust 
configurations accordingly. Exact model architectures are not publicly disclosed. 

Optical Networks 

Optical networking, encompassing dense wavelength-division multiplexing (DWDM) and coherent 
transceivers, presents opportunities for ML/AI in addressing nonlinear impairments and dynamic 
resource allocation. As of today, deployments remain limited, primarily in vendor-specific coherent 
optics for data center interconnects and metro networks, with most applications in research or pilot 
stages. Notable examples include Ciena’s WaveLogic Ai and WaveLogic 6 platforms, which 
integrate ML for signal equalization and automation. Neural networks, such as convolutional 
architectures, model fiber nonlinearities by processing input features like signal-to-noise ratios and 
phase distortions, enabling adaptive compensation in deployed systems (Ciena WaveLogic 
Documentation). Ciena’s implementations include neural network–based modules for OSNR 
estimation and nonlinear pre-distortion, deployed within the DSP pipeline of coherent modems, 
ennabling real-time compensation for impairments such as Kerr-induced nonlinear phase noise. 
These deployments demonstrate practical benefits in specific domains, yet they represent 
exceptions in broader networking practices. 

3.2 Security: Deployed Applications of ML/AI in Threat Detection and Network Defense 

For decades, network security has relied on foundational technologies like rule-based firewalls and 
Intrusion Detection Systems (IDS), which remain operational in many networks. These systems, 
exemplified by tools like Snort, rely on predefined signatures—essentially complex pattern-matching 
rules—to identify known threats in network traffic and block unauthorized access. However, this 
signature-based approach struggles with zero-day attacks and adaptive adversaries that use novel 
techniques to evade static patterns. This vulnerability is magnified by the emergence of generative 
AI, which enables adversaries to automate the creation of novel and polymorphic attacks, rendering 
signature-based detection increasingly ineffective. ML/AI techniques have been deployed at large 
scale to address these limitations, processing vast telemetry data for real-time threat detection and 
response. Vendors such as Cisco, Palo Alto Networks, and NETSCOUT (Arbor) integrate these 
methods into products handling security for millions of endpoints globally, augmenting traditional 



systems with dynamic models trained on diverse datasets. For distributed denial-of-service (DDoS) 
attacks, unsupervised learning algorithms detect volumetric or application-layer floods by analyzing 
traffic anomalies. Density-based spatial clustering of applications with noise (DBSCAN) groups flow 
data based on features like packet rates, source IP diversity, and entropy measures. In Palo Alto’s 
Prisma Cloud and NETSCOUT’s Arbor Edge Defense, these models process netflow records in real 
time, incorporating hierarchical clustering to handle multi-dimensional data for mitigation actions like 
rate limitting (based on public documentation). 

Data Exfiltration Detection use both unsupervised and supervised learning models like Random 
Forest classifiers to distinguish between legitimate and unauthorized outbound traffic. These models 
analyze features like destination ports and data volumes from network telemetry to identify and block 
potential data theft, as seen in products like Cisco Secure Network Analytics. 

Ransomware Identification often employs techniques like Convolutional Neural Networks (CNNs) 
to analyze behavioral patterns from file activity and network traffic. By treating this data as image-
like tensors, CNNs can detect malicious activities such as unauthorized encryption or command-
and-control communication. This technique is used in platforms like Palo Alto’s Cortex XDR to 
identify ransomware and its lateral movement. 

Phishing detection leverages a wide variety of ML algorithms to parse email headers, URLs, and 
content for deceptive patterns. Deployed systems utilize a broad spectrum of techniques, including 
traditional models (e.g., Naive Bayes, Decision Trees, SVM, KNN), ensemble methods (Random 
Forests, Gradient Boosting), and deep learning architectures (CNNs, RNNs, Transformers). Hybrid 
models and Generative Adversarial Networks (GANs) are also employed to improve accuracy and 
resilience. For example, Cisco Secure Email applies these diverse techniques to inbound traffic for 
threat quarantine (Cisco Cybersecurity Report). 

NVIDIA’s security architecture leverages the BlueField DPU as a distributed, agentless sensor to 
enable a zero-trust posture. The Morpheus AI cybersecurity framework runs on the DPU, using GPU-
accelerated inference to process raw packet telemetry at line rate (up to 100 Gbps) without host 
impact. This allows for AI-driven applications like digital fingerprinting and anomaly detection to be 
deployed directly in the network fabric, analyzing encrypted traffic streams in real time (NVIDIA 
Developer Blog). 

Cisco’s AI Endpoint Analytics uses ML/AI for detailed endpoint visibility and profiling. It employs 
supervised learning for multi-factor classification (MFC), using telemetry like DHCP fingerprints and 
DPI results to accurately label devices, including IoT. For unknown devices, it uses unsupervised 
clustering for "smart grouping," which creates profiling rules for policy enforcement via Cisco ISE. 
The platform also uses ML-based anomaly detection to identify spoofing by flagging behavioral 
deviations from established baselines. Detection of spoofing attack may trigger the device to be put 
under quarantine. 

Device fingerprinting employs a wide range of ML algorithms—from traditional classifiers like 
Random Forests and SVMs to deep learning models like GNNs and autoencoders—to profile 
endpoints based on network behavior. These techniques are used, for example, by Cisco's AI 
Endpoint Analytics for IoT device identification. Closely related, User and Entity Behavior Analytics 
(UEBA) uses unsupervised models like Isolation Forests to baseline normal activity and detect 



anomalies indicative of insider threats or compromised accounts. UEBA systems are often integrated 
into SIEM platforms to provide risk-scored alerts for prioritized investigation. 

Cisco Encrypted Traffic Analysis (ETA) inspects encrypted traffic for threats without decryption 
by using ML models to analyze metadata. It analyzes features like the sequence of packet lengths 
and inter-arrival times (SPLT) and TLS handshake parameters. Recurrent Neural Networks (RNNs), 
particularly LSTM variants, are used to learn temporal patterns from this metadata to classify flows 
and detect threats like malware command-and-control channels while preserving privacy. The 
system can operate at up to 80 Gbps per sensor (Cisco Live EMEA, 2024). 

3.3 Advanced Security Analytics and Automation 

Beyond direct threat detection, ML/AI is also deployed to enhance security operations through 
predictive analytics and automation. Key applications include: 
• Vulnerability Prioritization: NLP models like BERT analyze threat intelligence to predict which 

vulnerabilities are most likely to be exploited, helping teams prioritize remediation beyond static 
CVSS scores (e.g., Tenable, Qualys). 

• Security Orchestration, Automation, and Response (SOAR): Platforms use topic modeling 
and machine learning classifiers to triage alerts and recommend response playbooks, 
automating SOC workflows (e.g., Palo Alto Networks’ Cortex XSOAR). 

• Malware Propagation Tracking: Graph Neural Networks (GNNs) model network connections 
to identify and track the spread of malware (e.g., Palo Alto’s WildFire). 

• Insider Threat Monitoring: Behavioral anomaly detection is used to identify deviations in user 
activity logs that could indicate a threat, flagging them for further investigation (e.g., Cisco 
Identity Services Engine). 

These techniques have seen widespread deployment in enterprise and service provider 
environments, processing petabytes of daily traffic, but face challenges such as adversarial evasion 
through data poisoning and the need for continuous model retraining on imbalanced datasets. While 
the outlined algorithms enhance threat response, specific architectural hyperparameters and training 
protocols are not disclosed in public sources. 

4. Untapped Potential of ML/AI in Networking 

Despite a growing number of isolated deployments, the adoption of ML/AI in networking remains 
severely limited in both scope and depth. As documented in previous sections, current 
implementations are often confined to narrow, vendor-specific use cases within predefined 
operational boundaries. These examples represent valuable but shallow integration, falling far short 
of transforming the foundational mechanisms of how networks are operated, diagnosed, and 
optimized. For example, many critical functions—such as troubleshooting, root-cause-analysis, 
continuous optimization, and self-healing—have seen little to no fundamental innovation in decades, 
still relying on rule-based systems, static configurations, and manual intervention. The vision of 
autonomous / self-driving networks has been articulated in white papers and architectural roadmaps 
since at least the early 2000s, yet progress has been minimal, largely due to architectural inertia, 
data challenges, and risk aversion in production environments. 



Modern networks generate massive volumes of telemetry that provide a rich data source for 
advanced ML/AI techniques to detect anomalies, model complex dependencies, and drive real-time 
control. Closing the gap between this potential and current deployment would unlock critical 
capabilities, including higher operational resilience, proactive root-cause diagnosis, predictive 
maintenance, QoE-aware routing, and cross-layer optimization. Below, we outline several categories 
of high-impact use cases where ML/AI could play a transformative role. 

Optimization Use Cases Traffic Engineering: ML models could predict congestion and 
dynamically adjust routing paths. In inter-domain routing, reinforcement learning agents could 
replace brittle manual techniques—like AS-PATH prepending and MED tuning—with adaptive 
policies learned from continuous feedback. Unlike traditional BGP-based traffic engineering, which 
depends on statically defined heuristics, RL-based systems could adjust policies in real time, 
optimizing for latency, packet loss, or throughput across ever-changing topologies. 

Spectrum Allocation in Wireless Networks: Machine learning enables cognitive radio systems to 
identify underutilized spectrum in real time, improving spectral efficiency in dense 5G and 6G 
environments. Cisco’s AI-Enhanced Radio Resource Management (RRM), for example, integrates 
cloud-based ML to optimize transmit power and channel assignment based on long-term telemetry, 
surpassing traditional reactive, heuristic-based RF tuning. 

Fault Management and Reliability Use Cases Predictive Maintenance: various ML/AI 
technologies can detect early warning signals of hardware degradation or link/node/path failures. 
Models trained on historical telemetry can issue maintenance alerts before service degradation 
occurs. 

Root-Cause Analysis: Current approaches to Root-Cause Analysis (RCA) are often limited to basic 
correlation of events, but it is well known that correlation does not imply causation. There is a 
massive untapped potential for more sophisticated root-causing by using a combination of classic 
ML/AI and Generative AI. These advanced systems could leverage external tools, analyze complex 
dependencies, and move beyond simple correlation to identify the true origin of network issues. 

Self-Healing Networks: AI agents embedded in SDN controllers or network fabric elements could 
detect, localize, and respond to faults in real time by rerouting traffic, restarting subsystems, or 
reallocating resources—without human intervention. While the concept has been discussed for 
decades, practical implementations are rare, highlighting a critical area of unmet potential. 

Cross-Domain Optimization: Most production environments still treat compute, storage, and 
network as independent silos. ML models trained on telemetry from all these domains could provide 
a holistic understanding of system-wide dependencies, enabling a far more accurate root-cause 
analysis that is simply not possible with today's siloed monitoring tools. 

Cross-Layer Optimization: ML/AI can be used to understand the implications of an anomaly at one 
layer of the network stack on another. For example, a model could learn the relationship between 
network jitter at the transport layer and application response time at Layer 7. A more complex use 
case would be to assess the impact of packet loss on the performance of a distributed AI training 
job, allowing for proactive adjustments to the network fabric or the workload itself. Such insights are 
nearly impossible to codify with traditional rule-based systems. 



These are only a few examples of the potential applications of ML/AI in networking. 

Moreover, the most significant catalyst for unlocking the full potential of ML/AI in networking 
is the recent emergence of Generative AI and agentic architectures, which represent a 
paradigm shift we will explore in detail later in this document. 

5. Challenges and Barriers to ML/AI Adoption in Networking 

To provide a balanced view, it is essential to address the practical obstacles that have hindered 
wider adoption of ML/AI in networking. This section discusses key challenges, drawing from 
operational realities in network environments, and notes potential paths forward. Understanding 
these barriers is crucial for realizing the potential outlined earlier. 

Cultural and Operational Resistance: A significant, though often understated, barrier is the cultural 
and operational resistance from seasoned network engineers. Networking has traditionally been a 
discipline rooted in deterministic, command-line-driven configurations and explicit rule-sets where 
predictability is paramount. The introduction of ML/AI, with its probabilistic nature and "black-box" 
models, can be perceived as a loss of control and a threat to the stability that engineers have spent 
careers ensuring. This skepticism is compounded by concerns about job roles evolving or becoming 
obsolete, as well as a deep-seated professional ethos that prioritizes manual intervention and deep, 
protocol-level understanding over automated, data-driven decision-making, especially in high-stakes 
environments where a single error can cause widespread outages. 

Data Quality and Availability: Network-generated data often suffers from incompleteness, noise, 
or bias due to varying device capabilities and intermittent connectivity. For example, telemetry from 
edge devices may lack standardization, leading to models that perform poorly in diverse settings. 

Integration with Legacy Infrastructure: Many existing networks use proprietary or outdated 
protocols, making it difficult to integrate modern ML/AI frameworks without significant and risky 
retrofitting. Deploying AI agents in such environments can introduce compatibility issues and 
performance overhead. Addressing these challenges through standardized data formats and hybrid 
systems is pivotal for transitioning to more intelligent networks. 

6. On The Emergence of Generative AI and Large Language Models The adoption of large 
language models (LLMs) and generative AI (Gen-AI) is transforming the landscape of modern 
computing. Their integration across all fields such as software development, business automation, 
healthcare, manufacturing and scientific discovery is driven by an ecosystem of rapidly evolving 
techniques: Retrieval-Augmented Generation (RAG) augments LLMs with external knowledge 
sources, improving factual grounding and contextual relevance. Advanced designs like Graph-RAG, 
Multi-hop RAG, and MAIN-RAG allow multi-step reasoning and structural retrieval, enabling deeper 
question answering and decision support. Chain-of-Thought (CoT), Tree-of-Thought, and Graph-of-
Thought Reasoning introduce explicit intermediate reasoning steps. These frameworks help LLMs 
break down complex problems into logical sequences, allowing interpretable and robust decision-
making across planning, diagnostics, and inference. Mixture-of-Experts (MoE) architectures activate 
sparse subsets of expert subnetworks during inference, scaling model capacity while maintaining 
inference efficiency. This makes it possible to support diverse tasks while minimizing compute cost. 
Test-Time Adaptive Computation techniques, including early exits, speculative decoding, and token-



level routing, enable models to dynamically allocate resources based on input complexity. This 
improves latency, energy efficiency, and responsiveness, particularly in edge and mobile 
environments. Short-Term Memory and Context Management techniques—such as scratchpad 
prompting, memory tokens, context window extension, and compressive attention—support 
continuity and coherence in long multi-turn tasks. These mechanisms allow models to reason over 
extended sequences of actions and events. Multi-Turn and Long-Horizon Planning has been 
enhanced through agent frameworks like LangChain, AutoGen, and LangGraph. These tools support 
memory persistence, dynamic state tracking, and autonomous goal decomposition across evolving 
task contexts. Reinforcement Learning (RL) has evolved beyond static reward shaping (as used in 
RLHF). 

Agentic Systems represent a new paradigm where LLM-powered agents possess memory, 
planning, and collaboration capabilities. While poised to have a drastic impact, this is not 
"automagic"; realizing this potential will require careful design to address the new challenges these 
systems introduce. These agents can: 
• Coordinate with one another to solve distributed tasks 
• Learn to use external tools (e.g., APIs, search engines, code interpreters) through emergent 

skill acquisition 
• Access modular reasoning capabilities by combining symbolic logic, search, and probabilistic 

models 
• Engage in self-improvement, using methods like reflective prompting, automatic chain-of-

thought revision, and online fine-tuning based on feedback and outcomes 

Small LLMs (e.g., 1B–7B parameters) are increasingly deployed at the edge. Using quantization, 
pruning, distillation, and LoRA fine-tuning, these models perform local inference on switches, mobile 
devices, and embedded platforms, enabling intelligence outside cloud boundaries. Together, these 
advances make Gen-AI not only more powerful, but more adaptable, distributed, and autonomous—
setting the stage for a fundamental transformation in how intelligent systems interact with the world. 

Implications for Networking while current networking applications of LLMs remain limited—mostly 
in assistive roles such as configuration generation, documentation parsing, or chatbot-driven 
support—the trajectory of Gen-AI points toward much deeper integration: 
• Embedded intelligence: Compact LLMs or agentic components could reside inside GPU/CPU, 

routers, switches, or virtualized infrastructure, enabling real-time inference and autonomous 
control at the edge. 

• Root-cause analysis and debugging: LLMs equipped with RAG and reasoning could correlate 
logs, telemetry, and alerts across protocol layers to diagnose complex network events without 
human intervention. 

• Cross-layer reasoning: Traditional networking architectures treat OSI layers as separate 
domains. Gen-AI models could reason across transport, application, and physical layers to 
detect interactions, performance bottlenecks, or emergent failure modes. 

• Distributed agent collaboration: Agentic systems could coordinate routing decisions, optimize 
policy configurations, and dynamically reallocate resources by communicating across 
administrative domains, achieving self-organizing behavior. 

This transition—away from static, centralized control planes toward intelligent, distributed, agent-
driven networks—will mark a major inflection point in in Internet architecture. Intelligence will become 



embedded in the fabric of the network, learning from experience, adapting over time, and 
collaborating across nodes and layers. The impact of these trends goes beyond incremental 
enhancement. 

We are entering an era in which the foundational design of the Internet itself may be reimagined: 
from a passive data transport layer to an active, cognitive, and self-optimizing infrastructure. These 
architectural implications—including protocol design, trust models, AI-native control planes, and 
agent security—will be addressed in a forthcoming white paper dedicated to the AI-driven reinvention 
of the Internet. 

7. Conclusion: From Local Optimizations to Smarter Networks 

ML/AI have already delivered very valuable results in networking, but only in a few well-defined 
areas. For instance, ML is used to detect anomalies in Wifi networks, allow for predictive actions in 
SD-WAN, optimize radio frequency parameters in Wi-Fi networks, detect anomalies in telemetry 
data, and predict links/nodes/pathsfailures. 

In network security, an area that has arguably seen the broadest adoption of ML/AI, techniques have 
been successfully applied to identify DDoS attacks using clustering algorithms, detect ransomware 
with neural networks, and flag insider threats through behavioral analysis. However, even here, 
these applications often remain vendor-specific and have yet to realize the full potential of truly 
intelligent, adaptive networks. 

The real opportunity lies ahead. Generative AI and large language models (LLMs) bring a new kind 
of capability. They make it possible to design distributed, intelligent systems that adapt in real time, 
reason across multiple layers, and take decisions proactively. Instead of relying on static rules and 
manual processes, networks could become self-aware and self-optimizing, reacting to problems 
before users even notice them. 

However, a new gap is emerging: the gap between what GenAI can offer and what has actually been 
adopted in networking is even wider. While other industries—like software development, finance, 
healthcare, and scientific computing—are rapidly evolving with tool-using agents, reasoning models, 
and advanced planning algorithms, networking use remains mostly assistive. Today’s GenAI 
applications in networking are largely limited to configuration help, documentation search, or simple 
chatbot interfaces. The potential to deploy LLMs for autonomous troubleshooting, real-time root 
cause analysis, or distributed policy negotiation is still largely unrealized. The pressure to evolve is 
growing. With rising data volumes, increasing complexity, and higher reliability demands, legacy 
systems are becoming harder to maintain and scale. Without a shift toward intelligent, learning-
based infrastructures, networking risks falling behind the pace of transformation happening across 
the digital ecosystem. Now is the time to close the gap between what networks are—and what they 
could become. 

The views and opinions expressed in this paper are solely those of the author and do not necessarily 
reflect the official policy or position of NVIDIA or any of its affiliates. The information and analysis 
presented are based exclusively on publicly available data, documentation, and reports accessible 
on the web. 

8. Appendix: Selected References 



For further reading on concepts discussed in this paper, consider the following resources: 

Vendor-Specific AI/ML Documentation: 
• Cisco Systems: 

o Cisco AI Network Analytics Overview. (Details on baselining KPIs and anomaly detection 
within Cisco Catalyst Center). Available at: https://www.cisco.com/c/en/us/products/dna-
analytics-and-assurance.html 

o ThousandEyes WAN Insights. (Covers the use of predictive analytics for SD-WAN path 
optimization). Available at: https://www.thousandeyes.com/product/wan-insights 

o Cisco AI Endpoint Analytics White Paper. (Details the use of ML for device profiling and 
security). Available at: https://www.cisco.com/c/en/us/solutions/collateral/enterprise-
networks/software-defined-access/nb-06-ai-endpoint-analytics-wp-cte-en.html 

o Cisco Secure Network Analytics (Stealthwatch) At-a-Glance. (Covers ML for detecting threats 
in encrypted traffic). Available at: 
https://www.cisco.com/c/en/us/products/collateral/security/stealthwatch/secure-network-
analytics-aag.html 

• Juniper Networks / Mist Systems: 
o The AI-Driven Campus Architecture White Paper. (Explains the application of Mist AI for wired 

and wireless assurance and the role of the Marvis VNA). Available at: 
https://www.juniper.net/content/dam/www/assets/white-papers/us/en/the-ai-driven-
campus-architecture.pdf 

o Get Started with Marvis Documentation. (Official documentation for the Marvis conversational 
assistant and its troubleshooting capabilities). Available at: 
https://www.juniper.net/documentation/us/en/software/mist/mist-
aiops/topics/concept/marvis-actions-overview.html 

• NVIDIA: 
o NVIDIA Morpheus Developer Page. (Provides details on the AI cybersecurity framework). 

Available at: https://developer.nvidia.com/morpheus 
o NVIDIA DOCA SDK Developer Page. (Official resource for the DPU programming 

framework). Available at: https://developer.nvidia.com/networking/doca/overview 
• Palo Alto Networks: 

o Cortex XDR Product Page. (Describes the use of ML for endpoint and network threat 
detection). Available at: https://docs-cortex.paloaltonetworks.com/p/XDR 

• NETSCOUT / Arbor: 
o Arbor Edge Defense (AED) Datasheet. (Details the use of ML for automated DDoS threat 

detection). Available at: https://www.netscout.com/sites/default/files/2024/02/data-sheet-
arbor-edge-defense-1606-0622.pdf 

• Ciena: 
o WaveLogic Ai Product Page. (Provides details on the programmable coherent optics and the 

real-time link monitoring data it enables). Available at: 
https://www.ciena.com/products/wavelogic/wavelogic-ai 

o WaveLogic 6 Technology Overview. (Describes the next generation of coherent optics, 
focusing on performance, scalability, and efficiency for 800G and 1.6T). Available at: 
https://www.ciena.com/products/wavelogic/wavelogic-6 

 


