2 (a)	Express $3\sin x - 2\cos x$ in the form $R\sin(x-\alpha)$, where $R>0$ and $0^{\circ}<\alpha<$ giving your value of α to the nearest 0.1° .	90°,
		narks]

2 By forming and solving a suitable quadratic equation, find the solutions of the equation

$$3\cos 2\theta - 5\cos \theta + 2 = 0$$

in the interval $0^{\circ} < \theta < 360^{\circ}$, giving your answers to the nearest 0.1° .

[5 marks]

Q 2	Solution	Mark	Total	Comment
(a)	$R = \sqrt{13}$ $\cos \alpha = \frac{3}{their\sqrt{13}} \text{ or } \sin \alpha = \frac{2}{their\sqrt{13}}$ $\alpha = 33.7$	B1 M1 A1	3	Accept 3.61 or better rounded correctly. or $\tan \alpha = \frac{2}{3}$ CAO - must be to 1 d.p.
	Award B1 for $R = \sqrt{13}$ even if it comes from If $\tan \alpha = \frac{2}{3}$ comes from wrong work e.g. co			= 2 or using $\tan \alpha = \frac{\cos \alpha}{2}$ then M0 A0
	but full marks can be earned in (ii).	J (1		$\sin \alpha$
	If $\tan \alpha = -\frac{2}{3}$ leads to $\alpha = 33.7^{\circ}$ then M0 A	0 but aga	ain mark	s can be earned in (ii).
	$\it R$ and $\it lpha$ must be found in part (a) to earn th	ese marl	(S.	
(b)	Minimum value is $-\sqrt{13}$	B1ft		ft on $-R$ from (i). Allow -3.61 or
	(comes from) $\sin(x - \alpha) = -1$	M1		better
	x - 33.7 = 270			PI by later correct work – e.g. 270° or correct final answer
	x = 303.7	A1	3	
			6	CAO - must be to 1 d.p.
	ı	I	•	1

Q2	Solution	Mark	Total	Comment
	$\cos 2\theta = 2\cos^2\theta - 1 \mathbf{used}$	B1		PI: Correct expression in terms of $\cos\theta$ used.
	$3(2\cos^2\theta - 1) - 5\cos\theta + 2 (= 0)$	M1		Attempt to use identity for $\cos 2\theta$ of the form $a\cos^2\theta + b$ to obtain a quadratic ir $\cos\theta$.
	$6\cos^2\theta - 5\cos\theta - 1 = 0$			
	$(\cos\theta - 1)(6\cos\theta + 1) = 0$	m1		Attempt to factorise their quadratic or correct use of quadratic formula.
	$(\cos\theta = 1) \qquad \cos\theta = -\frac{1}{6}$			
	$\theta = 99.6^{\circ}$, 260.4°	A1		Either correct - CAO
		A1		Both correct and no extra values in the interval but ignore any values outside of the interval including 0° and 360° .
	Tota	1	5	

3 (a) Show that

$$\sin 2x - \tan x = \tan x \cos 2x$$

[3 marks]

(b) Hence solve the equation

$$\sin 2x = \tan x$$

in the interval $0^{\circ} \leqslant x \leqslant 180^{\circ}$.

[3 marks]

(a) LHS =
$$\sin 2x - \tan x = 2 \sin x \cos x - \frac{\sin x}{\cos x}$$

B1 Correct in terms of sin x and cos x. Condone any letter provided consistent

$$= \sin x \left(2 \cos x - \frac{1}{\cos x} \right)$$

$$= \frac{\sin x}{\cos x} \left(2 \cos^2 x - 1 \right)$$

$$= \tan x \cos 2x$$
B1 or $\frac{2 \sin x \cos^2 x - \sin x}{\cos x}$
or $\frac{\sin x}{\cos x} (1 - 2 \sin^2 x)$
AG!!! - be convinced – expect to see intermediate line.

Some Possible Alternatives

LHS =
$$2 \sin x \cos x - \tan x$$
 B1 = $2 \frac{\sin x}{\cos x} \cdot \cos^2 x - \tan x$ **B1** = $\tan x (2\cos^2 x - 1) = \tan x \cos 2x$ **B1**

LHS =
$$2 \sin x \cos x - \frac{\sin x}{\cos x}$$
 B1 = $\sin x \left(2 \cos x - \frac{1}{\cos x} \right)$ B1 = $\tan x \cos 2x$ B0 not convinced.

RHS =
$$\tan x \cos 2x = \frac{\sin x}{\cos x} (2\cos^2 x - 1)$$
 B1 = $2\sin x \cos x - \frac{\sin x}{\cos x}$ **B1** = $\sin 2x - \tan x$ **B1**

RHS =
$$\tan x \cos 2x = \tan x (2\cos^2 x - 1)$$
 B1 = $2\sin x \cos x - \tan x$ **B1** = $\sin 2x - \tan x$ **B1**

There may be other ways – be reasonably generous with first two marks that could lead to the result – but be more rigorous with the final mark.

Candidates who work from both sides and meet can score **B1** for any useful identity then **B1** when in a position to equate the two sides but then **B0**.

(b)	<u>Hence</u>			
	$\sin 2x = \tan x \rightarrow \tan x = 0 \text{ or } \cos 2x = 0$	M1		PI by one pair of solutions.
	$\tan x = 0 \to x = 0 x = 180$	A1		Both solutions.
	$\cos 2x = 0 \rightarrow x = 45 \qquad x = 135$	A 1	3	Both solutions

Otherwise

Although question says 'Hence...' we will allow

$$\sin 2x = \tan x \rightarrow 2 \sin x \cos x = \frac{\sin x}{\cos x} \rightarrow \sin x = 0$$
 or $2 \cos x = \frac{1}{\cos x}$ (OE) M1 (either of these).

$$\sin x = 0 \rightarrow x = 0$$
 or 180 **A1** Both solutions $2\cos x = \frac{1}{\cos x} \rightarrow x = 45$ or 135 **A1** Both solutions

In either method, ignore any values (even if wrong) outside $0 \le x \le 180$

Penalise more than 4 solutions inside $0 \le x \le 180$ just once.

Answers only

Award **B2** for one pair (0 and 180) or (45 and 135) and **B1** for second pair

- 2 The angle α is **acute** and $\cos \alpha = \frac{\sqrt{3}}{3}$. The angle β is **obtuse** and $\sin \beta = \frac{1}{3}$.
 - (a) Show that $\tan \alpha = \sqrt{2}$ and find an exact value for $\tan \beta$.

[3 marks]

(b) Hence show that $\tan(\alpha-\beta)$ can be written as $p\sqrt{2}$, where p is a rational number. [2 marks]

- **4** The polynomial f(x) is defined by $f(x) = 18x^3 3x^2 28x 12$.
 - (a) (i) Use the Factor Theorem to show that (3x + 2) is a factor of f(x).

[2 marks]

(ii) Express f(x) as a product of linear factors.

[3 marks]

(b) The function g is defined for all real values of θ by

$$g(\theta) = 18\sin 2\theta \cos \theta - 3\cos 2\theta + 20\sin \theta + 27$$

- (i) Show that the equation $g(\theta)=0$ can be written as f(x)=0, where $x=\sin\theta$. [4 marks]
- (ii) Hence solve the equation $g(\theta)=0$, giving your answers, in radians, to three significant figures in the interval $0 \leqslant \theta \leqslant 2\pi$.

[2 marks]

	3 ν6 3 β ν3 ν8			or Pythagoras
(a)	$\tan\alpha = \frac{\sqrt{6}}{\sqrt{3}} = \sqrt{2}$	B1		AG - must see V6 in this approach
	$\tan \beta = (\pm) \frac{1}{\sqrt{8}}$ $\tan \beta = -\frac{1}{\sqrt{8}}$	M1 A1	3	Either $\frac{1}{\sqrt{8}}$ or $-\frac{1}{\sqrt{8}}$ ACF: e.g. $-\frac{1}{2\sqrt{2}}$ or $-\frac{\sqrt{2}}{4}$ etc.
(b)	$\tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \tan\beta}$			2√2 4 CCC.
	$=\frac{\sqrt{2}-\left(-\frac{1}{\sqrt{8}}\right)}{1+\sqrt{2}\left(-\frac{1}{\sqrt{8}}\right)}$	M1		Correct identity with $\tan \alpha = \sqrt{2}$ and their $\tan \beta$ value correctly substituted.
	$=\frac{5}{2}\sqrt{2}$	A1	2	OE – accept if written as $\frac{5\sqrt{2}}{2}$ etc.
			5	NMS scores 0/2.

Q4	Solution	Mark	Total	Comment
(a)(i)	$18\left(-\frac{2}{3}\right)^{3} - 3\left(-\frac{2}{3}\right)^{2} - 28\left(-\frac{2}{3}\right) - 12$	M1		Correct substitution of $x = -\frac{2}{3}$
	$= 18 \times \left(-\frac{8}{27}\right) - 3\left(\frac{4}{9}\right) - 28\left(-\frac{2}{3}\right) - 12$			or better
	= 0 (hence) factor	A1	2	Correct arithmetic and conclusion.
(a)(ii)	By factors			
	$6x^2 + bx - 6$ = $6x^2 - 5x - 6$	M1 A1		'Spotting' $a = 6$ and $c = -6$.
	(f(x)) = (3x+2)(3x+2)(2x-3) OE	A1 A1	3	NMS scores 3/3 if correct
(b)(i)	$18\sin 2\theta \cos \theta - 3\cos 2\theta + 20\sin \theta + 27$			
	$= 18 \times 2\sin\theta\cos\theta\cos\theta$	B1		Correct identity used for $\sin 2\theta$.
	$-3(1 - 2\sin^2\theta) + 20\sin\theta + 27$ = $36\sin\theta(1 - \sin^2\theta) - 3 + 6\sin^2\theta + 20\sin\theta + 27$	B1 M1		Any correct identity used for $\cos 2\theta$. Use $\cos^2\theta = 1 - \sin^2\theta$ to obtain a cubic expression in $\sin\theta$ only.
	$= -36\sin^3\theta + 6\sin^2\theta + 56\sin\theta + 24$ $(= -36x^3 + 6x^2 + 56x + 24)$			Do not award final A1 if division or changing signs occurs before
	Equate to 0 and cancel down to the equation $18x^3 - 3x^2 - 28x - 12 = 0$	A1	4	equating to 0 or any error seen. Accept in terms of $\sin \theta$.
(b)(ii)	$(\theta =)$ 3.87 , 5.55 CAO	B1B1	2	-1 for each extra sol ⁿ in $0 \le \theta \le 2\pi$

2 (a) Express $7\cos x + 3\sin x$ in the form $R\cos(x-\alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving your value of α to the nearest 0.1° .

[3 marks]

(b) Use your answer to part (a) to solve the equation $7\cos 2\theta + 3\sin 2\theta = 5$ in the interval $0^{\circ} < \theta < 180^{\circ}$, giving your solutions to the nearest 0.1° .

[3 marks]

5 (a) By replacing 3θ by $(2\theta + \theta)$ show that $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$.

[4 marks]

(b) By using the result from part (a) and assuming that $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$, find the exact value of

$$\int_0^{\frac{\pi}{6}} \left(2\sin^3\theta + 3 \right) d\theta$$

[6 marks]

Q2	Solution	Mark	Total	Comment	
(a)	$R = \sqrt{58}$	B1		Must see $R = \sqrt{58}$, $R = \pm \sqrt{58}$ is B0	
	$\sqrt{58}\cos\alpha = 7 \text{ or } \sqrt{58}\sin\alpha = 3 \text{ or } \tan\alpha = \frac{3}{7}$	М1		ft on their value of R.	
	$\alpha = 23.2^{\circ}$	A1	3	Must see $\alpha = 23.2^{\circ}$ Allow AWRT 22.9° to 23.3°.	

Accept any decimal equivalent to $\sqrt{58}$ to at least 3 SF provided it is rounded **correctly** – e.g. 7.62, 7.616 etc. e.g. using R = 7.61 to get $\alpha = 23.1^{\circ}$ would score **B0 M1 A1**.

Explicit use of $\cos \alpha = 7$ and $\sin \alpha = 3$ to get to $\tan \alpha = \frac{3}{7}$ is M0 A0 but marks in (b) are available.

Candidates who write $R\cos\alpha = 7$ and $R\sin\alpha = 3$ without finding R but reach a correct value for α score M1 A1.

An expression of the form $R\cos(x-\alpha)$ can score the **B1** and/or **A1** if R and/or α are correct.

(b)	$\cos^{-1}\left(\frac{5}{\sqrt{58}}\right)$ or 48.964	M1		Finding an angle from $\cos^{-1}\left(\frac{5}{R}\right)$.
	and 311.0359	dM1		For $360 - \cos^{-1}\left(\frac{5}{R}\right)$ only between 0^{0} and 360^{0}
	36.1° and 167.1°	A1	3	CAO. These two values only .

Question says 'Use your answer to part (a)' so using a different method or NMS is 0/3.

Total

For M1 and dM1 marks accept 2 SF or better.

dM1 is for correct ft fourth quadrant solution $(360^{\circ} - \text{first solution})$ and **NO** others between 0° and 360° .

6

necessary) after correct answer seen

The dM1 mark could be PI if candidate goes straight to the two correct answers from the M1 mark.

Ignore any solutions outside the interval $0^0 \le \theta \le 180^0$ for final A1.

Condone omission of degree symbol or other letter in place of θ .

(a)
$$\sin 3\theta = \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$$
 B1 Use of the correct $\sin (A + B)$ identity. PI by next two B marks

$$= 2\sin \theta \cos \theta \cos \theta$$
 B1 Use of the correct $\sin 2A$ identity
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 Use of the correct $\sin 2A$ identity
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 Use of the correct $\cos 2A$ identity
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 Use of the correct $\cos 2A$ identity
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 Use of the correct $\cos 2A$ identity
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 Use of the correct $\cos 2A$ identity
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 Use of the correct $\cos 2A$ identity
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 OE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^2 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^3 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^3 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^3 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^3 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^3 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^3 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^3 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^3 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^3 \theta) \sin \theta$$
 B1 DE: ACF to enable them to replace $2\sin^3 \theta$.
$$+ (1 - 2\sin^3 \theta) \sin \theta$$
 B1 DE: ACF to enab

(a) (i) Show that the exact value of $\cos B = \frac{2}{\sqrt{5}}$.

[1 mark]

(ii) Hence show that the exact value of $\sin 2B$ is $\frac{4}{5}$.

[2 marks]

(b) (i) Show that the exact value of $\sin(A-B)$ can be written as $p(5-\sqrt{5})$, where p is a rational number.

[4 marks]

(ii) Find the exact value of $\cos(A-B)$ in the form $r+s\sqrt{5}$, where r and s are rational numbers.

[3 marks]

(a)(i)	Use of $\sin^2 B + \cos^2 B = 1$			Or use of right-angled triangle with
	$\left(\frac{1}{\sqrt{5}}\right)^2 + \cos^2 B = 1$			opp = 1 and hyp = $\sqrt{5}$ to get adj = $\sqrt{4}$ or 2.
	$\cos B = \frac{2}{\sqrt{5}}$	B1	1	$\cos(\sin^{-1}\left(\frac{1}{\sqrt{5}}\right)) = \frac{2}{\sqrt{5}} \text{ is B0}$
				AG; must see evidence of working
(a)(ii)	$(\sin 2B = 2\sin B\cos B)$			
	$=2\times\frac{1}{\sqrt{5}}\times\frac{2}{\sqrt{5}}$	M1		Correct identity (PI) and substitution
	$=\frac{4}{5}$	A1	2	AG so line above must be seen.
(b)(i)	$\cos A = \frac{2}{3}$ exact value	B1		$\cos A = \frac{2}{3}$ seen or used (not 0.667 etc.)
	$\sin(A - B) = \sin A \cos B - \cos A \sin B$			
	$=\frac{\sqrt{5}}{3}\times\frac{2}{\sqrt{5}}-\frac{2}{3}\times\frac{1}{\sqrt{5}}$	M1		ft on their value of cosA
	Use of $\frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$ or $\frac{10-2\sqrt{5}}{15}$ OE seen	m1		$\frac{2}{3\sqrt{5}}$ term becoming $\frac{2\sqrt{5}}{15}$ before final answer
	$\frac{2}{15}(5-\sqrt{5})$	A1	4	$\frac{2}{15}$ OE seen and be convinced
	You must see justification between the use of	the iden	tity and	the final answer to earn the m1 A1 .
(b)(ii)	$\cos(A - B) = \cos A \cos B + \sin A \sin B$			
	$= \frac{2}{3} \times \frac{2}{\sqrt{5}} + \frac{\sqrt{5}}{3} \times \frac{1}{\sqrt{5}}$	M1 A1		ft on their value of $\cos A$ fully correct
	$= \frac{1}{3} + \frac{4}{15} \sqrt{5}$	A1	3	OE for $\frac{1}{3}$ and $\frac{4}{15}$ but not left as $\frac{5+4\sqrt{5}}{15}$
	Total		10	

2 (a) Express $2\cos x - 5\sin x$ in the form $R\cos(x + \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$, giving your value of α , in radians, to three significant figures.

[3 marks]

(b) (i) Hence find the value of x in the interval $0 < x < 2\pi$ for which $2\cos x - 5\sin x$ has its maximum value. Give your value of x to three significant figures.

[2 marks]

(ii) Use your answer to part (a) to solve the equation $2\cos x - 5\sin x + 1 = 0$ in the interval $0 < x < 2\pi$, giving your solutions to three significant figures.

[3 marks]

3. (a) Write $\cos \theta - 8 \sin \theta$ in the form $R \cos(\theta + \alpha)$, where R and α are constants, R > 0 and $0 < \alpha \le 90^{\circ}$. Give the exact value of R and give the value of α to 2 decimal places.

The temperature of a cellar is modelled by the equation

$$f(t) = 13 + \frac{\cos(15t)^{\circ} - 8\sin(15t)^{\circ}}{10} \qquad 0 \le t < 24$$

where f(t) is the temperature of the cellar in degrees Celsius and t is the time measured in hours after midnight.

Find, according to the model,

- (b) the maximum temperature of the cellar, giving your answer to 2 decimal places (2)
- (c) the times, after midnight, when the temperature of the cellar is 12.5 °C

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(4)

Q2	Solution	Mark	Total	Comment
(a)	$R = \sqrt{29}$	B 1		Allow 5.4 or better
	$\sqrt{29}\cos\alpha = 2, \sqrt{29}\sin\alpha = 5 \text{ or } \tan\alpha = \frac{5}{2}$ $\alpha = 1.19$	M1 A1	3	Their $\sqrt{29}$ Note $\cos \alpha = 2$ or $\sin \alpha = 5$ is M0 Must be exactly this
(b)(i)	$R\cos(x+\alpha) = R$ or $\cos(x+\alpha) = 1$ or $x+\alpha = 2\pi$ or $x+\alpha = 0$ or $x = -\alpha$ (x =) 5.09	M1		Candidate's R and α
	(x -) 5.05	A1	2	Must be exactly this
(ii)	$\cos\left(x+\alpha\right) = -\frac{1}{R}$	M1		Candidate's R and α ; PI
	$(x + \alpha =)$ 1.75757 and 4.52560	A1		Rounded or truncated to at least 2 dp; Ignore 'extra' solutions
	x = 0.567 and $x = 3.34$	A1	3	Condone $x = 0.568$; x = 3.34 must be correct NMS is $0/3$ A0 if extra values in interval $0 < x < 2\pi$
	Total		8	

3.(a)
$$R = \sqrt{65}$$
 B1 $\tan \alpha = \frac{8}{1} \Rightarrow \alpha = \text{awrt } 82.87^{\circ}$ M1A1 (3)

(b) $13 + \frac{'R'}{10} = 13.81(^{\circ}\text{C})$ M1 A1 (2)

(c) $\cos(15t + 82.87)^{\circ} = -\frac{5}{\sqrt{65}}$ M1 A1 $15t + 82.87 = 128.33 \Rightarrow t = 3.03$ A1 $15t + 82.87 = (360 - 128.33) \Rightarrow t = ...(9.92)$ Both times correct $03:02$ and $09:55$ A1 (4) (9 marks)

$$y = \frac{(2x-1)^3}{(3x-2)} \qquad x \neq \frac{2}{3}$$

- (a) Find $\frac{dy}{dx}$ writing your answer as a single fraction in simplest form.
- (4)

(b) Hence find the set of values of x for which $\frac{dy}{dx} \ge 0$

(2)

(ii) Given

$$y = \ln(1 + \cos 2x)$$
 $x \neq (2n+1)\frac{\pi}{2}$ $n \in \mathbb{Z}$

show that $\frac{dy}{dx} = C \tan x$, where C is a constant to be determined.

(You may assume the double angle formulae.)

(4)

2(i)(a)	$y = \frac{(2x-1)^3}{(3x-2)} \Rightarrow \frac{dy}{dx} = \frac{\alpha(3x-2)(2x-1)^2 - \beta(2x-1)^3}{(3x-2)^2} \text{ where } \alpha > 0 \text{ and } \beta > 0$ OR	M1
	$y = (2x-1)^{3} (3x-2)^{-1} \Rightarrow \frac{dy}{dx} = \alpha (2x-1)^{2} (3x-2)^{-1} - \beta (3x-2)^{-2} (2x-1)^{3}$ where $\alpha > 0$ and $\beta > 0$	
	$y = \frac{(2x-1)^3}{(3x-2)} \Rightarrow \frac{dy}{dx} = \frac{(3x-2) \times 6(2x-1)^2 - (2x-1)^3 \times 3}{(3x-2)^2}$ OR $y = (2x-1)^3 (3x-2)^{-1} \Rightarrow \frac{dy}{dx} = 3 \times 2 \times (2x-1)^2 (3x-2)^{-1} - 3(3x-2)^{-2} (2x-1)^3$	Al
	$\frac{dy}{dx} = \frac{(2x-1)^2 (18x-12-6x+3)}{(3x-2)^2}$	M1
	$\frac{dy}{dx} = \frac{(2x-1)^2 (12x-9)}{(3x-2)^2} \text{ or } \frac{3(2x-1)^2 (4x-3)}{(3x-2)^2} \text{ or } (2x-1)^2 (12x-9)(3x-2)^{-2}$ o.e	A1
		(4)
(i)(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} \geqslant 0 \Rightarrow \text{ either } \qquad \text{their } (12x - 9) \geqslant 0 \Rightarrow x \geqslant \dots \qquad \text{or } 2x - 1 = 0 \Rightarrow x = \dots$	M1
	$x=\frac{1}{2}, x\geqslant \frac{3}{4}$	
(**)	<u>Way 1</u>	(2)
(ii)	$y = \ln(1 + \cos 2x) \Rightarrow \frac{dy}{dx} = \frac{\pm \lambda \sin 2x}{1 + \cos 2x}$	M1
	$y = \ln(1 + \cos 2x) \Rightarrow \frac{1}{dx} = \frac{1}{1 + \cos 2x}$	
	$\frac{\mathrm{d}y}{1} = \frac{-2\sin 2x}{2}$	A1
	$dx 1 + \cos 2x$ $dy -4\sin x \cos x$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-4\sin x \cos x}{2\cos^2 x}$	Ml
	$\frac{\mathrm{d}y}{1} = -2\tan x$	A1
	dx	
		(4)

7. (a) Given $-90^{\circ} < A < 90^{\circ}$, prove that

$$2\cos(A - 30^\circ) \sec A \equiv \tan A + k$$

where k is a constant to be determined.

(3)

(b) Hence or otherwise, solve, for $-90^{\circ} < x < 90^{\circ}$, the equation

$$2\cos(x - 30^\circ) = \sec x$$

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(5)

7(a) Way 1	$2\cos(A-30^{\circ})\sec A \equiv 2(\cos A\cos 30^{\circ} + \sin A\sin 30^{\circ}) \times \sec A$	M1
.,, 2	$\frac{2(\cos A \cos 30^{\circ} + \sin A \sin 30^{\circ})}{\cos A} \Rightarrow \dots \Rightarrow \tan x + k$	dM1
	$\equiv \tan A + \sqrt{3} \cos \theta$	A1*
Way 2	$2\cos(A-30^\circ)\sec A = \tan A + k \Rightarrow 2\cos(A-30^\circ) = \sin A + k\cos A$	
•	$\Rightarrow 2(\cos A \cos 30^{\circ} + \sin A \sin 30^{\circ}) \equiv \sin A + k \cos A$	M1
	$\Rightarrow \sqrt{3}\cos A + \sin A = \sin A + k\cos A$	dM1
	Hence true and $k = \sqrt{3}$	Al
		(3)
(b)	$2\cos(x-30^\circ) = \sec x$ and $2\cos(x-30^\circ) \sec x = \tan A + \sqrt{3}$	
Way 1	For example 1) $2\cos(x-30^\circ)\sec x = \sec^2 x \Rightarrow \tan x + \sqrt{3}' = \sec^2 x$ OR 2) $\frac{\tan x + \sqrt{3}'}{\sec x} = \sec x \Rightarrow \tan x + \sqrt{3}' = \sec^2 x$ OR OR 3) $2\cos(x-30^\circ) = (\tan A + \sqrt{3}')\cos x \Rightarrow \sec x = (\tan A + \sqrt{3}')\cos x$ $\Rightarrow \tan x + \sqrt{3}' = \sec^2 x$ OR 4) $2\cos(x-30^\circ) = \sec x \Rightarrow 2(\cos x \cos 30^\circ + \sin x \sin 30^\circ) = \sec x$ $\Rightarrow 2\cos^2 x \cos 30^\circ + 2\sin x \cos x \sin 30^\circ = 1$ $\Rightarrow \cos^2 x \sqrt{5} + \sin x \cos x = 1 \Rightarrow \sqrt{5} + \tan x = \sec^2 x$	M1
	$\Rightarrow \tan^2 x - \tan x + 1 - \sqrt{3} = 0$	M1A1
	$\tan x = \frac{1 \pm \sqrt{1 - 4(1 - \sqrt{3})}}{2} = \text{awrt } 1.49, -0.49 \Rightarrow x = \dots$	M 1
	$x = \text{awrt } 56.2^{\circ}, -26.2^{\circ}$	A1
		(5) (8 marks)

6. (i) Using the identity for $\tan(A \pm B)$, solve, for $-90^{\circ} < x < 90^{\circ}$,

$$\frac{\tan 2x + \tan 32^{\circ}}{1 - \tan 2x \tan 32^{\circ}} = 5$$

Give your answers, in degrees, to 2 decimal places.

(4)

(ii) (a) Using the identity for $tan(A \pm B)$, show that

$$\tan(3\theta - 45^\circ) \equiv \frac{\tan 3\theta - 1}{1 + \tan 3\theta}, \qquad \theta \neq (60n + 45)^\circ, \, n \in \mathbb{Z}$$

(b) Hence solve, for $0 < \theta < 180^{\circ}$,

$$(1 + \tan 3\theta) \tan(\theta + 28^\circ) = \tan 3\theta - 1$$
(5)

9. (a) Express $\sin \theta - 2\cos \theta$ in the form $R\sin(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$ Give the exact value of R and the value of α , in radians, to 3 decimal places.

$$M(\theta) = 40 + (3\sin\theta - 6\cos\theta)^2$$

- (b) Find
 - (i) the maximum value of $M(\theta)$,
 - (ii) the smallest value of θ , in the range $0 < \theta \le 2\pi$, at which the maximum value of $M(\theta)$ occurs.

$$N(\theta) = \frac{30}{5 + 2(\sin 2\theta - 2\cos 2\theta)^2}$$

- (c) Find
 - (i) the maximum value of $N(\theta)$,
 - (ii) the largest value of θ , in the range $0 < \theta \le 2\pi$, at which the maximum value of N(θ) occurs.

(3)

(Solutions based entirely on graphical or numerical methods are not acceptable.)

6(i)	$\frac{\tan 2x + \tan 32^{\circ}}{1 - \tan 2x \tan 32^{\circ}} = 5 \Rightarrow \tan(2x + 32^{\circ}) = 5$	B1
	$\Rightarrow x = \frac{\arctan 5 - 32^{\circ}}{2}$	M1
	$\Rightarrow x = \text{awrt } 23.35^{\circ}, -66.65^{\circ}$	A1A1
		(4)
(ii)(a)	$\tan(3\theta - 45^{\circ}) = \frac{\tan 3\theta - \tan 45^{\circ}}{1 + \tan 45^{\circ} \tan 3\theta} = \frac{\tan 3\theta - 1}{1 + \tan 3\theta}$	M1A1*
		(2)
(b)	$(1 + \tan 3\theta) \tan(\theta + 28^\circ) = \tan 3\theta - 1$	
	$\Rightarrow \tan(\theta + 28^{\circ}) = \tan(3\theta - 45^{\circ})$	B1
	$\theta + 28^{\circ} = 3\theta - 45^{\circ} \Rightarrow \theta = 36.5^{\circ}$	M1A1
	$\theta + 28^{\circ} + 180^{\circ} = 3\theta - 45^{\circ} \Rightarrow \theta = 126.5^{\circ}$	dM1A1
		(5)
		(11 marks)

9.(a)	$R = \sqrt{5}$	B1	
- ((0)	$\tan \alpha = 2 \Rightarrow \alpha = \text{awrt } 1.107$	M1A1	(3)
(b)(i)	$^{1}40 + 9R^{2} = 85$	M1A1	
(ii)	$\theta = \frac{\pi}{2} + 1.107 \Rightarrow \theta = \text{awrt } 2.68$	B1ft	
			(3)
(c)(i)	6	B1	
(ii)	2θ -'1.107' = $3\pi \Rightarrow \theta$ = awrt 5.27	M1A1	(2)
		(9 marks)	(3)

4. (a) Write $5\cos\theta - 2\sin\theta$ in the form $R\cos(\theta + \alpha)$, where R and α are constants,

$$R > 0$$
 and $0 \leqslant \alpha < \frac{\pi}{2}$

Give the exact value of R and give the value of α in radians to 3 decimal places.

(3)

(b) Show that the equation

$$5 \cot 2x - 3 \csc 2x = 2$$

can be rewritten in the form

$$5\cos 2x - 2\sin 2x = c$$

where c is a positive constant to be determined.

(2)

(c) Hence or otherwise, solve, for $0 \le x \le \pi$,

$$5 \cot 2x - 3 \csc 2x = 2$$

giving your answers to 2 decimal places.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

9. (a) Prove that

$$\sin 2x - \tan x \equiv \tan x \cos 2x, \qquad x \neq (2n+1)90^{\circ}, \qquad n \in \mathbb{Z}$$
(4)

(b) Given that $x \neq 90^{\circ}$ and $x \neq 270^{\circ}$, solve, for $0 \leq x \leq 360^{\circ}$,

$$\sin 2x - \tan x = 3 \tan x \sin x$$

Give your answers in degrees to one decimal place where appropriate.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(5)

4.(a)
$$R = \sqrt{29}$$
 $\tan \alpha = \frac{2}{5} \Rightarrow \alpha = \text{awrt } 0.381$ $M1A1$ (3)
(b) $5 \cot 2x - 3 \csc 2x = 2 \Rightarrow 5 \frac{\cos 2x}{\sin 2x} - \frac{3}{\sin 2x} = 2$ $M1$ $A1$ (2)
(c) $5 \cos 2x - 2 \sin 2x = 3 \Rightarrow \cos(2x + 0.381) = \frac{3}{\sqrt{29}}$ $M1$ $2x + 0.381 = \arccos\left(\frac{3}{\sqrt{29}}\right) \Rightarrow x = ...$ $dM1$ $x = \text{awrt } 0.30, 2.46$ $A1A1$ (4)

9(a)
$$\sin 2x - \tan x = 2 \sin x \cos x - \tan x$$

$$= \frac{2 \sin x \cos^2 x}{\cos x} - \frac{\sin x}{\cos x}$$

$$= \frac{\sin x}{\cos x} \times (2 \cos^2 x - 1)$$

$$= \tan x \cos 2x$$
(b)
$$\tan x \cos 2x = 3 \tan x \sin x \Rightarrow \tan x (\cos 2x - 3 \sin x) = 0$$

$$\cos 2x - 3 \sin x = 0$$

$$\Rightarrow 1 - 2 \sin^2 x - 3 \sin x = 0$$

$$\Rightarrow 2 \sin^2 x + 3 \sin x - 1 = 0 \Rightarrow \sin x = \frac{-3 \pm \sqrt{17}}{4} \Rightarrow x = \dots$$
M1
$$Two of x = 16.3^{\circ}, 163.7^{\circ}, 0, 180^{\circ}$$
A1
All four of $x = 16.3^{\circ}, 163.7^{\circ}, 0, 180^{\circ}$
A1
All four of $x = 16.3^{\circ}, 163.7^{\circ}, 0, 180^{\circ}$
A1
(5)

3. (a) Express $2\cos\theta - \sin\theta$ in the form $R\cos(\theta + \alpha)$, where R and α are constants, R > 0 and $0 < \alpha < 90^{\circ}$. Give the exact value of R and give the value of α to 2 decimal places.

(3)

(b) Hence solve, for $0 \leqslant \theta < 360^{\circ}$,

$$\frac{2}{2\cos\theta - \sin\theta - 1} = 15$$

Give your answers to one decimal place.

(5)

(c) Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for which

$$\frac{2}{2\cos\theta + \sin\theta - 1} = 15$$

Give your answer to one decimal place.

(2)

5. (i) Find, using calculus, the x coordinate of the turning point of the curve with equation

$$y = e^{3x} \cos 4x$$
, $\frac{\pi}{4} \le x < \frac{\pi}{2}$

Give your answer to 4 decimal places.

(5)

(ii) Given $x = \sin^2 2y$, $0 < y < \frac{\pi}{4}$, find $\frac{dy}{dx}$ as a function of y.

Write your answer in the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p \operatorname{cosec}(qy), \qquad 0 < y < \frac{\pi}{4}$$

where p and q are constants to be determined.

(5)

3.(a)	$R = \sqrt{5}$	B1
	$\tan \alpha = \frac{1}{2} \Rightarrow \alpha = 26.57^{\circ}$	M1A1
	2	(3)
(b)	$\frac{2}{2\cos\theta - \sin\theta - 1} = 15 \Rightarrow \frac{2}{\sqrt{5}\cos(\theta + 26.6^\circ) - 1} = 15$	
	$\Rightarrow \cos(\theta + 26.6^{\circ}) = \frac{17}{15\sqrt{5}} = (awrt\ 0.507)$	M1A1
	$\theta + 26.57^{\circ} = 59.54^{\circ}$	
	$\Rightarrow \theta = awrt 33.0^{\circ} \text{ or } awrt 273.9^{\circ}$	A1
	$\theta + 26.6^{\circ} = 360^{\circ} - \text{their'} 59.5^{\circ}$	dM1
	$\Rightarrow \theta = awrt \ 273.9^{\circ} \text{ and } awrt \ 33.0^{\circ}$	A1
		(5)
(c)	θ – their 26.57° = their 59.54° $\Rightarrow \theta =$	M1
	$\theta = \text{awrt } 86.1^{\circ}$	A1
		(2)
		(10 marks)

5 (i)
$$y = e^{3x} \cos 4x \Rightarrow \left(\frac{dy}{dx}\right) = \cos 4x \times 3e^{3x} + e^{3x} \times -4\sin 4x$$
 M1A1
Sets $\cos 4x \times 3e^{3x} + e^{3x} \times -4\sin 4x = 0 \Rightarrow 3\cos 4x - 4\sin 4x = 0$ M1

$$\Rightarrow x = \frac{1}{4}\arctan\frac{3}{4}$$
 M1

$$\Rightarrow x = \operatorname{awrt} 0.9463 \quad 4dp$$
 A1

$$(5)$$
(ii) $x = \sin^2 2y \Rightarrow \frac{dx}{dy} = 2\sin 2y \times 2\cos 2y$ M1A1
Uses $\sin 4y = 2\sin 2y \cos 2y$ in their expression M1

$$\frac{dx}{dy} = 2\sin 4y \Rightarrow \frac{dy}{dx} = \frac{1}{2\sin 4y} = \frac{1}{2}\operatorname{cosec} 4y$$
 M1A1

8. (a) Prove that

$$2\cot 2x + \tan x \equiv \cot x$$
 $x \neq \frac{n\pi}{2}, n \in \mathbb{Z}$

(4)

(b) Hence, or otherwise, solve, for $-\pi \leqslant x < \pi$,

$$6 \cot 2x + 3 \tan x = \csc^2 x - 2$$

Give your answers to 3 decimal places.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(6)

1. Given that

$$\tan \theta^{\circ} = p$$
, where p is a constant, $p \neq \pm 1$

use standard trigonometric identities, to find in terms of p,

(a) $\tan 2\theta^{\circ}$

(2)

(b) $\cos \theta^{\circ}$

(2)

(c) $\cot(\theta - 45)^{\circ}$

(2)

Write each answer in its simplest form.

8 (a)
$$2 \cot 2x + \tan x = \frac{2}{\tan 2x} + \tan x$$
 B1

$$= \frac{(1 - \tan^2 x)}{\tan x} + \frac{\tan^2 x}{\tan x}$$
 M1

$$= \frac{1}{\tan x}$$
 M1

$$= \cot x$$
 A1*
(b) $6 \cot 2x + 3 \tan x = \csc^2 x - 2 \Rightarrow 3 \cot x = \csc^2 x - 2$ M1

$$\Rightarrow 3 \cot x = 1 + \cot^2 x - 2$$
 M1

$$\Rightarrow 0 = \cot^2 x - 3 \cot x - 1$$
 A1

$$\Rightarrow \cot x = \frac{3 \pm \sqrt{13}}{2}$$
 M1

$$\Rightarrow \tan x = \frac{2}{3 \pm \sqrt{13}} \Rightarrow x = ..$$
 M1

$$\Rightarrow x = 0.294, -2.848, -1.277, 1.865$$
 M2,1,0
(6) (10 marks)

1.(a)
$$\tan 2\theta^{\circ} = \frac{2\tan \theta^{\circ}}{1 - \tan^{2}\theta^{\circ}} = \frac{2p}{1 - p^{2}}$$
 Final answer M1A1

(b) $\cos \theta^{\circ} = \frac{1}{\sec \theta^{\circ}} = \frac{1}{\sqrt{1 + \tan^{2}\theta^{\circ}}} = \frac{1}{\sqrt{1 + p^{2}}}$ Final answer

M1A1

(c) $\cot (\theta - 45)^{\circ} = \frac{1}{\tan (\theta - 45)^{\circ}} = \frac{1 + \tan \theta^{\circ} \tan 45^{\circ}}{\tan \theta^{\circ} - \tan 45^{\circ}} = \frac{1 + p}{p - 1}$ Final answer

M1A1

(2) M1A1

3.

$$g(\theta) = 4\cos 2\theta + 2\sin 2\theta$$

Given that $g(\theta) = R \cos(2\theta - \alpha)$, where R > 0 and $0 < \alpha < 90^{\circ}$,

(a) find the exact value of R and the value of α to 2 decimal places.

(3)

(b) Hence solve, for $-90^{\circ} < \theta < 90^{\circ}$,

$$4\cos 2\theta + 2\sin 2\theta = 1$$

giving your answers to one decimal place.

(5)

Given that k is a constant and the equation $g(\theta) = k$ has no solutions,

(c) state the range of possible values of k.

(2)

8. (a) Prove that

$$\sec 2A + \tan 2A \equiv \frac{\cos A + \sin A}{\cos A - \sin A}, \qquad A \neq \frac{(2n+1)\pi}{4}, \quad n \in \mathbb{Z}$$

(5)

(b) Hence solve, for $0 \le \theta \le 2\pi$,

$$\sec 2\theta + \tan 2\theta = \frac{1}{2}$$

Give your answers to 3 decimal places.

(4)