Pure Sector 4: Trigonometry 4

Aims:

- Understand and use double angle formulae
- Use of formulae for $sin(A \pm B)$, $cos(A \pm B)$ and $tan(A \pm B)$
- Understand geometrical proofs of these formulae
- Understand and use expressions for a cos θ + b sin θ in the equivalent forms of Rcos($\theta \pm \alpha$) or $R\sin(\theta \pm \alpha)$
- Construct proofs involving trigonometric functions and identities
- Apply trigonometric identities to find integrals

Addition Formulae

The addition formaulae are given in the formula booklet:

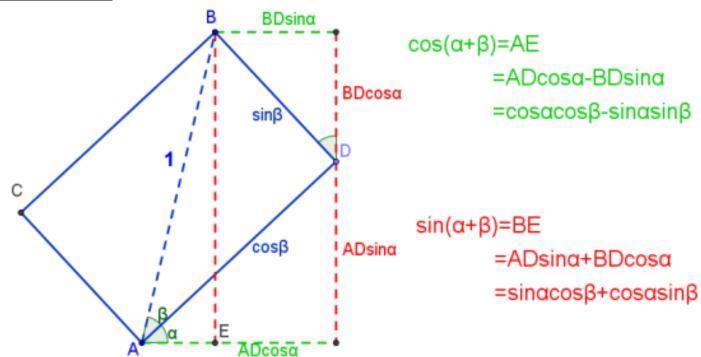
Trigonometric identities

$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

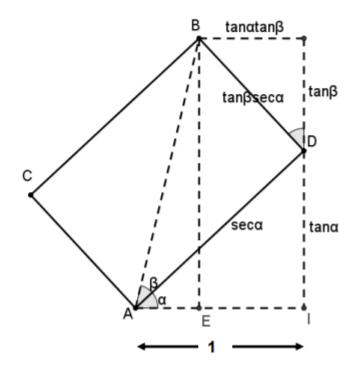
$$cos(A \pm B) = cosAcosB \mp sinAsinB$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad (A \pm B \neq (k + \frac{1}{2})\pi)$$

Geometric Proofs



Use this diagram to prove that $\tan(\alpha + \beta) = \frac{BE}{AE} = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}$



Example 1

Prove that $\frac{\sin(A-B)}{\cos A \cos B} = \tan A - \tan B$

Example 2

Solve $\cos(\theta + 60) = \sin \theta$ for $0 \le \theta \le 360$ (to 3sf)

Example 3

Given that $\tan 60 = \sqrt{3}$ show that $\tan 15 = 2 - \sqrt{3}$

Example 4

Angle α is acute and $\alpha = \frac{8}{17}$. Angle β is obtuse and $\sin \beta = \frac{12}{13}$. Find the value of $\tan(\alpha + \beta)$.

Double Angle Formulae

Use the addition formulae with B=A to find:

 $\sin 2A =$

 $\tan 2A =$

 $\cos 2A =$

The cos2A formula can be written in terms of sin or cos by using $sin^2 A + cos^2 A \equiv 1$

So, $\cos 2A =$

Or $\cos 2A =$

$$\sin 2A \equiv 2\sin A\cos A$$

$$\cos 2A \equiv \begin{cases} \cos^2 A - \sin^2 A \\ 2\cos^2 A - 1 \\ 1 - 2\sin^2 A \end{cases}$$

$$\tan 2A \equiv \frac{2\tan A}{1-\tan^2 A}$$

These are **not** given in the formula booklet.

Example 5

Solve $3\cos 2\theta - 7\cos \theta - 2 = 0$ for $0 \le \theta \le 360$

Example 6 Show that:

- a) $2 \csc 2\theta \equiv \sec \theta \csc \theta$
- $b) \sin 3x = 3\sin x 4\sin^3 x$

Exam Question - AQA C4 Jun 06

4 (a) (i) Express $\sin 2x$ in terms of $\sin x$ and $\cos x$.

(1 mark)

(ii) Express $\cos 2x$ in terms of $\cos x$.

(1 mark)

(b) Show that

 $\sin 2x - \tan x = \tan x \cos 2x$

for all values of x. (3 marks)

(c) Solve the equation $\sin 2x - \tan x = 0$, giving all solutions in degrees in the interval $0^{\circ} < x < 360^{\circ}$. (4 marks)

Application to Integration

Example 7

Find $\int \sin^2 x \, dx$

Example 8 Find $\int \sin 3x \cos 3x \ dx$

Example 9 Find $\int 6\cos^2\frac{\theta}{2} d\theta$

$R\sin(\theta + \alpha)$ and $R\cos(\theta + \alpha)$ form Example 10

This is useful when solving equations

- a) Express $3 \sin x + 4 \cos x$ in the form $R \sin(x + \alpha)$
- b) What is the maximum value of the expression $3 \sin x + 4 \cos x$?
- c) What is the smallest positive value of x for which this value occurs?

Example 11

Express $\cos \theta - \sqrt{3} \sin \theta$ in the form $R \cos(\theta + \alpha)$ and hence find its min and max values.

Example 12

Write $2\cos x - 3\sin x$ in the form $R\cos(x + \alpha)$ and hence solve $2\cos x - 3\sin x = 3$ for $0 \le x \le 2\pi$

AQA C4 June 10

5 (a) (i) Show that the equation $3\cos 2x + 2\sin x + 1 = 0$ can be written in the form

$$3\sin^2 x - \sin x - 2 = 0 \tag{3 marks}$$

- (ii) Hence, given that $3\cos 2x + 2\sin x + 1 = 0$, find the possible values of $\sin x$.
- (b) (i) Express $3\cos 2x + 2\sin 2x$ in the form $R\cos(2x \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving α to the nearest 0.1°. (3 marks)
 - (ii) Hence solve the equation

$$3\cos 2x + 2\sin 2x + 1 = 0$$

for all solutions in the interval $0^{\circ} < x < 180^{\circ}$, giving x to the nearest 0.1°.

(3 marks)

AQA Specimen Paper 2

5 (a) Determine a sequence of transformations which maps the graph of $y = \cos \theta$ onto the graph of $y = 3\cos \theta + 3\sin \theta$

Fully justify your answer.

[6 marks]

5 (b) Hence or otherwise find the least value and greatest value of

$$4+(3\cos\theta+3\sin\theta)^2$$

Fully justify your answer.

[3 marks]