3 (a) Express $\frac{\sqrt{27^x}}{3^{2x-1}}$ in the form 3^p , where p is an expression in terms of x.

[3 marks]

(b) Hence solve the equation $\frac{\sqrt{27^x}}{3^{2x-1}} = \sqrt[3]{81}$.

[2 marks]

1 (a) (i) Express $\sqrt{75}$ in the form $k\sqrt{3}$, where k is an integer.

[1 mark]

(ii) Simplify $\frac{2\sqrt{75} + 3\sqrt{12}}{\sqrt{48}}.$

[3 marks]

(b) Express $\frac{7\sqrt{5}-10\sqrt{3}}{4\sqrt{5}-5\sqrt{3}}$ in the form $m-\sqrt{n}$, where m and n are integers.

[4 marks]

2. Express 9^{3x+1} in the form 3^y , giving y in the form ax + b, where a and b are constants.

(2)

Q3	Solution	Mark	Total	Comment
(a)	$\sqrt{27^x} = 3^{0.5(3x)}$	B1		Seen or used. eg $\log \sqrt{27^x} = 1.5x \log 3$.
	$\sqrt{27^x}$	M1		$3^{kx} \div 3^{2x-1} \text{ OE} = 3^{kx-(2x-1)} \text{ or } = 3^{kx-2x-1}$
	$\frac{\sqrt{27^x}}{3^{2x-1}} = 3^{0.5(3x)-(2x-1)}$			or $p \log 3 = kx \log 3 - (2x-1)\log 3$
	$(= 3^{1-0.5x})$ (OE Accept form $p =$)	A1	3	OE 3^p Expression for p need not be
				simplified. eg $3^{0.5(3x)-(2x-1)}$ NMS 3/3
(b)	$\sqrt[3]{81} = 3^{\frac{4}{3}}$	B1		Seen or used; or $3^{3p} = 3^4$ or $\frac{\log 81}{\log 3} = 4$
	$3^{1-0.5x} = 3^{\frac{4}{3}} \Rightarrow x = -\frac{2}{3}$	B1		OE must be exact and from correct work.
	$3^{1-0.5x} = 3^3 \Rightarrow x = -\frac{2}{3}$		2	NMS scores 0/2
	Total		5	

Q1	Solution	Mark	Total	Comment
(a)(i)	5√3	B1	1	
(ii)	$\frac{"their"10\sqrt{3} + "their"6\sqrt{3}}{"their"4\sqrt{3}}$ $\frac{10\sqrt{3} + 6\sqrt{3}}{4\sqrt{3}}$	M1		attempt to write each term as $k\sqrt{3}$ with either $3\sqrt{12} = 6\sqrt{3}$ or $\sqrt{48} = 4\sqrt{3}$
	= 4	A1	3	
(b)	$\frac{7\sqrt{5} - 10\sqrt{3}}{4\sqrt{5} - 5\sqrt{3}} \times \frac{4\sqrt{5} + 5\sqrt{3}}{4\sqrt{5} + 5\sqrt{3}}$	M1		
	(Numerator =) $140 - 40\sqrt{3}\sqrt{5} + 35\sqrt{3}\sqrt{5} - 150$	A1		at least this far
	(Denominator = $80 + 20\sqrt{3}\sqrt{5} - 20\sqrt{3}\sqrt{5} - 75$) = 5	В1		must be seen as denominator
	Value = $\frac{-10 - 5\sqrt{15}}{5}$ = $-2 - \sqrt{15}$	A1cso	4	condone $-\sqrt{15}-2$ No ISW here
	Total		8	

Question Number	Scheme	Notes	Mark
2	9^{3x+1} = for example $3^{2(3x+1)}$ or $(3^2)^{3x+1}$ or $(3^{(3x+1)})^2$ or $3^{3x+1} \times 3^{3x+1}$ or $(3\times3)^{3x+1}$ or $3^2 \times (3^2)^{3x}$ or $(9^{\frac{1}{2}})^y$ or $9^{\frac{1}{2}y}$ or $y = 2(3x+1)$	Expresses 9^{3x+1} correctly as a power of 3 or expresses 3^y correctly as a power of 9 or expresses y correctly in terms of x (This mark is <u>not</u> for just $3^2 = 9$)	M1
	= 3^{6x+2} or $y = 6x + 2$ or $a = 6$, $b = 2$	Cao (isw if necessary)	A1
	Providing there is no incorrect work, allo		
	Correct answer only i	-	
	Special case: 3 ^{6x+1} on	-	

- 1 (a) Simplify $\sqrt{98}-\sqrt{32}$, giving your answer in the form $k\sqrt{2}$, where k is an integer. [2 marks]
 - (b) Hence, or otherwise, express $\frac{\sqrt{98}-\sqrt{32}}{2+3\sqrt{2}}$ in the form $p+q\sqrt{2}$, giving the rational numbers p and q in their simplest form.

[4 marks]

1 (a) Express $\frac{1+4\sqrt{7}}{5+2\sqrt{7}}$ in the form $m+n\sqrt{7}$, where m and n are integers.

[4 marks]

(b) Solve the equation

$$x\left(9\sqrt{5}-2\sqrt{45}\right) = \sqrt{80}$$

giving your answer in its simplest form.

[3 marks]

Q1	Solution	Mark	Total	Comment
(a)	$\sqrt{98} = 7\sqrt{2}$ or $\sqrt{32} = 4\sqrt{2}$	M1		
	$\left(7\sqrt{2} - 4\sqrt{2} = \right) 3\sqrt{2}$	A1	2	
(b)	$\frac{**}{2+3\sqrt{2}} \times \frac{2-3\sqrt{2}}{2-3\sqrt{2}}$	M1		
	[Numerator =] $6\sqrt{2} - 18$	A1		multiplied out
	[Denominator = $4 + 6\sqrt{2} - 6\sqrt{2} - 18$] = -14	В1		must be seen as denominator
	Value = $\frac{6\sqrt{2} - 18}{-14}$ = $\frac{9}{7} - \frac{3}{7}\sqrt{2}$ or $-\frac{3}{7}\sqrt{2} + \frac{9}{7}$	A1cso	4	must have these two simplified fractions for A1 cso but may have $1\frac{2}{7} - \frac{3}{7}\sqrt{2}$ etc
				condone $\frac{9}{7} - \frac{3\sqrt{2}}{7}$ for A1 cso No ISW .
	Total		6	

Q1	Solution	Mark	Total	Comment
	NO MISREADS ALLO	OWED IN	THIS Q	UESTION
(a)	$\frac{1+4\sqrt{7}}{5+2\sqrt{7}} \times \frac{5-2\sqrt{7}}{5-2\sqrt{7}}$	M1		
	(Numerator =) $5 + 20\sqrt{7} - 2\sqrt{7} - 56$	A1		at least this far
	(Denominator = $25 + 10\sqrt{7} - 10\sqrt{7} - 28$) = -3	B1		must be seen as denominator
	$Value = \frac{-51 + 18\sqrt{7}}{-3}$			_
	$= 17 - 6\sqrt{7}$	A1cso	4	condone $-6\sqrt{7} + 17$
(b)	$x(9\sqrt{5} - "their"6\sqrt{5}) = "their"4\sqrt{5}$	M1		attempt to write each term as $k\sqrt{5}$ with either $2\sqrt{45} = 6\sqrt{5}$ or $\sqrt{80} = 4\sqrt{5}$
	$x\left(9\sqrt{5} - 6\sqrt{5}\right) = 4\sqrt{5}$	A1		OE must have equation
	$x = \frac{4}{3}$ or $x = 1\frac{1}{3}$ or $x = 1.3$	A1	3	must be simplified to one of these
	Total		7	

2 (a) Simplify $(3\sqrt{5})^2$.

[1 mark]

(b) Express $\frac{\left(3\sqrt{5}\right)^2+\sqrt{5}}{7+3\sqrt{5}}$ in the form $m+n\sqrt{5}$, where m and n are integers.

[4 marks]

1. (a) Simplify $(3\sqrt{7})^2$

(1)

(b) Simplify

$$\frac{\sqrt{3}}{5\sqrt{3} + 6\sqrt{2}}$$

giving your answer in the form $a + b\sqrt{c}$, where a, b and c are integers and $b \neq -1$ (4)

Q2	Solution	Mark	Total	Comment
(a)	45	B1	1	
(b)	$\frac{**+\sqrt{5}}{7+3\sqrt{5}} \times \frac{7-3\sqrt{5}}{7-3\sqrt{5}}$	M1		
	(Numerator =) $315 + 7\sqrt{5} - 135\sqrt{5} - 15$	A1		at least this far
	(Denominator = $49 + 21\sqrt{5} - 21\sqrt{5} - 45$) = 4	B1		must be seen as denominator
	Value = $\frac{300 - 128\sqrt{5}}{4}$ = $75 - 32\sqrt{5}$	A1cso	4	
	Total		5	

Question Number	Scheme	Notes	Marks
1.(a)	$\left(3\sqrt{7}\right)^2 = 63$	Cao	B1
			[1]
(b)	$\frac{\sqrt{3}}{5\sqrt{3} + 6\sqrt{2}} \times \frac{5\sqrt{3} - 6\sqrt{2}}{5\sqrt{3} - 6\sqrt{2}}$	For rationalising the denominator by a correct method (i.e. multiply numerator and denominator by $5\sqrt{3} - 6\sqrt{2}$). This statement is sufficient.	Ml
	$= \frac{15 - 6\sqrt{6}}{} \text{ or } = {75 - 72}$	For $15 - 6\sqrt{6}$ (or $3 \times 5 - 6\sqrt{6}$) in the numerator or $75 - 72$ (or 3 from correct work) in the denominator seen at some point i.e. apply isw	Al (M1 on Epen)
	$= \frac{15 - 6\sqrt{6}}{} \text{ and } = {75 - 72}$	For 15 - $6\sqrt{6}$ (or $3\times5-6\sqrt{6}$) in the numerator and 75 - 72 (or 3 from correct work) in the denominator seen at some point i.e. apply isw	Al
	$5 - 2\sqrt{6}$	Fully correct expression. Allow $a = 5$ $b = -2$, $c = 6$ but apply isw e.g. $5 - 2\sqrt{6}$ followed by $a = 5$ $b = 2$, $c = 6$	A1
			[4]

1. (i) Simplify

$$\sqrt{48} - \frac{6}{\sqrt{3}}$$

Write your answer in the form $a\sqrt{3}$, where a is an integer to be found.

(2)

(ii) Solve the equation

$$3^{6x-3} = 81$$

Write your answer as a rational number.

(3)

3. (a) Simplify

$$\sqrt{50} - \sqrt{18}$$

giving your answer in the form $a\sqrt{2}$, where a is an integer.

(2)

(b) Hence, or otherwise, simplify

$$\frac{12\sqrt{3}}{\sqrt{50}-\sqrt{18}}$$

giving your answer in the form $b\sqrt{c}$, where b and c are integers and $b\neq 1$

(3)

Question Number	S	Marks	
1.(i) Way 1	$\sqrt{48} = \sqrt{16}\sqrt{3}$ or $\frac{6}{\sqrt{3}} = 6\frac{\sqrt{3}}{3}$	Writes one of the terms of the given expression correctly in terms of $\sqrt{3}$	M1
	$\Rightarrow \sqrt{48} - \frac{6}{\sqrt{3}} = 2\sqrt{3}$	A correct answer of $2\sqrt{3}$. A correct answer with no working implies both marks.	Al
			(2)
(::)			

(ii) Way 1	$81 = 3^4$ or $\log_3 81 = 6x - 3$	For $81=3^4$ or $\log_3 81=6x-3$. This may be implied by subsequent work.	B1
	$3^{6x-3} = 3^4$ or $\log_3 81 = 6x - 3$ $\Rightarrow 4 = 6x - 3 \Rightarrow x =$	Solves an equation of the form $6x - 3 = k$ where k is their power of 3.	Ml
	$\Rightarrow x = \frac{4+3}{6} = \frac{7}{6}$	$\frac{7}{6}$ or $1\frac{1}{6}$ or 1.16 with a dot over the 6	Al
			(3)

3.(a)	$\sqrt{50} - \sqrt{18} = 5\sqrt{2} - 3\sqrt{2}$	$\sqrt{50} = 5\sqrt{2}$ or $\sqrt{18} = 3\sqrt{2}$ and the other term in the form $k\sqrt{2}$. This mark may be implied by the correct answer $2\sqrt{2}$	M1	
	$=2\sqrt{2}$	Or $a = 2$	A1	
				[2]
(b) WAY 1	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where a is numeric. This is all that is required for this mark.	M1	
	$= \frac{12\sqrt{3}}{"2"\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{12\sqrt{6}}{4}$	Rationalises the denominator by a correct method e.g. multiplies numerator and denominator by $k\sqrt{2}$ to obtain a multiple of $\sqrt{6}$. Note that multiplying numerator and denominator by $2\sqrt{2}$ or $-2\sqrt{2}$ is quite common and is acceptable for this mark. May be implied by a correct answer. This is dependent on the first M1.	dM1	
	$= 3\sqrt{6}$ or $b = 3, c = 6$	Cao and eso	A1	
				[3]
(b) WAY 2	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} \times \frac{\sqrt{50} + \sqrt{18}}{\sqrt{50} + \sqrt{18}}$ or $\frac{12\sqrt{3}}{5\sqrt{2} - 3\sqrt{2}} \times \frac{5\sqrt{2} + 3\sqrt{2}}{5\sqrt{2} + 3\sqrt{2}}$	For rationalising the denominator by a correct method i.e. multiplying numerator and denominator by $k(\sqrt{50} + \sqrt{18})$	M1	
	$\frac{60\sqrt{6} + 36\sqrt{6}}{50 - 18}$	For replacing numerator by $\alpha \sqrt{6} + \beta \sqrt{6}$. This is dependent on the first M1 and there is no need to consider the denominator for this mark.	dM1	
	$= 3\sqrt{6} \text{ or } b = 3, c = 6$	Cao and cso	A1	
				[3]

1. Simplify

- (a) $(2\sqrt{5})^2$ (1)
- (b) $\frac{\sqrt{2}}{2\sqrt{5}-3\sqrt{2}}$ giving your answer in the form $a+\sqrt{b}$, where a and b are integers. (4)

1.(a)	20	Sight of 20. (4×5 is not sufficient)	B1
			(1)
(b)	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} \times \frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}}$	Multiplies top and bottom by a correct expression. This statement is sufficient. NB $2\sqrt{5} + 3\sqrt{2} \equiv \sqrt{20} + \sqrt{18}$	Ml
	(Allow to multiply to	op and bottom by $k(2\sqrt{5}+3\sqrt{2})$	
	, , , , , , , , , , , , , , , , , , , ,	Obtains a denominator of 2 or sight of	
		$(2\sqrt{5}-3\sqrt{2})(2\sqrt{5}+3\sqrt{2})=2$ with no errors	
	$=\frac{\cdots}{2}$	seen in this expansion.	A1
		May be implied by $\frac{\dots}{2k}$	
	Note that M0A1 is not possible	. The 2 must come from a correct method.	
		re is no need to consider the numerator.	
	e.g. $\frac{2(MR?)}{2\sqrt{5}-3\sqrt{2}} \times \frac{2\sqrt{5}+3\sqrt{2}}{2\sqrt{5}+3\sqrt{2}} = {2} \text{ scores M1A1}$		
		An attempt to multiply the numerator by	
	N	$\pm (2\sqrt{5} \pm 3\sqrt{2})$ and obtain an expression of the	
	Numerator = $\sqrt{2}(2\sqrt{5} \pm 3\sqrt{2}) = 2\sqrt{10} \pm 6$	form $p + q\sqrt{10}$ where p and q are integers.	M1
		This may be implied by e.g. $2\sqrt{10} + 3\sqrt{4}$ or by their final answer.	
	(Allow attempt to multi	ply the numerator by $k(2\sqrt{5}\pm 3\sqrt{2})$	
	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} = \frac{2\sqrt{10} + 6}{2} = 3 + \sqrt{10}$	Cso. For the answer as written or $\sqrt{10} + 3$ or a statement that $a = 3$ and $b = 10$. Score when first seen and ignore any subsequent attempt to 'simplify'.	Al
		Allow $1\sqrt{10}$ for $\sqrt{10}$	
		, ,	(4)