Remember:

Even Number	2 <i>n</i>
Odd Number	2n+1 or $2n-1$
Multiples of other numbers	Multiples of 5, $5n$ etc
Consecutive numbers	n, n + 1, n + 2 etc
Non-consecutive numbers	n and m or $2n$ and $2m$ etc
Rational number	$\frac{a}{b}$
Irrational number	$\mid n \mid$

5 Prove that, for integer values of n such that $0 \le n < 4$

$$2^{n+2} > 3^n$$

[2 marks]

Celia states that $n^2 + 2n + 10$ is always odd when *n* is a prime number.

Q	Marking instructions	AO	Marks	Typical solution
5	Selects and begins to use a suitable method of proof. Exhaustion: Must check at least two correct values for n in the range 0 ≤ n < 4 and make at least two correct comparisons. Comparisons are implied by ticks/crosses or use of true/false Direct proof: Takes logs to any base of both sides and uses a law of logs correctly once Contradiction: Must be clear they are attempting contradiction with "0 ≤ n < 4 and 2 ⁿ⁺² ≤ 3 ⁿ " assumed explicitly. Condone strict inequality Completes a reasoned mathematical argument, proving 2 ⁿ⁺² > 3 ⁿ when n is an integer and 0 ≤ n < 4. Must include a fully correct concluding statement which refers to 'integer' or lists the four integers If using direct proof or contradiction they must use the laws of logs correctly to remove n from the exponent. Condone use of equality if direct proof used	3.1a	M1	$\begin{array}{ c c c c c c }\hline n & 2^{n+2} & 3^n & & & \\\hline 0 & 4 & 1 & 4>1 & \\\hline 1 & 8 & 3 & 8>3 & \\\hline 2 & 16 & 9 & 16>9 & \\\hline 3 & 32 & 27 & 32>27 & \\\hline \end{array}$ Hence $2^{n+2}>3^n$ for integer values of n such that $0 \le n < 4$
	Total		2	

	Questio	n	Answer	Marks	AOs	Guidance	
1			When $n = 2$, $2^2 + 2 \times 2 + 10$ (= 18)	M1	2.1	Use of $n = 2$ seen	
			which is not odd So the statement must be false (counterexample)	A1	2.2a	Complete argument must include a clear conclusion that statement false	

13. (a) Prove that for all positive values of a and b

$$\frac{4a}{b} + \frac{b}{a} \geqslant 4 \tag{4}$$

(b) Prove, by counter example, that this is not true for all values of a and b.

(1)

3. (a) "If m and n are irrational numbers, where $m \neq n$, then mn is also irrational."

Disprove this statement by means of a counter example.

(2)

Question	Scheme	Marks	AOs
13 (a)	States $(2a-b)^20$	M1	2.1
	$4a^{2}+b^{2}4ab$	A1	1.1b
	(As $a > 0, b > 0$) $\frac{4a^2}{ab} + \frac{b^2}{ab} \cdot \cdot \cdot \frac{4ab}{ab}$	M1	2.2a
	Hence $\frac{4a}{b} + \frac{b}{a} \dots 4$ * CSO	A1*	1.1b
		(4)	
(b)	$a = 5, b = -1 \Rightarrow \frac{4a}{b} + \frac{b}{a} = -20 - \frac{1}{5}$ which is less than 4	B1	2.4
		(1)	

(a) (condone the use of > for the first three marks)

M1: For the key step in stating that $(2a-b)^2...0$

A1: Reaches $4a^2 + b^2 \dots 4ab$

M1: Divides each term by $ab \Rightarrow \frac{4a^2}{ab} + \frac{b^2}{ab} ... \frac{4ab}{ab}$

A1*: Fully correct proof with steps in the correct order and gives the reasons why this is true:

- · when you square any (real) number it is always greater than or equal to zero
- dividing by ab does not change the inequality as a > 0 and b > 0

(b)

B1: Provides a counter example and shows it is not true.

This requires values, a calculation or embedded values(see scheme) and a conclusion. The conclusion must be in words eg the result does not hold or not true Allow 0 to be used as long as they explain or show that it is undefined so the statement is not true.

Question	Scheme	Marks	AOs
3	Statement: "If m and n are irrational numbers, where $m \neq n$, then mn is also irrational."		
(a)	E.g. $m = \sqrt{3}$, $n = \sqrt{12}$	M1	1.1b
	$\{mn = \}$ $(\sqrt{3})(\sqrt{12}) = 6$ \Rightarrow statement untrue or 6 is not irrational or 6 is rational	A1	2.4
		(2)	

1	
(a)	
M1:	States or uses any pair of <i>different</i> numbers that will disprove the statement.
	E.g. $\sqrt{3}$, $\sqrt{12}$; $\sqrt{2}$, $\sqrt{8}$; $\sqrt{5}$, $-\sqrt{5}$; $\frac{1}{\pi}$, 2π ; $3e$, $\frac{4}{5e}$;
A1:	Uses correct reasoning to disprove the given statement, with a correct conclusion
Note:	Writing $(3e)\left(\frac{4}{5e}\right) = \frac{12}{5}$ \Rightarrow untrue is sufficient for M1A1

16. Prove by contradiction that there are no positive integers p and q such that

$$4p^2 - q^2 = 25 (4)$$

Question	Scheme	Marks	AOs
16	Sets up the contradiction and factorises: There are positive integers p and q such that $(2p+q)(2p-q)=25$	М1	2.1
	If true then $ 2p+q=25 \qquad 2p+q=5 \\ 2p-q=1 \qquad \text{or} \qquad 2p-q=5 $ Award for deducing either of the above statements	М1	2.2a
	Solutions are $p = 6.5, q = 12$ or $p = 2.5, q = 0$ Award for one of these	A1	1.1b
	This is a contradiction as there are no integer solutions hence there are no positive integers p and q such that $4p^2 - q^2 = 25$	A1	2.1
		(4)	

M1: For the key step in setting up the contradiction and factorising

M1: For deducing that for p and q to be integers then either $2p+q=25 \ 2p-q=1$ or $2p+q=5 \ 2p-q=5$ must be true.

Award for deducing either of the above statements.

You can ignore any reference to 2p+q=12p-q=25 as this could not occur for positive p and q.

A1: For correctly solving one of the given statements,

For $\frac{2p+q=25}{2p-q=1}$ candidates only really need to proceed as far as p=6.5 to show the contradiction.

For 2p+q=5 2p-q=5 candidates only really need to find either p or q to show the contradiction.

Alt for 2p+q=5 candidates could state that $2p+q\neq 2p-q$ if p,q are positive integers.

A1: For a complete and rigorous argument with both possibilities and a correct conclusion.

16.	. Use algebra to prove that the square of any natural number is either a multiple of 3 or one more than a multiple of 3	
		(4)
		•
4	Prove by contradiction that there is no greatest multiple of 5.	3]

Question	Scheme	Marks	AOs
16	NB any natural number can be expressed in the form: $3k$, $3k + 1$, $3k + 2$ or equivalent e.g. $3k - 1$, $3k$, $3k + 1$		
	Attempts to square any two distinct cases of the above	M1	3.1a
	Achieves accurate results and makes a valid comment for any two of the possible three cases: E.g.		
	$(3k)^2 = 9k^2 (= 3 \times 3k^2)$ is a multiple of 3		
	$(3k+1)^2 = 9k^2 + 6k + 1 = 3 \times (3k^2 + 2k) + 1$ is one more than a multiple of 3	A1 M1 on EPEN	1.1b
	$(3k+2)^2 = 9k^2 + 12k + 4 = 3 \times (3k^2 + 4k + 1) + 1$	LFEN	
	$\left(\text{or } (3k-1)^2 = 9k^2 - 6k + 1 = 3 \times (3k^2 - 2k) + 1\right)$		
	is one more than a multiple of 3	M1	
	Attempts to square in all 3 distinct cases. E.g. attempts to square $3k$, $3k + 1$, $3k + 2$ or e.g. $3k - 1$, $3k$, $3k + 1$	A1 on EPEN	2.1
	Achieves accurate results for all three cases and gives a minimal conclusion (allow tick, QED etc.)	A1	2.4
		(4)	

M1: Makes the key step of attempting to write the natural numbers in any 2 of the 3 distinct forms or equivalent expressions, as shown in the mark scheme, and attempts to square these expressions.

A1(M1 on EPEN): Successfully shows for 2 cases that the squares are either a multiple of 3 or 1 more than a multiple of 3 <u>using algebra</u>. This must be made explicit e.g. reaches $3 \times (3k^2 + 2k) + 1$ and makes a statement that this is one more than a multiple of 3 but also allow other rigorous arguments that reason why $9k^2 + 6k + 1$ is one more than a multiple of 3 e.g. " $9k^2$ is a multiple of 3 and 6k is a multiple of 3 so $9k^2 + 6k + 1$ is one more than a multiple of 3"

M1(A1 on EPEN): Recognises that all natural numbers can be written in one of the 3 distinct forms or equivalent expressions, as shown in the mark scheme, and attempts to square in all 3 cases.

A1: Successfully shows for all 3 cases that the squares are either a multiple of 3 or 1 more than a multiple of 3 using algebra and makes a conclusion

4	Assume that there is a greatest multiple of 5 ie $N = 5k$	B1*	2.1	Assumption for contradiction	Some indication that they are starting with the greatest multiple of 5
	N+5=5k+5=5(k+1)	M1	2.1	Add on 5, or a multiple of 5	Or any equiv operation that would result in a larger multiple of 5 M0 if just numerical example
	This is a multiple of 5, and $N+5>N$ which contradicts the assumption Hence there is no greatest multiple of 5	A1d*	2.4	Statement denying assumption	Need justification about why it is a multiple of 5, why it is greater, as well as 'contradiction' or clear equiv such as 'initial assumption is incorrect'

(4)

Logical approach	States that if n is odd, n^3 is odd	M1	2.1
	so $n^3 + 2$ is odd and therefore cannot be divisible by 8	A1	2.2a
	States that if n is even, n^3 is a multiple of 8	M1	2.1
	so $n^3 + 2$ cannot be a multiple of 8 So (Given $n \in \mathbb{N}$), $n^3 + 2$ is not divisible by 8	A1	2.2a
		(4)	
			4 marks

First M1: States the result of cubing an odd or an even number

First A1: Followed by the result of adding two and gives a valid reason why it is not divisible by 8. So for odd numbers accept for example

"odd number + 2 is still odd and odd numbers are not divisible by 8"

" $n^3 + 2$ is odd and cannot be divided by 8 exactly"

and for even numbers accept

"a multiple of 8 add 2 is not a multiple of 8, so $n^3 + 2$ is not divisible by 8"

"if n^3 is a multiple of 8 then $n^3 + 2$ cannot be divisible by 8

Second M1: States the result of cubing an odd and an even number

Second A1: Both valid reasons must be given followed by a concluding statement.

Comparison of the problem of the	Question	Scheme	Marks	AOs
Or 'as $8k^3$ is divisible by 8 , $8k^3 + 2$ isn't' (If n is odd,) $n = 2k + 1$ and $n^3 + 2 = (2k + 1)^3 + 2$ $= 8k^3 + 12k^2 + 6k + 3$ which is an even number add 3, therefore odd. Hence it is not divisible by 8 So (given $n \in \mathbb{N}$,) $n^3 + 2$ is not divisible by 8 (4) Alt algebraic approach (If n is even,) $n = 2k$ and $\frac{n^3 + 2}{8} = \frac{(2k)^3 + 2}{8} = \frac{8k^3 + 2}{8}$ which is not a whole number and hence not divisible by 8 (If n is odd,) $n = 2k + 1$ and $\frac{n^3 + 2}{8} = \frac{(2k + 1)^3 + 2}{8}$ M1 2.1 $= \frac{8k^3 + 12k^2 + 6k + 3}{8} **$ The numerator is odd as $8k^3 + 12k^2 + 6k + 3$ is an even number $+3$ hence not divisible by 8 So (Given $n \in \mathbb{N}$,) $n^3 + 2$ is not divisible by 8		(If <i>n</i> is even,) $n = 2k$ and $n^3 + 2 = (2k)^3 + 2 = 8k^3 + 2$	M1	2.1
$= 8k^3 + 12k^2 + 6k + 3$ which is an even number add 3, therefore odd. Hence it is not divisible by 8 So (given $n \in \mathbb{N}$,) $n^3 + 2$ is not divisible by 8 (4) Alt algebraic approach (If n is even,) $n = 2k$ and $\frac{n^3 + 2}{8} = \frac{(2k)^3 + 2}{8} = \frac{8k^3 + 2}{8}$ which is not a whole number and hence not divisible by 8 (If n is odd,) $n = 2k + 1$ and $\frac{n^3 + 2}{8} = \frac{(2k + 1)^3 + 2}{8}$ M1 2.2a Which is not a whole number and hence not divisible by 8 (If n is odd,) $n = 2k + 1$ and $\frac{n^3 + 2}{8} = \frac{(2k + 1)^3 + 2}{8}$ M1 2.1 $= \frac{8k^3 + 12k^2 + 6k + 3}{8} **$ The numerator is odd as $8k^3 + 12k^2 + 6k + 3$ is an even number +3 hence not divisible by 8 So (Given $n \in \mathbb{N}$,) $n^3 + 2$ is not divisible by 8	approach		A1	2.2a
which is an even number add 3, therefore odd. Hence it is not divisible by 8 So (given $n \in \mathbb{N}$,) $n^3 + 2$ is not divisible by 8 (4) Alt algebraic approach (If n is even,) $n = 2k$ and $\frac{n^3 + 2}{8} = \frac{(2k)^3 + 2}{8} = \frac{8k^3 + 2}{8}$ M1 $= k^3 + \frac{1}{4} \text{ oe}$ which is not a whole number and hence not divisible by 8 (If n is odd,) $n = 2k + 1$ and $\frac{n^3 + 2}{8} = \frac{(2k + 1)^3 + 2}{8}$ $= \frac{8k^3 + 12k^2 + 6k + 3}{8} **$ The numerator is odd as $8k^3 + 12k^2 + 6k + 3$ is an even number +3 hence not divisible by 8 So (Given $n \in \mathbb{N}$,) $n^3 + 2$ is not divisible by 8		(If <i>n</i> is odd,) $n = 2k+1$ and $n^3 + 2 = (2k+1)^3 + 2$	M1	2.1
Alt algebraic approach (If n is even,) $n=2k$ and $\frac{n^3+2}{8}=\frac{(2k)^3+2}{8}=\frac{8k^3+2}{8}$ M1 2.1 $=k^3+\frac{1}{4}$ oe which is not a whole number and hence not divisible by 8 (If n is odd,) $n=2k+1$ and $\frac{n^3+2}{8}=\frac{(2k+1)^3+2}{8}$ M1 2.1 $=\frac{8k^3+12k^2+6k+3}{8}$ The numerator is odd as $\frac{8k^3+12k^2+6k+3}{8}$ ** The numerator is odd as $\frac{8k^3+12k^2+6k+3}{8}$ is an even number +3 hence not divisible by 8 So (Given $n \in \mathbb{N}$,) n^3+2 is not divisible by 8		which is an even number add 3, therefore odd. Hence it is not divisible by 8	A1	2.2a
which is not a whole number and hence not divisible by 8 (If n is odd,) $n = 2k + 1$ and $\frac{n^3 + 2}{8} = \frac{(2k+1)^3 + 2}{8}$ $= \frac{8k^3 + 12k^2 + 6k + 3}{8} **$ The numerator is odd as $\frac{8k^3 + 12k^2 + 6k + 3}{8}$ is an even number +3 hence not divisible by 8 So (Given $n \in \mathbb{N}$,) $n^3 + 2$ is not divisible by 8			(4)	
which is not a whole number and hence not divisible by 8 (If n is odd,) $n = 2k + 1$ and $\frac{n^3 + 2}{8} = \frac{(2k+1)^3 + 2}{8}$ $= \frac{8k^3 + 12k^2 + 6k + 3}{8} **$ The numerator is odd as $\frac{8k^3 + 12k^2 + 6k + 3}{8}$ is an even number +3 hence not divisible by 8 So (Given $n \in \mathbb{N}$,) $n^3 + 2$ is not divisible by 8	algebraic	(If <i>n</i> is even,) $n = 2k$ and $\frac{n^3 + 2}{8} = \frac{(2k)^3 + 2}{8} = \frac{8k^3 + 2}{8}$	M1	2.1
$= \frac{8k^3 + 12k^2 + 6k + 3}{8} **$ The numerator is odd as $\frac{8k^3 + 12k^2 + 6k + 3}{8}$ is an even number +3 hence not divisible by 8 So (Given $n \in \mathbb{N}$,) $n^3 + 2$ is not divisible by 8		T	A1	2.2a
The numerator is odd as $8k^3 + 12k^2 + 6k + 3$ is an even number +3 hence not divisible by 8 So (Given $n \in \mathbb{N}$,) $n^3 + 2$ is not divisible by 8		(If <i>n</i> is odd,) $n = 2k + 1$ and $\frac{n^3 + 2}{8} = \frac{(2k+1)^3 + 2}{8}$	M1	2.1
(4)		The numerator is odd as $8k^3 + 12k^2 + 6k + 3$ is an even number +3 hence not divisible by 8	A1	2.2a
			(4)	

Notes

Correct expressions are required for the M's. There is no need to state "If n is even," n=2k and "If n is odd, n=2k+1" for the two M's as the expressions encompass all numbers. However the concluding statement must attempt to show that it has been proven for all $n \in \mathbb{N}$

Some students will use 2k-1 for odd numbers

There is no requirement to change the variable. They may use 2n and $2n\pm1$

Reasons must be correct. Don't accept $8k^3 + 2$ cannot be divided by 8 for example. (It can!)

Also **" =
$$\frac{8k^3 + 12k^2 + 6k + 3}{8} = k^3 + \frac{3}{2}k^2 + \frac{3}{4}k + \frac{3}{8}$$
 which is not whole number" is too vague so

- **10.** (i) Prove that for all $n \in \mathbb{N}$, $n^2 + 2$ is not divisible by 4
 - (ii) "Given $x \in \mathbb{R}$, the value of |3x 28| is greater than or equal to the value of (x 9)." State, giving a reason, if the above statement is always true, sometimes true or never true. (2)

(4)

(i)

M1: Awarded for setting up the proof for either the even or odd numbers.

A1: Concludes correctly with a reason why $n^2 + 2$ cannot be divisible by 4 for either n odd or even.

dM1: Awarded for setting up the proof for both even and odd numbers

A1: Fully correct proof with valid explanation and conclusion for all n

Example of an algebraic proof

For $n = 2m$, $n^2 + 2 = 4m^2 + 2$	M1	2.1
Concludes that this number is not divisible by 4 (as the explanation is trivial)	A1	1.1b
For $n = 2m+1$, $n^2 + 2 = (2m+1)^2 + 2 =$ FYI $(4m^2 + 4m + 3)$	dM1	2.1
Correct working and concludes that this is a number in the 4 times table add 3 so cannot be divisible by 4 or writes $4(m^2 + m) + 3$	A1*	2.4
	(4)	

Example of a very similar algebraic proof

For $n = 2m$, $\frac{4m^2 + 2}{4} = m^2 + \frac{1}{2}$	M1	2.1
Concludes that this is not divisible by 4 due to the $\frac{1}{2}$ (A suitable reason is required)	A1	1.1b
* '		
For $n = 2m+1$, $\frac{n^2+2}{4} = \frac{4m^2+4m+3}{4} = m^2+m+\frac{3}{4}$	dM1	2.1
Concludes that this is not divisible by 4 due to the		
$\frac{3}{4}$ AND states hence for all n , $n^2 + 2$ is not	A1*	2.4
divisible by 4		
	(4)	

Example of a proof via logic

When <i>n</i> is odd, "odd \times odd" = odd	M1	2.1
so $n^2 + 2$ is odd, so (when n is odd) $n^2 + 2$ cannot be divisible by 4	A1	1.1b
When n is even, it is a multiple of 2, so "even \times even" is a multiple of 4	dM1	2.1
Concludes that when n is even $n^2 + 2$ cannot be divisible by 4 because n^2 is divisible by 4AND STATEStrues for all n .	A1*	2.4
	(4)	

Example of proof via contradiction

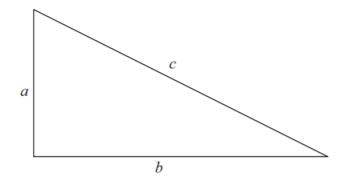
Sets up the contradiction 'Assume that $n^2 + 2$ is divisible by $4 \Rightarrow n^2 + 2 = 4k$ '	M1	2.1
$\Rightarrow n^2 = 4k - 2 = 2(2k - 1) \text{ and concludes even}$ Note that the M mark (for setting up the contradiction must have been awarded)	A1	1.1b
States that n^2 is even, then n is even and hence n^2 is a multiple of 4	dM1	2.1
Explains that if n^2 is a multiple of 4 then $n^2 + 2$ cannot be a multiple of 4 and hence divisible by 4 Hence there is a contradiction and concludes Hence true for all n .		2.4
	(4)	

10	Prove by contradiction that $\sqrt[3]{2}$ is an irrational number.	[7 marks]
9	Prove that the sum of a rational number and an irrational number is always	irrational.
		[5 marks]

Q	Marking Instructions	AO	Marks	Typical Solution
10	Begins proof by contradiction, assumes that $\sqrt[3]{2}$ is rational OE	AO3.1a	M1	Assume $\sqrt[3]{2}$ is rational
	Uses language and notation correctly to state initial assumptions	AO2.5	B1	$\sqrt[3]{2} = \frac{a}{b},$ a and b have no common factors
	Manipulates fraction including cubing.	AO1.1a	M1	$\Rightarrow \sqrt[3]{2}b = a$ $\Rightarrow 2b^3 = a^3$
	Deduces a is even	AO2.2a	R1	$\therefore a$ is even
	Deduces b is even	AO2.2a	R1	let $a = 2d$ then $2b^3 = 8d^3$ $\Rightarrow b^3 = 4d^3$ $\therefore b \text{ is even}$
Comp	Explains why there is a contradiction	AO2.4	E1	Hence, <i>a</i> and <i>b</i> have a common factor of 2. This is a contradiction.
	Completes rigorous argument to show that $\sqrt[3]{2}$ is irrational	AO2.1	R1	∴ the assumption that $\sqrt[3]{2}$ is rational must be incorrect and it is proved that $\sqrt[3]{2}$ is an irrational number
	Total		7	

Q	Marking instructions	AO	Mark	Typical solution
9	Begins proof by contradiction. This may be evidenced by: stating assumption at the start "the sum is rational" Or Sight of "contradiction" later as part	3.1a	M1	Assume m is rational and n is irrational and their sum is rational.
	of argument.			
	Forms an equation of the form rational + irrational = rational with the rationals written algebraically $\frac{a}{b} + n = \frac{c}{d}$	2.5	M1	$\frac{a}{b} + n = \frac{c}{d}$ Where a, b, c and d are all integers.
	n must clearly be irrational and not written as an algebraic fraction and not a specific value.			$n = \frac{c}{d} - \frac{a}{b}$ $= \frac{bc - ad}{bd}$
	Manipulates their equation to show that n is rational	1.1b	A1	∴ <i>n</i> is rational, which is a contradiction.
	Explains or demonstrates why there is a contradiction	2.4	E1	So the original statement is false and the sum of a rational and
	Completes rigorous argument to prove the required result including correct initial assumptions Where a, b, c and d are all integers.	2.1	R1	irrational must be irrational.
	Total		5	

6 The three sides of a right-angled triangle have lengths a, b and c, where a, b, $c \in \mathbb{Z}$



6 (a) State an example where a, b and c are all even.

[1 mark]

6 (b) Prove that it is **not** possible for all of a, b and c to be odd.

[3 marks]

Q	Marking instructions	AO	Mark	Typical solution
6(a)	States an appropriate even Pythagorean triple	2.2a	B1	a = 6 $b = 8$ $c = 10$
6(b)	Begins an appropriate method of proof assuming at least two sides are odd eg states 'assume <i>a</i> , <i>b</i> odd' or defines <i>a</i> , <i>b</i> (or <i>c</i>) algebraically with different unknowns	3.1a	B1	Assume a and b are odd so $a = 2m + 1$ and $b = 2n + 1$ $(2m + 1)^2 + (2n + 1)^2$ $= 4m^2 + 4m + 1 + 4n^2 + 4n + 1$ $= 2(2m^2 + 2m + 2n^2 + 2n + 1)$
	Uses Pythagoras' theorem with at least two odd sides either in words or algebraically	1.1a	M1	which is even, so c^2 is even, so c is even. Therefore it is not possible for all three to be odd.
	Completes rigorous argument to prove the required result CSO	2.1	R1	
	Total		4	