7 (a) Sketch the curve with equation $y = x(x+3)^2$.

[3 marks]

- (b) The polynomial p(x) is given by $p(x) = x(x+3)^2 + 4$.
 - (i) Use the Factor Theorem to show that x + 4 is a factor of p(x).

[2 marks]

- (ii) Use the Remainder Theorem to find the remainder when p(x) is divided by x-2. [2 marks]
- (iii) Express p(x) in the form $(x-2)(x^2+bx+c)+r$.

[3 marks]

1 (a) The polynomial f(x) is defined by $f(x) = 8x^3 - 6x^2 + 9x - 5$.

Find the remainder when f(x) is divided by 4x - 1.

[2 marks]

- (b) The polynomial g(x) is defined by $g(x) = 8x^3 6x^2 + 9x + d$.
 - (i) Given that 4x 1 is a factor of g(x), find the value of the constant d.

[1 mark]

(ii) Given that $g(x) = (4x - 1)(ax^2 + bx + c)$, find the integers a, b and c.

[2 marks]

(iii) Show that the equation g(x)=0 has only one real solution and state this solution.

[2 marks]

Q7	Solution	Mark	Total	Comment
(a)	† /	M1		curve through origin with one max and one min and touching negative <i>x</i> -axis
	-3	A1		shape roughly as drawn
		A1	3	-3 marked and correct curvature (must earn previous A1)
(b)(i)	$p(-4) = -4(-1)^{2} + 4$ $= -4 + 4 = 0$	M1		clear attempt at p(-4) using given expression or multiplied out
	therefore $x+4$ is a factor	A1	2	all working correct plus statement
(ii)	$p(2) = 2(5)^2 + 4$	M1		clear attempt at p(2) using given expression or multiplied out
	(Remainder =) 54	A1	2	
(iii)	Attempt at long division by $(x-2)$	M1		or multiplying out & comparing coefficients
	$x^{2} + 8x + \dots $ $(x-2)(x^{2} + 8x + 25) + 54$	A1 A1	3	
	Total		10	

Q 1	Solution	Mark	Total	Comment
(a)	$f\left(\frac{1}{4}\right) = 8 \times \left(\frac{1}{4}\right)^3 - 6 \times \left(\frac{1}{4}\right)^2 + 9 \times \left(\frac{1}{4}\right) - 5$	M1		Attempt at evaluation of $f\left(\frac{1}{4}\right)$
	= -3	A1	2	
	Alternative Long division by $(4x - 1)$ as far as $2x^2 + bx$ R = -3 A1	x + c in c	juotient a	ı nd a numerical remainder M1
(b)(i)	$g\left(\frac{1}{4}\right) = 2 + d = 0 \to d = -2$	B1	1	NMS: $d = -2$ B1
(ii)	$g(x) = (4x - 1)(2x^2 + bx + 2)$	M1		Spotting $a = 2$ and $c = 2$ by factors.
	b = -1	A 1	2	Correct a,b and c values sufficient
(iii)	Attempt to calculate $b^2 - 4ac$ for their quadratic	M1		
	= 1 - 16			
	= -15			
	Negative (or < 0) so $x = \frac{1}{4}$ is only solution	A1	2	Must score 2/2 in part (b)(ii) and correct evaluation of discriminant.

- 3 The polynomial p(x) is given by $p(x) = x^3 7x^2 5x + 26$.
 - (a) (i) Use the Factor Theorem to show that x + 2 is a factor of p(x).

[2 marks]

(ii) Express p(x) in the form $(x+2)(x^2+bx+c)$, where b and c are integers.

[2 marks]

- **(b)** A curve has equation $y = x^3 7x^2 5x + 26$.
 - (i) Use the result from part (a)(ii) to determine the number of times the curve crosses the x-axis.

[2 marks]

(ii) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ and $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.

[3 marks]

(iii) Hence show that the curve has a maximum point when $x=-\frac{1}{3}$.

[3 marks]

3 The polynomial p(x) is given by

$$p(x) = x^3 + bx^2 + cx + 24$$

where b and c are integers.

(a) Given that x+2 is a factor of p(x), show that 2b-c+8=0.

[2 marks]

(b) The remainder when p(x) is divided by x-3 is -30.

Obtain a further equation in b and c.

[2 marks]

(c) Use the equations from parts (a) and (b) to find the value of b and the value of c.

[3 marks]

Q3	Solution	Mark	Total	Comment
(a)(i)	$[p(-2) =] (-2)^3 - 7(-2)^2 - 5(-2) + 26$ $= -8 - 28 + 10 + 26$ $= 0$ therefore $x + 2$ is a factor	M1	2	clear attempt at p(-2) NOT long division must see powers of -2 simplified correctly working showing that p(-2)=0 and correct statement
(ii)	•	M1 A1	2	by inspection correct product with brackets correct
(b)(i)	$b^{2} - 4ac \text{ for "their" quadratic as far as}$ $\left[(-9)^{2} - 4 \times 13 = \right] 81 - 52$ $29 > 0 \text{or} 81 - 52 > 0 \text{or (*)}$ (so curve crosses x-axis) 3 times	M1 A1	2	condone -9 ² if recovered as 81 (*) stating quadratic has 2 (real) roots correct deduction and quadratic correct
	$\begin{bmatrix} \frac{\mathrm{d}y}{\mathrm{d}x} = \\ \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \\ \end{bmatrix} 3x^2 - 14x - 5$ $\begin{bmatrix} \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \\ \end{bmatrix} 6x - 14$	M1 A1 B1	3	2 terms correct all correct
(iii)	$\begin{bmatrix} \frac{\mathrm{d}y}{\mathrm{d}x} = \\ \end{bmatrix} 3\left(-\frac{1}{3}\right)^2 - 14\left(-\frac{1}{3}\right) - 5$ $\mathbf{or} \left[\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \right] 6\left(-\frac{1}{3}\right) - 14$	M1		correct substitution of $x = -\frac{1}{3}$ into "their" $\frac{dy}{dx}$ or "their" $\frac{d^2y}{dx^2}$
	$\frac{dy}{dx} = \frac{1}{3} + \frac{14}{3} - 5 = 0$	A1		convincingly showing $\frac{dy}{dx} = 0$ and $\frac{dy}{dx} =$ must appear on at least one line
	$\frac{d^2 y}{dx^2} = -2 - 14(= -16) < 0$ $\Rightarrow \text{maximum}$	A1	3	correct and $\frac{d^2y}{dx^2}$ seen & value shown to be < 0 & statement must earn M1 A1 to earn final A1

Q3	Solution	Mark	Total	Comment
(a)	$(-2)^3 + b(-2)^2 + c(-2) + 24$ -8 + 4b - 2c + 24 = 0	M1		clear attempt at p(-2)
	-8+4b-2c+24=0 2b-c+8=0	A1	2	AG must see powers of -2 simplified correctly and = 0 appearing before last line
(b)	$3^{3} + 3^{2}b + 3c + 24 = -30$ $27 + 9b + 3c + 24 = -30$	M1		clear attempt at $p(3)$ and $=-30$
	3b+c+27=0	A1	2	ACF terms need not be collected but powers of 3 must be evaluated No ISW - mark their final equation
(c)	Correctly eliminating b or c from $2b-c+8=0$ and an equation from (b)	M1		PI by one correct answer
	b = -7 or $c = -6b = -7$ and $c = -6$	A1 A1	3	
	Total		7	

- 4 The polynomial p(x) is given by $p(x) = x^3 5x^2 8x + 48$.
 - (a) (i) Use the Factor Theorem to show that x + 3 is a factor of p(x).

[2 marks]

(ii) Express p(x) as a product of three linear factors.

[3 marks]

- (b) (i) Use the Remainder Theorem to find the remainder when $\mathbf{p}(x)$ is divided by x-2. [2 marks]
 - (ii) Express p(x) in the form $(x-2)(x^2+bx+c)+r$, where b, c and r are integers. [3 marks]

7 (a) Sketch the curve with equation $y = x^2(x-3)$.

[3 marks]

- **(b)** The polynomial p(x) is given by $p(x) = x^2(x-3) + 20$.
 - (i) Find the remainder when p(x) is divided by x-4.

[2 marks]

(ii) Use the Factor Theorem to show that x + 2 is a factor of p(x).

[2 marks]

(iii) Express p(x) in the form $(x+2)(x^2+bx+c)$, where b and c are integers.

[2 marks]

(iv) Hence show that the equation p(x)=0 has exactly one real root and state its value.

[3 marks]

Q4	Solution	Mark	Total	Comment
(a)(i)	$(p(-3)) = (-3)^3 - 5(-3)^2 - 8(-3) + 48$ $= -27 - 45 + 24 + 48$	M1		clear attempt at p(-3) NOT long division must see powers of -3 simplified correctly
	= 0 therefore $x + 3$ is a factor	A1	2	working showing that p(-3)=0 and correct statement
(ii)	$x^{2} + bx + c$ with $b = -8$ or $c = 16$	M1		by inspection
	$x^2 - 8x + 16$	A1		may see as quotient in long division
	(p(x) =) (x+3)(x-4)(x-4)	A1	3	must see product
(b)(i)	$p(2) = 2^3 - 5 \times 2^2 - 8 \times 2 + 48$ $= 8 - 20 - 16 + 48$	M1		clear attempt at p(2) NOT long division
	(Remainder =) 20	A1	2	
(ii)	Quadratic factor $x^2 + bx + c$			
	b = -3 or $c = -14$	M1		by inspection
	$x^2 - 3x - 14$	A1		may see as quotient in long division
	$(p(x) =) (x-2)(x^2-3x-14)+20$	A1	3	must see full correct expression
	Total		10	

Q7	Solution	Mark	Total	Comment
(a)	y †	M1		cubic curve touching at O – one max, one min (may have minimum at O)
	3 x	A1		shape roughly as shown crossing positive <i>x</i> -axis
	,	A1	3	3 marked and correct curvature for $x < 0$ and $x > 3$
(b)(i)	$p(4) = 4^2(4-3) + 20$	M1		p(4) attempted or full long division as far as remainder term
	(Remainder) = 36	A1	2	as remainder term
(ii)	$p(-2) = (-2)^2(-2-3) + 20$	M1		p(-2) attempted NOT long division
	$=4\times(-5)+20=0$ or $-20+20=0$			working showing that $p(-2) = 0$
	therefore $(x + 2)$ is a factor	A1	2	and statement
(iii)	$x^{2} + bx + c$ with $b = -5$ or $c = 10$ $(x+2)(x^{2} - 5x + 10)$	M1 A1	2	by inspection must see product
(iv)	Discriminant of "their" quadratic $= (-5)^2 - 4 \times 10$	M1		be careful that cubic coefficients are not being used
	-15 < 0 so quadratic has no real roots	A1cso		
	(only real root is) –2	B1	3	independent of previous marks

- 3 (a) The polynomial f(x) is defined by $f(x) = 6x^3 11x^2 + 2x + 8$.
 - (i) Use the Factor Theorem to show that (3x+2) is a factor of f(x).

[2 marks]

(ii) Show that f(x) has no other linear factors.

[4 marks]

(b) The polynomial g(x) is defined by $g(x) = f(x) - (6x^2 - 2x - 4)$.

Given that (3x+2) is a factor of g(x), express g(x) as a product of three linear factors.

[2 marks]

(c) The function h is defined by $h(x) = \frac{g(x)}{6x^3 - 5x^2 - 6x}$.

Show that h(x) can be simplified to the form $p+qx^n$ where p, q and n are integers.

[2 marks]

Q3	Solution	Mark	Total	Comment		
(a)(i)	$f\left(-\frac{2}{3}\right) = 6\left(-\frac{2}{3}\right)^3 - 11\left(-\frac{2}{3}\right)^2 + 2\left(-\frac{2}{3}\right) + 8$	M1		Attempt at $f\left(-\frac{2}{3}\right)$		
	= 0 (hence) factor	A1	2	Correct arithmetic seen and conclusion.		
	Question says 'Use the factor theorem' so long div	vision sco	res 0/2 .			
	Candidate could imply conclusion at beginning, e.g. $3x + 2$ is a factor if $f\left(-\frac{2}{3}\right) = 0$ etc.					
	Just $f\left(-\frac{2}{3}\right) = 6\left(-\frac{2}{3}\right)^3 - 11\left(-\frac{2}{3}\right)^2 + 2\left(-\frac{2}{3}\right) +$	8 = -8 +	- 8 = 0 a	and conclusion is M1 A0 as no 'arithmetic'		
	but seeing such as $f\left(-\frac{2}{3}\right) = -\frac{48}{27} - \frac{44}{9} - \frac{4}{3} + 8$	DE = 0 at	nd concl	usion would score M1 A1.		
(a)(ii)	Attempt at quadratic factor	М1		e.g. long division or factorising		
	$2x^2 - 5x + 4$	A1		Correct quadratic		
	$b^2 - 4ac = 25 - 32$ or -7	dM1		Correct $b^2 - 4ac$ for their quadratic		
	< 0 OE so no (more) factors / roots / solutions	A1	4	Valid reason and conclusion needed.		
	To earn the M1 for any approach we must see either	er $(2x^2 -$	5x + c) or $(2x^2 + bx + 4)$ PI.		
	If $\left(x + \frac{2}{3}\right)$ is used instead of $(3x + 2)$ we need $(6x)$	$x^2 - 15x$	+ c) or	$(6x^2 + bx + 12)$ for M1		
	The dM1 is for a correct $b^2 - 4ac$ for their quadr If using completing the square we need to see the f For final A1, candidates must have a correct quadr	form $p(x \cdot$	$-q)^2 =$	r correct for their quadratic		
(b)	$g(x) = (3x + 2)(2x^{2} - 5x + 4)$ $-(3x + 2)(2x - 2)$ $= (3x + 2)(2x^{2} - 7x + 6)$ $= (3x + 2)(x - 2)(2x - 3)$	M1 A1	2	or $g(x) = 6x^3 - 17x^2 + 4x + 12$ Attempt at quadratic factor Correct three linear factors		
	If a calculator is used to solve the cubic in order to	$-2)(6x^2$ $-3)(3x$ factorise,	-5x + 2 - 4x - 4x - 4x = -6, it score	c) or $(x-2)(6x^2 + bx - 6)$ + c) or $(2x-3)(3x^2 + bx - 4)$ s $0/2$ or $2/2$		
1	e.g. $\left(x + \frac{2}{3}\right)(x - 2)\left(x - \frac{3}{2}\right)$ would score $0/2$ but 6	$5\left(x+\frac{2}{3}\right)$	(x - 2)	$\left(x - \frac{3}{2}\right)$ would score $2/2$.		
(c)	$h(x) = \frac{g(x)}{6x^3 - 5x^2 - 6x}$ $= \frac{(3x+2)(x-2)(2x-3)}{x(3x+2)(2x-3)}$	M1		Attempt at full linear factors and cancelling at least one common factor. PI by correct answer in any form.		
	$\left(=\frac{x-2}{x}\right) = 1 - 2x^{-1}$	A1	2	Final answer must be seen in this form.		
	N(0N+2)(N+0)			down by at least one factor.		
	No need to state $p = 1$, $q = -2$ and $n = -1$; app	ly ISW or	nce corr	ect answer seen.		
	Total		10			

9. The curve C has equation y = f(x), where

$$f'(x) = (x-3)(3x+5)$$

Given that the point P(1, 20) lies on C,

(a) find f(x), simplifying each term.

(5)

(b) Show that

$$f(x) = (x - 3)^2(x + A)$$

where A is a constant to be found.

(3)

(c) Sketch the graph of C. Show clearly the coordinates of the points where C cuts or meets the x-axis and where C cuts the y-axis.

(4)

Question Number	Sch	neme	Marks
9.(a)	$(x-3)(3x+5) = 3x^2 - 4x - 15$	Correct expansion simplified or un-	B1
	Allow $3x^2 + 5x - 9x - 15$	simplified.	Б
	$f(x) = x^3 - 2x^2 - 15x + c$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	A1: All terms correct. Need not be simplified. No need for $+c$ here.		
	$x = 1, y = 20 \Rightarrow 20 = 1 - 2 - 15 + c$ $\Rightarrow c = 36$		
	$(f(x) =) x^3 - 2x^2 - 15x + 36$	Cao $(f(x) =) x^3 - 2x^2 - 15x + 36$ (All together and on one line)	Al
			(5)
(b)	A = 4	Correct value (may be implied)	B1
Way 1	$f(x) = (x-3)^2(x+A)$	$=(x^2-6x+9)(x+A)$	
	$f(x) = x^3 + (A-6)$	$x^2 + (9-6A)x + 9A$	
	$A-6=-2 \Rightarrow A=4$ $9-6A=-$	$-15 \Rightarrow A = 4$ $9A = 36 \Rightarrow A = 4$	
	M1: Expands $(x-3)^2(x+A)$ and comp (a) to form 3 equations and attempts to to show that A is the same in each cas coefficients A1: Fully correct proof –	M1A1	
			(3)
9(c)	(-4, 0)		

8. (a) Factorise completely $9x - 4x^3$

(3)

(b) Sketch the curve C with equation

$$y = 9x - 4x^3$$

Show on your sketch the coordinates at which the curve meets the *x*-axis.

(3)

The points A and B lie on C and have x coordinates of -2 and 1 respectively.

- (c) Show that the length of AB is $k\sqrt{10}$ where k is a constant to be found.
- **(4)**

	I				1
8(a)	$9x-4x^3 = x(9-4x^2)$ or $-x(4x^2-9)$	<i>)</i>)	Takes corre	out a common factor of x or $-x$ ctly.	B1
	$9-4x^2 = (3+2x)(3-2x)$ or		9-42	$c^2 = (\pm 3 \pm 2x)(\pm 3 \pm 2x)$ or	M1
	$4x^2 - 9 = (2x - 3)(2x + 3)$		$4x^{2}$ –	$9 = (\pm 2x \pm 3)(\pm 2x \pm 3)$	1411
	$9x-4x^3 = x(3+2x)(3-2x)$	x(-3	-2x	ow equivalents e.g. $(-3+2x)$ or $-x(2x+3)(2x-3)$	A1
Note: 42	$x^3 - 9x = x(4x^2 - 9) = x(2x - 3)(2x + 3)$) so 9	0x-4x	$x^3 = x(3-2x)(2x+3)$ would score	e full marks
	Note: Correct work leading to 9	x(1-	$(\frac{2}{3}x)(1$	$(1+\frac{2}{3}x)$ would score full marks	
	Allow $(x \pm 0)$ or $(-$	$-x \pm 0$) inst	ead of x and -x	
					(3)
(b)	y ↑		ı	A cubic shape with one maximum and one minimum	M1
				Any line or curve drawn passing through (not touching) the origin	B1
	(-1.5,0)	x		Must be the correct shape and in all four quadrants and pass through (-1.5, 0) and (1.5, 0) (Allow (0, -1.5) and (0, 1.5) or just -1.5 and 1.5 provided they are positioned correctly). Must be on the diagram (Allow $\sqrt{\frac{9}{4}}$ for 1.5)	A1
					(3)
(c)	A = (-2, 14), B = (1, 5)			B1: $y = 14$ or $y = 5$ B1: $y = 14$ and $y = 5$	B1 B1
	These must l	be see	en or	used in (c)	
	$(AB =) \sqrt{(-2-1)^2 + (14-5)^2} (= \sqrt{9})$	00)	the exp	rect use of Pythagoras <u>including</u> square root. Must be a correct ression for their <i>A</i> and <i>B</i> if a rect formula is not quoted	M1
	E.g. $AB = \sqrt{(-2 + 1)^2 + (x_2 - x_1)^2 + (x_2 - x_2)^2}$ However $AB = \sqrt{(y_2 - y_1)^2 + (x_2 - x_2)^2 + (x_2 - x_2)^2}$				
	$(AB =) 3\sqrt{10}$			cao	A1
					(4)
					(10 marks)

2.

$$f(x) = 3x^3 - 25x^2 + ax - 15$$
, where a is a constant

Given that (x - 3) is a factor of f(x),

(a) find the value of a,

(2)

(b) factorise f(x) completely, using algebra.

(4)

3.
$$f(x) = 24x^3 + Ax^2 - 3x + B$$

where A and B are constants.

When f(x) is divided by (2x - 1) the remainder is 30

(a) Show that A + 4B = 114

(2)

Given also that (x + 1) is a factor of f(x),

(b) find another equation in A and B.

(2)

(c) Find the value of A and the value of B.

(2)

(d) Hence find a quadratic factor of f(x).

(2)

2. (a)		M1	_
	(So $81-225+3a-15=0$ and) obtains $a=53$	A1	
	W2 Divide by (2) to abtain an destinant design and a 40 5" 0	(2)
	Way 2: Divides by $(x - 3)$ to obtain quadratic and puts their remainder " $a - 48 - 5$ " = 0 obtains $a = 53$	M1 A1	
	obtains $u = 33$	(2	2)
(b)	$(f(x) =) (x-3)(3x^2 \dots)$	M1	,
	($3x^2 - 16x + 5$)	A1	
	(f(x) =) (x-3)(3x-1)(x-5)	dM1A1 cso)
		(4	()
		(6 marks)	

3. (a)	Way 1 Use f(1/2) or f (-1/2) and put equal to 30 Stated $\frac{24}{8} + \frac{1}{4}A - \frac{3}{2} + B = 30$ and $A + 4B = 114$ *	Way 2 Long division of $f(x)$ by $(2x-1)$ as far as remainder put = 30 Obtains $B + \frac{1}{4}A + \frac{3}{2} = 30$ (o.e) and $A + 4B = 114$ *	M1 A1*	(2)
(b) (c)	Way 1 Used $f(-1)$ or $f(1) = 0$ Stated $-24+A+3+B=0$ so $A+B=21$ Solves to obtain one of A or B Obtains both $A=-10$ and $B=31$	Way 2 Long division of $f(x)$ by $(x + 1)$ as far as remainder put = 0 Obtains $B - 21 + A = 0$	M1 A1 M1 A1	(2)
(d)	$f(x) = (x+1)(24x^2 - 34x + 31)$ or factor is (2)	$4x^2 - 34x + 31$	M1A1	(2)

6.
$$f(x) = -6x^3 - 7x^2 + 40x + 21$$

- (a) Use the factor theorem to show that (x + 3) is a factor of f(x) (2)
- (b) Factorise f(x) completely. (4)
- (c) Hence solve the equation

$$6(2^{3y}) + 7(2^{2y}) = 40(2^y) + 21$$

giving your answer to 2 decimal places.

(3)

4. $f(x) = 6x^3 + 13x^2 - 4$

- (a) Use the remainder theorem to find the remainder when f(x) is divided by (2x + 3).
- (b) Use the factor theorem to show that (x + 2) is a factor of f(x). (2)
- (c) Factorise f(x) completely. (4)
- 3. $f(x) = 6x^3 + 3x^2 + Ax + B$, where A and B are constants.

Given that when f(x) is divided by (x + 1) the remainder is 45,

(a) show that B - A = 48 (2)

Given also that (2x + 1) is a factor of f(x),

- (b) find the value of A and the value of B. (4)
- (c) Factorise f(x) fully. (3)

- 1000000		+
6. (a)	Attempt $f(3)$ or $f(-3)$ Use of long division is M0A0 as factor theorem was required.	M1
	f(-3) = 162 - 63 - 120 + 21 = 0 so $(x + 3)$ is a factor	A1
		(2)
(b)	Either (Way 1): $f(x) = (x + 3)(-6x^2 + 11x + 7)$	M1A1
	=(x+3)(-3x+7)(2x+1) or $-(x+3)(3x-7)(2x+1)$	M1A1
		(4)
	Or (Way 2) Uses trial or factor theorem to obtain $x = -1/2$ or $x = 7/3$	M1
	Uses trial or factor theorem to obtain both $x = -1/2$ and $x = 7/3$	A1
	Puts three factors together (see notes below)	M1
	Correct factorisation: $(x+3)(7-3x)(2x+1)$ or $-(x+3)(3x-7)(2x+1)$ oe	A1
	Contest metorisation: (w+5)(7 5%)(2% + 1) or (x+5)(5% 7)(2% + 1) or	(4)
	Or (Way 3) No working three factors $(x + 3)(-3x + 7)(2x + 1)$ otherwise need working	M1A1M1A1
	of (way 5) 110 working three factors (x + 5)(5x + 7)(2x + 1) otherwise need working	(4)
(c)	$2^{y} = \frac{7}{3}, \rightarrow \log(2^{y}) = \log(\frac{7}{3}) \text{ or } y = \log_{2}(\frac{7}{3}) \text{ or } \frac{\log(7/3)}{\log 2}$	B1, M1
	$\{y=1.222392421\} \Rightarrow y=\text{awrt } 1.22$	A1
	$\{y-1.222392421\} \rightarrow y-\text{awit } 1.22$	(3)
		[9]

1 1001110 01		
4.	$f(x) = 6x^3 + 13x^2 - 4$	
(a)	$f\left(-\frac{3}{2}\right) = 6\left(-\frac{3}{2}\right)^3 + 13\left(-\frac{3}{2}\right)^2 - 4 = 5$ Attempting $f\left(-\frac{3}{2}\right)$ or $f\left(\frac{3}{2}\right)$	M1
		5 A1 cao
		[2]
(b)	$f(-2) = 6(-2)^3 + 13(-2)^2 - 4$ Attempts $f(-2)$.). M1
	f(-2) = 0 with no sign or substitution error	ors
	= 0, and so $(x + 2)$ is a factor.	n. A1
		[2]
(c)	$f(x) = \{(x+2)\}(6x^2 + x - 2)$ $= (x+2)(2x-1)(3x+2)$	M1 A1
	= (x+2)(2x-1)(3x+2)	M1 A1
		[4]
[8

3.	$f(x) = 6x^3 + 3x^2 + Ax + B$	
Way 1 (a)	Attempting $f(1) = 45$ or $f(-1) = 45$	M1
	$f(-1) = -6 + 3 - A + B = 45$ or $-3 - A + B = 45 \Rightarrow B - A = 48 * (allow 48 = B - A)$	A1 * cso
		(2)
Way 1 (b)	Attempting $f(-\frac{1}{2}) = 0$	M1
	$6\left(-\frac{1}{2}\right)^3 + 3\left(-\frac{1}{2}\right)^2 + A\left(-\frac{1}{2}\right) + B = 0 \text{ or } -\frac{1}{2}A + B = 0 \text{ or } A = 2B$	Al o.e.
	Solve to obtain $B = -48$ and $A = -96$	M1 A1
		(4)
(c)	Obtain $(3x^2 - 48), (x^2 - 16), (6x^2 - 96), (3x^2 + \frac{A}{2}), (3x^2 + B), (x^2 + \frac{A}{6})$ or $(x^2 + \frac{B}{3})$ as	B1ft
	factor or as quotient after division by $(2x + 1)$. Division by $(x+4)$ or $(x-4)$ see below	
	Factorises $(3x^2-48), (x^2-16), (48-3x^2), (16-x^2) \text{ or } (6x^2-96)$	M1
	= 3 $(2x + 1)(x + 4)(x - 4)$ (if this answer follows from a wrong A or B then award A0) isw if they go on to solve to give $x = 4$, -4 and -1/2	A1cso (3) [9]