6 (a) Express
$$\frac{5x^2 - 19x + 50}{(1+3x)(5-x)^2}$$
 in the form $\frac{P}{1+3x} + \frac{Q}{5-x} + \frac{R}{(5-x)^2}$

where P, Q and R are constants.

[5 marks]

(b) Hence find
$$\int \frac{5x^2 - 19x + 50}{(1+3x)(5-x)^2} dx$$
.

[4 marks]

Q 6	Solution	Mark	Total	Comment
(a)	$5x^{2} - 19x + 50$ = $P(5-x)^{2} + Q(1+3x)(5-x) + R(1+3x)$ Any correct method that would find P, Q or R	B1 M1		Correctly eliminating denominators If not seen next 4 marks are still possible Correct substitution, equating coefficients etc. even if B0 scored
	P = 2 $Q = -1$ $R = 5$	A1 A1 A1	5	

B1 mark can be earned if both sides still include the **correct** common denominator of $(1 + 3x)(5 - x)^2$

The M1 is scored for a complete method that could find any of the 3 constants.

e.g. letting x = 5 to find R (even if wrong) would earn the **M1** mark,

or solving enough simultaneous equations to find a constant would earn the M1 mark.

After first B1 mark, if NMS or cover up rule used, correct answers can score B2, B1 and then B1.

(b)	$\int \frac{P}{1+3x} + \frac{Q}{5-x} dx$ = $a \ln(1+3x) + b \ln(5-x)$ = $\frac{2}{3} \ln(1+3x)$	M1		Condone missing brackets.
	3 ''(1 + 3%)	A1ft		ft on $\frac{p}{3}\ln(1+3x)$
	$+\ln(5-x)$	A1ft		ft on $-Q \ln(5-x)$
	$\int \frac{R}{(5-x)^2} dx = \frac{5}{5-x}$	B1ft	4	ft on $-Q \ln(5-x)$ ft on $\frac{R}{5-x}$

Full marks can be scored in (b) even if P, Q and R are used or if numerical values for them are 'invented'.

Apply ISW if correct separate logarithms are subsequently combined wrongly.

1 (a) Express $\frac{10+24x-12x^2}{(3-x)(1+4x)}$ in the form $A+\frac{B}{3-x}+\frac{C}{1+4x}$, where A,B and C are integers.

[4 marks]

(b) Hence find $\int_0^2 \frac{10+24x-12x^2}{(3-x)(1+4x)} dx$, giving your answer in the form $p+q\ln 3$.

[5 marks]

1 (a) Express $\frac{19x-3}{(1+2x)(3-4x)}$ in the form $\frac{A}{1+2x} + \frac{B}{3-4x}$.

[3 marks]

- (b) (i) Find the binomial expansion of $\frac{19x-3}{(1+2x)(3-4x)}$ up to and including the term in x^2 . [7 marks]
 - (ii) State the range of values of x for which this expansion is valid.

[1 mark]

Q1	Solution	Mark	Total	Comment
(a)	$10 + 24x - 12x^{2}$ $= A(3-x)(1+4x) + B(1+4x) + C(3-x)$	M1		PI by <i>B</i> or <i>C</i> being correct.
	A = 3 $B = -2$ $C = 1$	B1 A1 A1	4	Could be spotted
(b)	$\int 3 - \frac{2}{3-x} + \frac{1}{1+4x} dx = 3x + r \ln(3-x) + s \ln(1+4x)$	B1ft M1		ft on their value of A .
	$+2\ln(3-x) + \frac{1}{4}\ln(1+4x)$	A1ft		ft on their values of <i>B</i> and <i>C</i> .
	$\int_0^2 f(x)dx = \left(3 \times 2 + 2\ln 1 + \frac{1}{4}\ln 9\right)$ $-(3 \times 0 + 2\ln 3 + \frac{1}{4}\ln 1)$	M1		Correct use of $F(2) - F(0)$ for their $Ax + r \ln(3 - x) + s \ln(1 + 4x)$ form but θ and $\ln 1 = \theta$ can be PI
	$=6-\frac{3}{2}\ln 3$	A1	5	
			9	

Q1	Solution	Mark	Total	Comment
(a)	19x - 3 = A(3 - 4x) + B(1 + 2x)			3 1
	Correct equation and 'attempt' to find A or B	M1		e.g. Using $x = \frac{3}{4}$ or $-\frac{1}{2}$ or simultaneous
	$A = -\frac{5}{2}$	A1		equation such as $19 = -4A + 2B$ and $-3 = 3A + B$
	$A = -\frac{5}{2}$ $B = \frac{9}{2}$	A1	3	
	NMS or cover up rule scores SC2 for $A = -\frac{5}{2}$ or	$rB = \frac{9}{2}$	or SC3 f	for both $A = -\frac{5}{2}$ and $B = \frac{9}{2}$
(b)(i)	$(1+2x)^{-1} = 1 - 2x + kx^2$	M1		provided $k \neq 0$
	$=1-2x+4x^2$	A1		Accept $+(2x)^2$
	$(3-4x)^{-1} = 3^{-1} \left(1 - \frac{4}{3}x\right)^{-1}$	B1		ACF for 3^{-1} eg $\frac{1}{3}$ or 0.33or 0.3
	$\left(1-\frac{4}{3}x\right)^{-1}$			
	$= 1 + (-1)\left(-\frac{4}{3}x\right) + \frac{(-1)(-2)}{2!}\left(-\frac{4}{3}x\right)^2$	M1		Condone poor use of or missing brackets.
	$= \left(1 + \frac{4}{3}x + \frac{16}{9}x^2\right)$	A1		PI by later work
	$\frac{19x - 3}{(1 + 2x)(3 - 4x)} =$			
	$-\frac{5}{2}(1-2x+4x^2) + \frac{9}{2} \cdot \frac{1}{3} \left(1 + \frac{4}{3}x + \frac{16}{9}x^2\right)$	M1		PI by correct answer ft on candidate's A and B with their relevant series.
	$= -1 + 7x - \frac{22}{3}x^2$	A1	7	Must have $\frac{22}{3}$, $7\frac{1}{3}$ or 7. 3

3 (a) Express
$$\frac{3+13x-6x^2}{2x-3}$$
 in the form $Ax + B + \frac{C}{2x-3}$.

[4 marks]

(b) Show that
$$\int_3^6 \frac{3 + 13x - 6x^2}{2x - 3} dx = p + q \ln 3$$
, where p and q are rational numbers.

[4 marks]

Q3	Solution	Mark	Total	Comment
(a)	$\frac{3+13x-6x^2}{2x-3} = Ax+B+\frac{C}{2x-3}$ $3+13x-6x^2 = Ax(2x-3)+B(2x-3)+C$ Correct above equation and attempt to find one of <i>A</i> , <i>B</i> or <i>C</i> or an attempt at long division	М1		e.g. using $x = \frac{3}{2}$ in an attempt to find C or forming simultaneous equations and attempt to solve.
	A = -3 $B = 2$ $C = 9$	A1 A1 A1	4	

If long division is used award M1 once $-3x + \cdots$ has been obtained but only award the A marks once the values are clearly identified or it is written in the required form of $Ax + B + \frac{C}{2x-3}$.

Alternative method of division $\frac{3+13x-6x^2}{2x-3} = \frac{-3x(2x-3)-9x+13x+3}{2x-3} = -3x + \frac{4x+3}{2x-3}$ M1 for $-3x + \cdots$.

For the **A** marks, A, B and C must be clearly identified or seen in the required form of $Ax + B + \frac{C}{2x-3}$

NMS scores B2 for one correct value, B3 for 2 correct values and B4 for all three correct values

(b)
$$\int \frac{3+13x-6x^2}{2x-3} dx = \int -3x + 2 + \frac{9}{2x-3} dx$$

$$= px^2 + qx + r \ln(2x - 3)$$

$$= -\frac{3}{2}x^2 + 2x + \frac{9}{2}\ln(2x - 3)$$
Correct use of $F(6) - F(3)$

$$= \left[-\frac{3}{2} \cdot 6^2 + 2 \cdot 6 + \frac{9}{2}\ln(12 - 3) \right]$$

$$- \left[-\frac{3}{2} \cdot 3^2 + 2 \cdot 3 + \frac{9}{2}\ln(6 - 3) \right]$$

$$= -\frac{69}{2} + \frac{9}{2}\ln 3$$
M1
$$\frac{A}{2}x^2 + Bx + \frac{c}{2}\ln(2x - 3)$$
Correct substitution of limits for their p, q and r .
$$\frac{A}{2}x^2 + Bx + \frac{c}{2}\ln(2x - 3)$$

$$= \frac{A}{2}x^2 + Bx + \frac{c}{2}\ln(2x - 3)$$

$$= \frac{A}{2}x^2$$

The **M1 A1ft** and **m1** can be earned even if left in terms of *A*, *B* and *C* or if 'invented' value(s) for *A*, *B* and *C* are used

Condone missing brackets from the $\ln(2x-3)$ term for the **M1** mark but **only** award the **A1ft** mark if they have clearly recovered; PI by sight of $\ln 9$ or $\ln 3$ after using the limits or a correct final answer. Treat a decimal answer (should be-29.55 ...) after a correct exact form as ISW but award **A0** if an **exact** answer is not seen.

- It is given that $f(x) = \frac{19x 2}{(5 x)(1 + 6x)}$ can be expressed as $\frac{A}{5 x} + \frac{B}{1 + 6x}$, where A and B are integers.
 - (a) Find the values of A and B.

[3 marks]

(b) Hence show that $\int_0^4 f(x) dx = k \ln 5$, where k is a rational number.

[6 marks]

1. Given that

$$\frac{4x^3 - 6x^2 - 18x + 20}{x^2 - 4} \equiv ax + b + \frac{c}{x - 2} \qquad x \neq \pm 2$$

find the values of the constants a, b and c.

(4)

Q1	Solution	Mark	Total	Comment
(a)	19x - 2 = A(1+6x) + B(5-x)	M1		Correct equation and attempt to find a value for A or B .
	A=3	A1		
	B = -1	A1	3	NMS or cover up rule; A or B correct SC2 A and B correct SC3.
/b\	2 1			
(b)	$\int \frac{3}{5-x} - \frac{1}{1+6x} \mathrm{d}x$			
	$= p \ln \left(5 - x\right) + q \ln \left(1 + 6x\right)$	M1		OE Either term in a correct form
	$=-3\ln(5-x)$	A1ft		ft on their A
	$-\frac{1}{6}\ln(1+6x)$	A1ft		ft on their B
	$\int_{0}^{4} = \left[-3\ln 1 - \frac{1}{6}\ln 25 \right] - \left[-3\ln 5 - \frac{1}{6}\ln 1 \right]$ $= -\frac{1}{6}\ln 25 + 3\ln 5$	m1		Substitute limits correctly in their integral; $F(4) - F(0)$
	$\int_{0}^{0} = -\frac{1}{6} \ln 25 + 3 \ln 5$	A1		ACF. ln1=0 PI
	$=\frac{8}{3}\ln 5$			CSO Condone equivalent fractions or recurring
	3	A1	6	decimal

1	Way 1	Way 2	
1	<u>Way 1</u>	<u>Way 2</u>	
	$x^{2} + 0x - 4$) $4x^{3} - 6x^{2} - 18x + 20$	$(x+2) \overline{\smash{\big)}\ 4x^3 - 6x^2 - 18x + 20}$	
		x+2)4x - 6x - 18x + 20	
	$4x^3 + 0x^2 - 16x$	$4x^3 + 8x^2$	M1
	$-6x^2 - 2x + 20$	$-14x^2 - 18x + 20$	A1
	$-6\underline{x^2+0x+24}$	$-14x^2 - 28x$	
	-2x-4	10x + 20	
		10x + 20	
		$(x-2)$ $\frac{4x-6}{4x^2-14x+20}$	
	$4x^3 - 6x^2 - 18x + 20$		
	$x^{2}-4$	$4x^2 - 8x^2$	M1
	$\equiv 4x-6+\frac{-2x-4}{(x+2)(x-2)}$	-6x + 20	1411
	$\equiv 4x - 6 + \frac{1}{(x+2)(x-2)}$	-6x+12	
		$\frac{}{-2}$	
	$\equiv 4x - 6 - \frac{2}{(x - 2)^2}$	2)	Al
			(4)