$$x = 3e^t$$
, $y = e^{2t} - e^{-2t}$

(a) (i) Find $\frac{dy}{dx}$ in terms of t.

[2 marks]

(ii) The point P, where t=0, lies on the curve. The tangent at P crosses the y-axis at the point Q. Find the coordinates of Q.

[3 marks]

(b) Show that the Cartesian equation of the curve can be written in the form

$$kx^2y = (x^2 - k)(x^2 + k)$$

where k is an integer.

[3 marks]

1 A curve is defined by the parametric equations

$$x = (t-1)^3$$
, $y = 3t - \frac{8}{t^2}$ $t \neq 0$

(a) Find $\frac{dy}{dx}$ in terms of t.

[3 marks]

(b) Find the equation of the normal at the point on the curve where t=2, giving your answer in the form ax+by+c=0, where a, b and c are integers.

[3 marks]

Q 5	Solution	Mark	Total	Comment
(a)(i)	$x = 3e^t \qquad y = e^{2t} - e^{-2t}$			
	When $t = 0$, $P \text{ is } (3,0)$			
	$\frac{dx}{dt} = 3e^t \qquad \frac{dy}{dt} = 2e^{2t} + 2e^{-2t}$	B1		Both correct
	$\frac{dy}{dx} = \frac{2e^{2t} + 2e^{-2t}}{3e^t}$	B1ft	2	From $\frac{dx}{dt} = ae^t$ and $\frac{dy}{dt} = be^{2t} + ce^{-2t}$
(ii)	When $t = 0$, $\frac{dy}{dx} = \frac{4}{3}$	B1		From correct work
	Tangent at P is $y-0=\frac{4}{3}(x-3)$	M1		Using their $\frac{4}{3}$ and their co-ordinates of P
	Q is (0,-4))	A1	3	CSO but allow $x = 0, y = -4$ seen
	Candidates may get a form of the Cartesian marks for part (b) if no work attempted then		n in eithe	er (a)(i) or (ii). In this case they could earn
(b)	From $x = 3e^t$ $e^{2t} = \frac{x^2}{9}$ or $\left(\frac{x}{3}\right)^2$ OE	В1		or $t = \ln\left(\frac{x}{3}\right)$ PI later
	$y = \left(\frac{x}{3}\right)^2 - \left(\frac{x}{3}\right)^{-2}$ $y = \frac{x^2}{9} - \frac{9}{x^2}$	M1		Finding a correct Cartesian equation. ACF e.g. $y = e^{2\ln\left(\frac{x}{3}\right)} - e^{-2\ln\frac{x}{3}}$
	$9x^{2}y = x^{4} - 81$ $9x^{2}y = (x^{2} - 9)(x^{2} + 9)$	A 1	3	Format given – be convinced.
(a)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t} = \right) 3(t-1)^2$	B1		ACF e.g. $3t^2 - 6t + 3$
	$\left(\frac{\mathrm{d}y}{\mathrm{d}t} = \right) \qquad 3 + 16t^{-3}$	B1		ACF
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3 + 16t^{-3}}{3(t-1)^2}$	B1ft	3	ACF: must see $\frac{dy}{dx} = \cdots$ but ft on their $\frac{dy}{dx}/dt$ provided numerator is of the form $3 \pm kt^{-3}$ and denominator is a quadratic in t .
	Accept missing $\frac{dx}{dt}$ and/or $\frac{dy}{dt}$ or poor notation	but must s	$see \frac{dy}{dx} = .$	on final line
	If answer left as the product $\frac{1}{3(t-1)^2} \times 3 + 16$ in part (b).	t^{-3} with	missing b	prackets then B0(ft) but can score the next B1
(b)	At $t = 2$, $m = \frac{3 + \frac{16}{8}}{3 \times 1^2} = \frac{5}{3}$	B1		From a correct $\frac{dy}{dx}$. PI by next line.
	Gradient of normal $= -\frac{3}{5}$ (Normal is) $y - 4 = -\frac{3}{5}(x - 1)$	M1		Use of their $-\frac{1}{m}$ with $x = 1$ and $y = 4$.

Α1

An answer such as 0 = -10y - 6x + 46 would score **A1** but 5y = -3x + 23 or 3x + 5y = 23 is **A0**.

If y = mx + c is used they must use x = 1 and y = 4 to find a value for c to earn the M1 mark.

3

Integer coefficients with all terms on one side (in any order) and = 0 on the other.

3x + 5y - 23 = 0

$$x = \frac{4 - e^{2-6t}}{4}, \quad y = \frac{e^{3t}}{3t}, \quad t \neq 0$$

(a) Find the exact value of $\frac{dy}{dx}$ at the point on C where $t = \frac{2}{3}$.

[5 marks]

(b) Show that $x = \frac{4 - e^{2 - 6t}}{4}$ can be rearranged into the form $e^{3t} = \frac{e}{2\sqrt{(1 - x)}}$.

[2 marks]

(c) Hence find the Cartesian equation of C, giving your answer in the form

$$y = \frac{e}{f(x)[1 - \ln(f(x))]}$$

[2 marks]

Q7	Solution	Mark	Total	Comment
(a)	$\left(\frac{dx}{dt}\right) = -(-6)\frac{e^{2-6t}}{4}$	B1		$ACF: \frac{3}{2}e^{2-6t}$
	$\left(\frac{dy}{dt}\right) = \frac{pe^{3t} \cdot t + qe^{3t}}{(3t)^2}$	M1		From quotient rule
	$=\frac{3e^{3t}.3t - e^{3t}.3}{(3t)^2}$	A1		ACF: $\frac{9te^{3t}-3e^{3t}}{9t^2}$, $\frac{e^{3t}}{t} - \frac{e^{3t}}{3t^2}$ etc.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(9.\frac{2}{3}.e^2 - 3e^2)/4}{\frac{3}{2}e^{-2}}$	m1		Using $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ and clear evidence of an attempt to substitute $t = \frac{2}{3}$ (must be
	$= \frac{1}{2} e^4$	A1	5	this) done in either order. CAO : Accept this or $\frac{e^4}{2}$ or $0.5e^4$ only
(b)	$x = \frac{4 - e^{2 - 6t}}{4} \Rightarrow 4x = 4 - e^{2 - 6t}$ leading to			
	$e^{-6t} = \frac{4 - 4x}{e^2}$	M1		Any correct expression for e^{-6t} or e^{6t} .
	$e^{6t} = \frac{e^2}{4(1-x)}$			
	$e^{3t} = \frac{e}{2\sqrt{1-x}}$	A1	2	AG Must see inversion step and be convinced they haven't worked backwards
(c)	From (b) $e^{3t} = \frac{e}{2\sqrt{1-x}}$			
	$\ln(e^{3t}) = \ln\left(\frac{e}{2\sqrt{1-x}}\right)$			
	$3t = \ln e - \ln(2\sqrt{1-x})$	M1		Find $3t$ (or t) in terms of x ; must have used laws of logs correctly on both sides (possibly $\ln e = 1$ at this stage)
	$y = \frac{e}{2\sqrt{1-x}\left[1 - \ln 2\sqrt{1-x}\right]}$	A1	2	From $y = \frac{e^{3t}}{3t}$; must be in this form
I	1	ı	1	1

5 A curve is defined by the parametric equations $x = \cos 2t$, $y = \sin t$.

The point P on the curve is where $t = \frac{\pi}{6}$.

(a) Find the gradient at P.

[3 marks]

(b) Find the equation of the normal to the curve at P in the form y = mx + c.

[3 marks]

(c) The normal at P intersects the curve again at the point $Q(\cos 2q, \sin q)$.

Use the equation of the normal to form a quadratic equation in $\sin q$ and hence find the *x*-coordinate of Q.

[5 marks]

Q5	Solution	Mark	Total	Comment
(a)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t} = \right) - 2\sin 2t \qquad \left(\frac{\mathrm{d}y}{\mathrm{d}t} = \right)\cos t$	B1		Both correct
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right) \frac{\cos t}{-2\sin 2t}$	M1		Correct use of chain rule with their derivatives of form $a \sin 2t$, $b \cos t$
	At $t = \frac{\pi}{6}$ gradient $m_{\rm T} = -\frac{1}{2}$	A1	3	
(b)	Gradient of normal $m_{\rm N} = 2$	B1ft		ft gradient of tangent; $m_{\rm N} = \frac{-1}{m_{\rm T}}$
	$\left(y - \cos\left(\frac{2\pi}{6}\right)\right) = m_{\rm N} \left(x - \sin\left(\frac{\pi}{6}\right)\right)$	M1		For $m_{\rm N}$, allow their $m_{\rm T}$ with a change of sign or the reciprocal at $\left(\sin\frac{\pi}{6},\cos\frac{2\pi}{6}\right)$ or $\left(\frac{1}{2},\frac{1}{2}\right)$
	$y = 2x - \frac{1}{2}$	A1	3	Must be in this $y = mx + c$ form
	Alternative for M1			
	$\sin\left(\frac{\pi}{6}\right) = 2\cos\left(\frac{2\pi}{6}\right) + c$			Use $y = mx + c$ to find c with their gradient m_N at $\left(\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$
(c)	$\cos 2q = 1 - 2\sin^2 q$	B1		Seen or used in this form
	$\sin q = 2\left(1 - 2\sin^2 q\right) - \frac{1}{2}$	M1		Use parametric equations and candidate's $\cos 2q$ in the form $\pm 1 + k \sin^2 q$
	$8\sin^2 q + 2\sin q - 3 = 0 \qquad \mathbf{OE}$	A1		Collect like terms; must be a quadratic equation
	$\left(\sin q = \frac{1}{2}\right) \qquad \sin q = -\frac{3}{4}$	A1		Must come from a correct quadratic equation with the previous 3 marks awarded
	$(x=) -\frac{1}{8}$	A1	5	Previous 4 marks must have been awarded
	Total		11	

7. The curve C has parametric equations

$$x = -3 + 6\sin\theta$$
 $y = 4\sqrt{3}\cos 2\theta$ $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$

where θ is a parameter.

(a) Find an expression for
$$\frac{dy}{dx}$$
 in terms of θ .

The curve C cuts the y-axis at the point A.

The line l is the normal to C at the point A.

(b) Show that an equation for l is

$$\sqrt{3}x - 4y + 8\sqrt{3} = 0 \tag{6}$$

(6)

The line l intersects the curve C again at the point B.

(c) Find the coordinates of B. Give your answer in the form $(p, q\sqrt{3})$, where p and q are rational constants.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

	$dv = (2)(4)\sqrt{3}\sin 2\theta$ $= 4\sqrt{3}\sin 2\theta$ 8 =)	their $\frac{dy}{d\theta}$ ÷ their $\frac{dx}{d\theta}$	M1
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-(2)(4)\sqrt{3}\sin 2\theta}{6\cos \theta} \left\{ = \frac{-4\sqrt{3}\sin 2\theta}{3\cos \theta} = -\frac{8}{3}\sqrt{3}\right\}$	$\sin heta \bigg\}$	Correct simplified or un-simplified result	A1 isw
				(2
(b)	$\{x = 0 \Rightarrow\} 0 = -3 + 6\sin\theta \Rightarrow \sin\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}$	Sets	$x = 0$ to find θ or $\sin \theta$ and uses their θ or $\sin \theta$ to find y	M1
	$y_A = 4\sqrt{3}\cos\left(\frac{\pi}{3}\right) = 2\sqrt{3} \ \{ \Rightarrow A(0, 2\sqrt{3}) \}$		$y_A = 2\sqrt{3}$ or $\sqrt{12}$ or awrt 3.46	A1
	$m_T = \frac{dy}{dx} = \frac{-4\sqrt{3}\sin(2(\frac{\pi}{6}))}{3\cos(\frac{\pi}{6})} = \frac{-4\sqrt{3}(\frac{\sqrt{3}}{2})}{3(\frac{\sqrt{3}}{2})} = -\frac{4\sqrt{3}}{3}$	$= -\frac{4}{\sqrt{3}}$	Substitutes $\theta = \frac{\pi}{6}$ or 30° or $\sin \theta = \frac{1}{2}$ into their $\frac{dy}{dx}$. Can be implied.	Ml
	So, $m_N = \frac{3}{4\sqrt{3}}$ or $\frac{\sqrt{3}}{4}$	C	Correctly applies $m_N = -\frac{1}{\text{their } m_T}$	
	• $y - 2\sqrt{3} = \frac{\sqrt{3}}{4}(x - 0)$ • $y = \frac{\sqrt{3}}{4}x + 2\sqrt{3}$	<i>y</i> -	- (their y_A) = (their m_N)($x - 0$) or $y =$ (their m_N) $x +$ (their y_A) with a numerical $m_N (\neq m_T)$	M1
	$4y - 8\sqrt{3} = \sqrt{3}x \Rightarrow \sqrt{3}x - 4y + 8\sqrt{3} = 0 *$		A1*	
				(6
			,	
(c) Vay 1	$\sqrt{3}(-3+6\sin\theta)-4(4\sqrt{3}\cos 2\theta)+8\sqrt{3}=0$	$y = 4\sqrt{3}$	M1	
			to form an equation in θ only	
	$-3 + 6\sin\theta - 16\cos 2\theta + 8 = 0$			
	$-3 + 6\sin\theta - 16(1 - 2\sin^2\theta) + 8 = 0$	dep	endent on the previous M mark Applies $\cos 2\theta = 1 - 2\sin^2 \theta$	dM1
	$32\sin^2\theta + 6\sin\theta - 11 = 0 \text{ or } 32\sin^2\theta + 6\sin\theta =$	11	Correct 3TQ in $\sin \theta$ e.g. $32\sin^2 \theta + 6\sin \theta - 11 \{=0\}$	A1
	$(2\sin\theta - 1)(16\sin\theta + 11) = 0 \implies \sin\theta = \dots$		dependent on the first M mark Correct method (e.g. factorising, applying the quadratic formula, mpleting the square or calculator) f solving a 3TQ to give $\sin \theta =$	dM1
	$\left\{\sin\theta = \frac{1}{2}\right\} \sin\theta = -\frac{11}{16}$			
	So, $B(x, y) = B\left(-\frac{57}{8}, \frac{7}{32}\sqrt{3}\right)$		Either x or y is correct	Al o.e.
	(8 32)		Both x and y are correct	Al o.e.
				(6

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 1 + t - 5\sin t, \quad y = 2 - 4\cos t, \quad -\pi \leqslant t \leqslant \pi$$

The point A lies on the curve C.

Given that the coordinates of A are (k, 2), where k > 0

(a) find the exact value of k, giving your answer in a fully simplified form.

(b) Find the equation of the tangent to C at the point A. Give your answer in the form y = px + q, where p and q are exact real values. (5)

(2)

5.	$x = 1 + t - 5\sin t, \ y = 2 - 4\cos t, \ -\pi \leqslant t \leqslant \pi$	A(k, 2), k	$\tau > 0$, lies or	1 <i>C</i>		
(a)	{When $y = 2$,} $2 = 2 - 4\cos t \Rightarrow t = -\frac{\pi}{2}, \frac{\pi}{2}$ $k(\text{or } x) = 1 + \frac{\pi}{2} - 5\sin\left(\frac{\pi}{2}\right)$ or $k(\text{or } x) = 1 - \frac{\pi}{2} - 5\sin\left(\frac{\pi}{2}\right)$		$\left(-\frac{\pi}{2}\right)$	and some e	is $y = 2$ to find t vidence of using in t to find $x =$	M1
	$\left\{ \text{When } t = -\frac{\pi}{2}, \ k > 0, \right\} \text{ so } k = 6 - \frac{\pi}{2} \text{ or } \frac{12}{2}$	$\frac{-\pi}{2}$		$k ext{ (or } x) = 0$	$6 - \frac{\pi}{2}$ or $\frac{12 - \pi}{2}$	A1
						[2]
(b)	$\frac{dx}{dt} = 1 - 5\cos t, \frac{dy}{dt} = 4\sin t$	At least o	ne of $\frac{\mathrm{d}x}{\mathrm{d}t}$ or	$\frac{\mathrm{d}y}{\mathrm{d}t}$ correct ((Can be implied)	B1
(b)	$\frac{-1}{dt} = 1 - 3\cos t, \frac{-1}{dt} = 4\sin t$	Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct (Can be implied)			B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4\sin t}{1 - 5\cos t}$	A	pplies their	$\frac{\mathrm{d}y}{\mathrm{d}t}$ divided	I by their $\frac{\mathrm{d}x}{\mathrm{d}t}$ and	
	at $t = -\frac{\pi}{2}$, $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4\sin\left(-\frac{\pi}{2}\right)}{1 - 5\cos\left(-\frac{\pi}{2}\right)} \{= -4\}$]			eir t into their $\frac{dy}{dx}$ side $-\pi \leqslant t \leqslant \pi$ for this mark	M1
	• $y-2=-4\left(x-\left(6-\frac{\pi}{2}\right)\right)$ • $2=(-4)\left(6-\frac{\pi}{2}\right)+c \Rightarrow y=-4x+2+4$	$2 = -4\left(x - \left(6 - \frac{\pi}{2}\right)\right)$ $(-4)\left(6 - \frac{\pi}{2}\right) + c \implies y = -4x + 2 + 4\left(6 - \frac{\pi}{2}\right)$	Correct straight line method fo an equation of a tangent wher $m_T \ (\neq m_N)$ is found using calculu Note: their k (or x) mus be in terms of π and correct		t line method for a tangent where ad using calculus neir k (or x) must of π and correct	M1
	$\{y-2=-4x+24-2\pi \Rightarrow\} y=-4x+26$	-2π	bracke	dependent m	e used or implied t on all previous arks in part (b)	Al cso
					$=-4x+26-2\pi$	
				(p = -	4, $q = 26 - 2\pi$)	[5]
						7

1. The curve *C* has parametric equations

$$x = 3t - 4$$
, $y = 5 - \frac{6}{t}$, $t > 0$

(a) Find
$$\frac{dy}{dx}$$
 in terms of t (2)

The point *P* lies on *C* where $t = \frac{1}{2}$

(b) Find the equation of the tangent to C at the point P. Give your answer in the form y = px + q, where p and q are integers to be determined.

(3)

(c) Show that the cartesian equation for C can be written in the form

$$y = \frac{ax+b}{x+4}, \quad x > -4$$

where a and b are integers to be determined.

(3)

			The state of the s	
1.	$x = 3t - 4$, $y = 5 - \frac{6}{t}$, $t > 0$			
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3, \frac{\mathrm{d}y}{\mathrm{d}t} = 6t^{-2}$			
	$\frac{dy}{dx} = \frac{6t^{-2}}{3} \left\{ = \frac{6}{3t^2} = 2t^{-2} = \frac{2}{t^2} \right\}$	or the	their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ to give $\frac{dy}{dx}$ in terms of t eir $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$ to give $\frac{dy}{dx}$ in terms of t	M1
		$\frac{6t^{-2}}{3}$	-, simplified or un-simplified, in terms of <i>t</i> . See note.	A1 isw
	Award Special Case 1st M1 if	both -	$\frac{dx}{dt}$ and $\frac{dy}{dt}$ are stated correctly and explicitly.	[2]
(b)	$\left\{t = \frac{1}{2} \Rightarrow\right\} P\left(-\frac{5}{2}, -7\right)$		$x = -\frac{5}{2}$, $y = -7$ or $P\left(-\frac{5}{2}, -7\right)$ seen or implied.	В1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\left(\frac{1}{2}\right)^2} \text{and either}$		Some attempt to substitute $t = 0.5$ into their $\frac{dy}{dx}$	
	• $y - "-7" = "8" \left(x - "-\frac{5}{2}"\right)$		which contains t in order to find m_T and either	
	\ 2 /		applies $y - (\text{their } y_p) = (\text{their } m_T)(x - \text{their } x_p)$	M1
	• "-7" = ("8")("- $\frac{5}{2}$ ") + c		or finds c from (their y_p) = (their m_T)(their x_p) + c	
	So, $y = (\text{their } m_{\text{T}})x + "c"$		and uses their numerical c in $y = (\text{their } m_T)x + c$	
	T : $y = 8x + 13$		y = 8x + 13 or $y = 13 + 8x$	A1 cso
	Note: their x_p , their y_p and the	eir m_T	must be numerical values in order to award M1	[3]
(c)	$\begin{cases} t = \frac{x+4}{3} \implies v = 5 - \frac{6}{3} \end{cases}$		An attempt to eliminate t. See notes.	M1
Way 1	$\left\{ t = \frac{x+4}{3} \implies \right\} y = 5 - \frac{6}{\left(\frac{x+4}{3}\right)}$		Achieves a correct equation in x and y only	Al o.e.
	$y = 5 - \frac{18}{x+4}$ $y = \frac{5(x+4)}{x+4}$	<u>-18</u>		
	So, $y = \frac{5x+2}{x+4}$, $\{x > -4\}$		$y = \frac{5x + 2}{x + 4}$ (or implied equation)	A1 cso
				[3]

Diagram not drawn to scale

Figure 4

Figure 4 shows a sketch of part of the curve C with parametric equations

$$x = 3\theta \sin \theta$$
, $y = \sec^3 \theta$, $0 \leqslant \theta < \frac{\pi}{2}$

The point P(k, 8) lies on C, where k is a constant.

(a) Find the exact value of k.

(2)

The finite region R, shown shaded in Figure 4, is bounded by the curve C, the y-axis, the x-axis and the line with equation x = k.

(b) Show that the area of R can be expressed in the form

$$\lambda \int_{\alpha}^{\beta} \left(\theta \sec^2 \theta + \tan \theta \sec^2 \theta\right) d\theta$$

where λ , α and β are constants to be determined.

(4)

(c) Hence use integration to find the exact value of the area of R.

(6)

(a)	{When $y = 8$,} $8 = \sec^3 \theta \Rightarrow \cos^3 \theta$ $k \text{ (or } x) = 3\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{3}\right)$	$\theta = \frac{1}{8} \Rightarrow$	$\cos\theta = \frac{1}{2}$	$\Rightarrow \theta = \frac{\pi}{3}$	Sets $y = 8$ to find θ and attempts to substitute their θ into $x = 3\theta \sin \theta$	M1
	so k (or x) = $\frac{\sqrt{3}\pi}{2}$		7 41 4	4:41	$\frac{\sqrt{3}\pi}{2} \text{ or } \frac{3\pi}{2\sqrt{3}}$	Al
		value for i	k without ac	ecepting the	correct value is final A0	[2]
(b)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sin\theta + 3\theta\cos\theta$		$3\theta \sin \theta \rightarrow 3\sin \theta + 3\theta \cos \theta$ Can be implied by later weeking			B1
	$\left\{ \int y \frac{\mathrm{d}x}{\mathrm{d}\theta} \left\{ \mathrm{d}\theta \right\} \right\} = \int (\sec^3 \theta) (3\sin^3 \theta)$	$\theta + 3\theta \cos$	θ) $\left\{\mathrm{d} heta ight\}$		Can be implied by later working Applies $\left(\pm K \sec^3 \theta\right) \left(\text{their } \frac{dx}{d\theta}\right)$ Ignore integral sign and $d\theta$; $K \square 0$	M1
	$= 3 \theta \sec^2 \theta + \tan \theta \sec^2 \theta d\theta$			the correct r	esult no errors in their working, e.g. bracketing or manipulation errors. al sign and $d\theta$ in their final answer.	A1 *
	$x = 0$ and $x = k \implies \underline{\alpha} = 0$ and			3	or evidence of $0 \to 0$ and $k \to \frac{\pi}{3}$	B1
	Note: The wor	k for the fi	nal B1 mar		en in part (b) only.	[4]
(c)		$g(\theta) = \text{their } [\sec^2 \theta d\theta. [\text{Note: } g(\theta) \square \sec^2 \theta]]$				
Way 1	$\left\{ \boxed{\theta} \sec^2 \theta d\theta \right\} = \theta \tan \theta - \boxed{\tan \theta} \left\{ d\theta \right\}$ Eit		Eithe	dependent on the previous M mark Either $\lambda\theta\sec^2\theta \to A\theta\tan\theta - B\int\tan\theta$, $A>0$, $B>0$ or $\theta\sec^2\theta \to \theta\tan\theta - \int\tan\theta$		
	$= \theta \tan \theta - \ln(\sec \theta)$		Asa	$a^2 \theta \rightarrow \theta \tan \theta$	θ $\ln(\cos\theta)$ or $\theta \tan\theta + \ln(\cos\theta)$ or	
	$\mathbf{or} = \theta \tan \theta + 1$	$n(\cos\theta)$	$\theta \sec^2 \theta \rightarrow \theta \tan \theta - \ln(\sec \theta) \text{ or } \theta \tan \theta + \ln(\cos \theta) \text{ or}$			
			70 see 0 770 tano 71 m(see 0) or 70 tano 170 m(eoso)			A1
	Note: Condone θ	$\sec^2\theta \to$	$\theta \tan \theta - \ln(\theta)$	$\sec x$) or θ t	$\tan \theta + \ln(\cos x)$ for A1	
	$\left\{ \boxed{\tan \theta \sec^2 \theta d\theta} \right\}$		tan θ sec	² θ or λtan	$\theta \sec^2 \theta \to \pm C \tan^2 \theta \text{ or } \pm C \sec^2 \theta$ or $\pm C u^{-2}$, where $u = \cos \theta$	M1
	$= \frac{1}{2} \tan^2 \theta \text{ or } \frac{1}{2} \sec^2 \theta$	$\tan \theta$ sec			$e^2 \theta$ or $\frac{1}{2\cos^2 \theta}$ or $\tan^2 \theta - \frac{1}{2}\sec^2 \theta$	
	or $\frac{1}{2u^2}$ where $u = \cos \theta$ or $\frac{1}{2}u^2$ where $u = \tan \theta$		or λ	$\tan \theta \sec^2 \theta$ -	$u = \cos \theta \text{ or } 0.5u^2, \text{ where } u = \tan \theta$ $\Rightarrow \frac{\lambda}{2} \tan^2 \theta \text{ or } \frac{\lambda}{2} \sec^2 \theta \text{ or } \frac{\lambda}{2\cos^2 \theta}$	A1
	4		or $0.5\lambda u^{-}$, where $u =$	$=\cos\theta \text{ or } 0.5\lambda u^2, \text{ where } u = \tan\theta$	
	$\left\{\operatorname{Area}(R)\right\} = \left[3\theta \tan \theta - 3\ln(\sec \theta) + \right]$	$\frac{3}{2}\tan^2\theta\bigg]_0^{\frac{\pi}{3}}$	or $\int 3\theta \tan \theta$	$-3\ln(\sec\theta)$ +	$\frac{3}{2}\sec^2\theta\bigg]_0^{\frac{\pi}{3}}$	
	$= \left(3\left(\frac{\pi}{3}\right)\sqrt{3} - 3\ln 2 + \frac{3}{2}\right)$	(3)) - (0)	or $\left(3\left(\frac{\pi}{3}\right)\right)$	$\sqrt{3} - 3 \ln 2 + \frac{3}{2}$	$(4) \left) - \left(\frac{3}{2}\right)$	
	$=\frac{9}{2}+\sqrt{3}\pi-3\ln 2$	or $\frac{9}{2} + \sqrt{3}$	$\pi + 3\ln\left(\frac{1}{2}\right)$	or $\frac{9}{2} + \sqrt{3}z$	$\pi - \ln 8$ or $\ln \left(\frac{1}{8} e^{\frac{9}{2} + \sqrt{5}\pi} \right)$	Al o.e.

Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 4\tan t$$
, $y = 5\sqrt{3}\sin 2t$, $0 \leqslant t < \frac{\pi}{2}$

The point *P* lies on *C* and has coordinates $\left(4\sqrt{3}, \frac{15}{2}\right)$.

(a) Find the exact value of $\frac{dy}{dx}$ at the point P.

Give your answer as a simplified surd.

The point Q lies on the curve C, where $\frac{dy}{dx} = 0$

(b) Find the exact coordinates of the point Q.

(2)

(4)

	1	Either both <i>x</i> and <i>y</i> are differentiated correctly with respect to <i>y</i>	
(a) Way 1	$\frac{\mathrm{d}x}{\mathrm{d}t} = 4\sec^2 t, \ \frac{\mathrm{d}y}{\mathrm{d}t} = 10\sqrt{3}\cos 2t$	or their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10\sqrt{3}\cos 2t}{4\sec^2 t} \left\{ = \frac{5}{2}\sqrt{3}\cos 2t\cos^2 t \right\}$	or applies $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$	
	$\frac{1}{2} dx - 4 \sec^2 t \qquad \left[\frac{1}{2} \cos^2 t \cos^2 t \cos^2 t \right]$	Correct $\frac{dy}{dx}$ (Can be implied)	
	$\left\{ \text{At } P\left(4\sqrt{3}, \frac{15}{2}\right), \ t = \frac{\pi}{3} \right\}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10\sqrt{3}\cos\left(\frac{2\pi}{3}\right)}{4\sec^2\left(\frac{\pi}{3}\right)}$	dependent on the previous M mark Some evidence of substituting	.
	$\frac{dx}{dx} = \frac{1}{4\sec^2\left(\frac{\pi}{3}\right)}$	$t = \frac{\pi}{3}$ or $t = 60^{\circ}$ into their $\frac{dy}{dx}$	dM1
	dy 5 /2 or = 15	$-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$	16 16√3 from a correct solution only	,
(b)	$\left\{10\sqrt{3}\cos 2t = 0 \Rightarrow t = \frac{\pi}{4}\right\}$		1.1
		At least one of either $x = 4 \tan \left(\frac{\pi}{4} \right)$ or	
	So $x = 4 \tan \left(\frac{\pi}{4} \right)$, $y = 5\sqrt{3} \sin \left(2 \left(\frac{\pi}{4} \right) \right)$	$y = 5\sqrt{3}\sin\left(2\left(\frac{\pi}{4}\right)\right)$ or $x = 4$ or $y = 5\sqrt{3}$	
		$y = 3\sqrt{3} \sin\left(2\left(\frac{\pi}{4}\right)\right)$ or $x = 4$ or $y = 3\sqrt{3}$ or $y = \text{awrt } 8.7$	
	Coordinates are $(4, 5\sqrt{3})$	$(4, 5\sqrt{3}) \text{ or } x = 4, y = 5\sqrt{3}$	Al
	, , , , , , , , , , , , , , , , , , ,	, ,	[2]
(ii) (a) Way 1	$\left\{ x = 4\sin^2\theta \Rightarrow \right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 8\sin\theta\cos\theta \text{or} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 4\sin\theta\cos\theta$	$\sin 2\theta$ or $dx = 8\sin\theta\cos\theta d\theta$	B1
	$\int \sqrt{\frac{4\sin^2\theta}{4 - 4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \left\{ d\theta \right\} \text{or} \int \sqrt{\frac{4\sin^2\theta}{4 - 4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \left\{ d\theta \right\}$	$\frac{\theta}{\ln^2 \theta}$. $4\sin 2\theta \left\{ d\theta \right\}$	M1
	$= \int \underline{\tan \theta} \cdot 8 \sin \theta \cos \theta \left\{ d\theta \right\} \text{ or } \int \underline{\tan \theta} \cdot 4 \sin 2\theta \left\{ d\theta \right\}$	θ $\sqrt{\left(\frac{x}{4-x}\right)} \to \pm K \tan \theta \text{ or } \pm K \left(\frac{\sin \theta}{\cos \theta}\right)$	<u>M1</u>
	$= \int 8\sin^2\theta d\theta$	$\int 8\sin^2\theta d\theta \text{including } d\theta$	A1
	$3 = 4\sin^2\theta$ or $\frac{3}{4} = \sin^2\theta$ or $\sin\theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = \frac{\pi}{3}$	Writes down a correct equation involving $x = 3$ leading to $\theta = \frac{\pi}{2}$ and	D1
	$\begin{cases} x = 0 \to \theta = 0 \end{cases}$	involving $x = 3$ leading to $\theta = \frac{\pi}{3}$ and no incorrect work seen regarding limits	B1
	$\int (1-\cos 2\theta)$	A	[5]
(ii) (b)	$= \left\{ 8 \right\} \int \left(\frac{1 - \cos 2\theta}{2} \right) d\theta \left\{ = \int \left(4 - 4 \cos 2\theta \right) d\theta \right\}$	Applies $\cos 2\theta = 1 - 2\sin^2 \theta$ to their integral. (See notes)	M1
	$= \left\{ 8 \right\} \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right) \left\{ = 4\theta - 2\sin 2\theta \right\}$	For $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha, \beta \neq 0$	M1
	$ = \{0\} \left(\frac{2\sigma - 4\sin 2\theta}{2} \right) \{ = 4\theta - 2\sin 2\theta \} $	$\sin^2\theta \to \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta\right)$	A1
	$\left\{ \int_0^{\frac{\pi}{3}} 8\sin^2\theta d\theta = 8 \left[\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right]_0^{\frac{\pi}{3}} \right\} = 8 \left(\left(\frac{\pi}{6} - \frac{1}{4} \right) \right)$	$\left(\frac{\sqrt{3}}{2}\right) - \left(0 + 0\right)$	

5. A curve *C* has parametric equations

$$x = 4t + 3$$
, $y = 4t + 8 + \frac{5}{2t}$, $t \neq 0$

(a) Find the value of $\frac{dy}{dx}$ at the point on C where t = 2, giving your answer as a fraction in its simplest form.

(3)

(b) Show that the cartesian equation of the curve C can be written in the form

$$y = \frac{x^2 + ax + b}{x - 3}, \quad x \neq 3$$

where a and b are integers to be determined.

(3)

5.	Note: You can mark parts (a) and (b) together.		
(a)	$x = 4t + 3, y = 4t + 8 + \frac{5}{2t}$		
	$\frac{dx}{dt} = 4, \frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$ Both $\frac{dx}{dt} = 4$ or $\frac{dt}{dx} = \frac{1}{4}$ and	$\frac{\mathrm{d}y}{\mathrm{d}t} = 4 - \frac{5}{2}t^{-2}$	B1
	So, $\frac{dy}{dx} = \frac{4 - \frac{5}{2}t^{-2}}{4} \left\{ = 1 - \frac{5}{8}t^{-2} = 1 - \frac{5}{8t^2} \right\}$ Candidate's $\frac{dy}{dt}$ divided by a	candidate's $\frac{\mathrm{d}x}{\mathrm{d}t}$	M1 o.e.
	{When $t = 2$, } $\frac{dy}{dx} = \frac{27}{32}$ $\frac{27}{32}$	or 0.84375 cao	A1
			[3
(b)	A = A = A = A = A = A = A = A = A = A =	ates t to achieve n in only x and y	M1
	$y = x - 3 + 8 + \frac{10}{x - 3}$		
	$y = \frac{(x-3)(x-3) + 8(x-3) + 10}{x-3} or y(x-3) = (x-3)(x-3) + 8(x-3) + 10$ $or y = \frac{(x+5)(x-3) + 10}{x-3} or y = \frac{(x+5)(x-3)}{x-3} + \frac{10}{x-3}$	See notes	dM1
		gebra leading to	
	$\Rightarrow y = \frac{x^2 + 2x - 5}{x - 3} , \{ a = 2 \text{ and } b = -5 \} $ $y = \frac{x^2 + 2x - 5}{x - 3} \text{ or } a$	a = 2 and $b = -5$	A1 cso
			[3