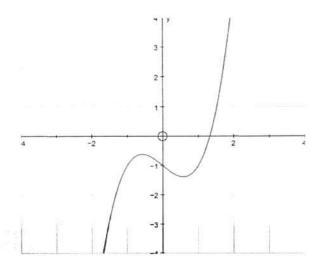
Pure Sector 4: Numerical Methods

Aims

- Locate roots of f(x) = 0 by considering changes of sign and understand when this method can fail.
- Solve equations approximately using simple iterative methods; draw associated cobweb and staircase diagrams.
- Solve equations using the Newton-Raphson method and other recurrence relations of the form xn + 1 = g(xn)

Bounds for Roots



If we are unable to solve an equation exactly, it is sometime useful to find approximate solutions. For example to solve $x^3 = x + 1$ we would rewrite it as $x^3 - x - 1 = 0$ and then try to factorise it. If we can't factorise then we could find approximate values for x where the graph crosses the x-axis. To do this we can sketch the graph to see how many roots (solutions) there are and roughly what the values of each root will be.

Locating a root allows us to say that a root lies between two values, these are called bounds. We can sketch a graph to do this or find bounds by change of sign. The change of sign method only works when the function is continuous. A continuous function does not change sign in an interval which contains an even number of roots.

If f(x) is **continuous** and changes sign between x = b and x = c, then the equation f(x) = 0 has a root α , where $b < \alpha < c$.

Example 1

Show that the equation $x^3 + x^2 + 3 = 0$ has a root between -1.8 and -1.9.

$$f(-1.8) = (-1.8)^3 + (-1.8)^2 + 3 = 0.408 > 0$$

 $f(-1.9) = (-1.9)^3 + (-1.9)^2 + 3 = -0.249 < 0$
 $f(\infty)$ is continuous and there is a change of sign: $-1.9 < \infty < -1.9$

Example 2

Find the integer bounds for any roots of the equation $x^3 - 1 = x$.

$$f(x) = x^3 - 1 - x$$

$$f(1) = 1^3 - 1 - 1 = -1 < 0$$

$$f(2) = 2^3 - 1 - 2 = 5 > 0$$

You first need to rearrange so f(x) = 0. If you have two equation f(x) - g(x) = 0.

fox) is continuous and there is a change of sign: 12x2

The curve $y = 3^x$ intersects the curve $y = 10 - x^3$ at the point where $x = \alpha$. Show that α lies between 1 and 2.

$$f(x) = 10 - x^3 - 3^x$$

$$f(1) = 10 - 1^3 - 3^1 = 6 > 0$$

$$f(2) = 10 - 2^3 - 3^2 = -7 < 0$$

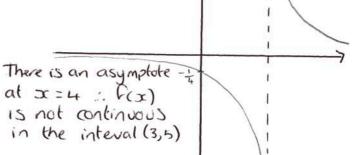
Pix) is continuous and there is a change of sign : 1<x<2

Example 4

$$f(x) = \frac{1}{x-4}, x \neq 4$$

- a) Show that there is a sign change across the interval (3,5)
- b) Using a suitable sketch, explain why this method is not appropriate.

a)
$$f(3) = \frac{1}{3-4} = -1 < 0$$
 b) $f(5) = \frac{1}{5-4} = 1 > 0$



Iteration

If an equation has a solution α , then you can use an interactive formula written as $x_{n+1} = g(x_n)$ to solve the equation numerically. If the starting point x_1 is close to α , then then iterative formula produces a sequence x_2, x_3, \dots which can converge to α .

Example 5

A sequence is defined by $x_{n+1} = \frac{x_n - 3}{1 + 2x_n}$, $x_1 = 2$. Find the values of x_2 , x_3 and x_4 .

$$x_1 = 2$$
 $x_2 = 2 - 3$
 $1 + 2(2)$

Example 6

 $x_3 = -16$
 $x_4 = 25$
 $x_4 = 25$

For each of the sequences, find the values of x_2 , x_3 and x_4 and state whether the sequence is convergent or divergent. If the sequence is convergent state the limit, L.

a)
$$x_{n+1} = 1 + 2x_n$$
, $x_1 = 5$

b)
$$x_{n+1} = \frac{5x_n+1}{1+2x_n}, x_1 = 2$$

a)
$$x_1 = 5$$

 $x_2 = 11$
 $x_3 = 23$
 $x_4 = 47$
 $x_4 = 47$
 $x_4 = 2.224$
Convergent $L = 2.22(35^6)$

a) Show that $x^3 - 3x - 5 = 0$ can be rearranged into the form $x = \sqrt[3]{3x + 5}$

$$x^3 = 3x + 5$$

$$x = 3\sqrt{3}x + 5$$

b) Using the iterative formula $x_{n+1} = \sqrt[3]{3x_n + 5}$, find a solution of $x^3 - 3x - 5 = 0$, correct to 3dp

$$x_b = 2.27862$$

$$x = 2.279 (3dp)$$

Example 8

a) Show that $f(x) = x^3 - 6x + 2$ has a root, α , between 0 and 1.

b) Show that the equation f(x)=0 can be rearranged into the form $x=\sqrt{\frac{6x-2}{x}}$ and comment on the suitability of the iterative formula $x_{n+1}=\sqrt{\frac{6x_n-2}{x_n}}$ with $x_1=0.5$ for estimating α .

$$x^{3}-6x + 2 = 0$$

$$x^{3} = 6x - 2$$

$$x^{2} = 6x - 2$$

$$x = 6x - 2$$

$$x_1 = 0.5$$
 $x_2 = 1.414$
 $x_3 = 2.141$
 $x_4 = 2.251$
 $x_8 = 2.262$

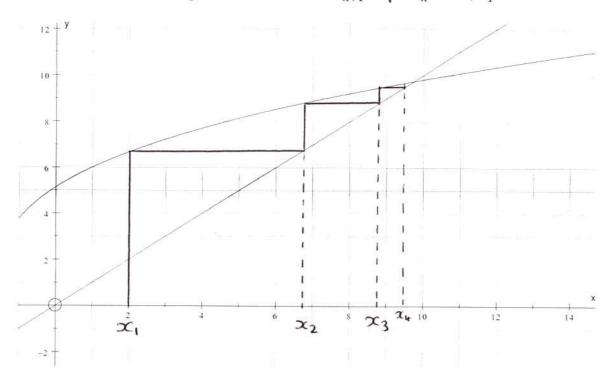
the family is not suitable as it converges on a different root not ∞ .

Cobweb and Staircase Diagrams

Example 8

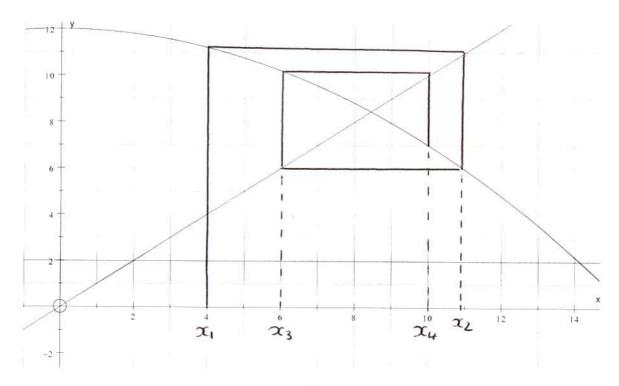
Always start by going up/down to the CURVE then across to the LINE then CURVE etc...

Solve $x^3 - 81x - 135 = 0$, using the iterative formula $x_{n+1} = \sqrt[3]{81x_n + 135}$, $x_1 = 2$



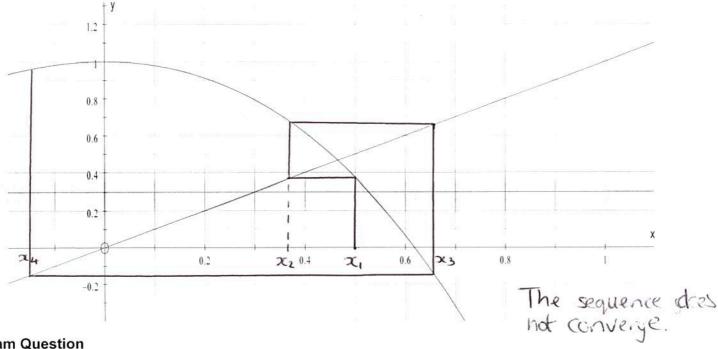
Example 9

Find out whether this sequence will converge from a starting point of $x_1=4$



The sequence will converge from x = 4

Find out whether this sequence will converge from a starting point of $x_1 = 0.5$



Exam Question

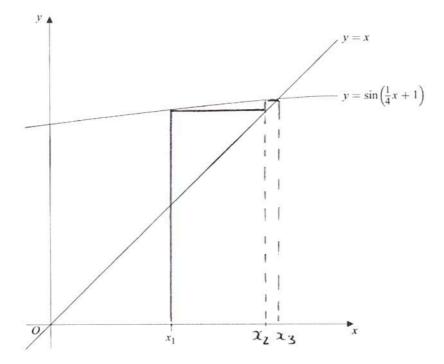
The equation $\sin^{-1} x = \frac{1}{4}x + 1$ can be rewritten as $x = \sin(\frac{1}{4}x + 1)$.

(i) Use the iteration $x_{n+1} = \sin(\frac{1}{4}x_n + 1)$ with $x_1 = 0.5$ to find the values of (2 marks) x_2 and x_3 , giving your answers to three decimal places.

 $x_2 = 0.844$ $x_3 = 0.936$

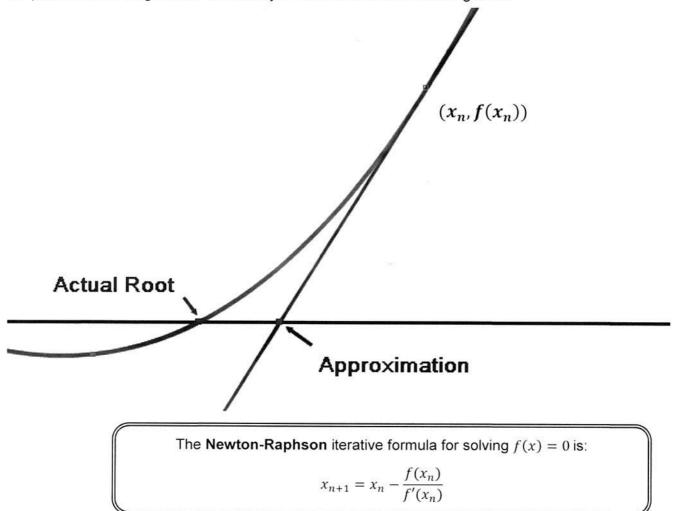
The sketch on Figure 1 shows parts of the graphs of $y = \sin(\frac{1}{4}x + 1)$ and y = x, and the position of x_1 .

On Figure 1, draw a cobweb or staircase diagram to show how convergence takes (2 marks) place, indicating the positions of x_2 and x_3 on the x-axis.



Newton-Raphson

Newton-Raphson is another method to estimate the root of an equation. It uses the gradient of a curve at the point to find a tangent and then tells you where the root of that tangent is.



This method may fail when:

- The function cannot be differentiated.
- The first approximation is close to or on the *x* coordinate of a stationary point so the iteration diverge or converge to a different root.

Example 11

For $f(x) = x^3 - 7$, take $x_1 = 2$ as a first approximation to f(x) = 0, and use the Newton-Raphson method to find a second approximation, x_2 .

$$f'(x) = x^{3} - 7$$

$$f'(x) = 3x^{2}$$

$$= 2 - \frac{2^{3} - 7}{3(2)^{2}}$$

$$= \frac{23}{12}$$

a) For $f(x) = \sin x$, take $x_1 = 4$ as a first approximation to f(x) = 0, and use the Newton-Raphson method to find an approximation to π , correct to 6 decimal places.

$$F(x) = \sin x \qquad x_1 = 4$$

$$F'(x) = \cos x \qquad x_2 = 4 - \frac{\sin 4}{\cos 4} = 2.8421...$$

$$x_3 = 2.842 - \frac{\sin 2.842}{\cos 2.842} = 3.1508...$$

$$x_4 = 3.1415925...$$

$$x_5 = 3.1415926...$$

$$x_6 = 3.1415926...$$

b) Explain why this would not work with $x_1 = 1$.

When starting from x = 1 the sequence converges to the root 0 not TT.

c) Explain why this would not work with $x_1 = \frac{\pi}{2}$

$$COS(\frac{\pi}{2})=0$$
 : $COS(\frac{\pi}{2})=0$: $COS(\frac{\pi}{2}$

Exam Questions

The equation

$$x^3 - x^2 + 4x - 900 = 0$$

has exactly one real root, α .

Taking $x_1 = 10$ as a first approximation to α , use the Newton-Raphson method to find a second approximation, x_2 , to α . Give your answer to four significant figures.

 $f'(x) = 3x^2 - 2x + 4$

A curve has equation $y = x^3 - 3x + 3$.

- (a) Show that the curve intersects the x-axis at the point $(\alpha, 0)$ where $-3 < \alpha < -2$.
- A student attempts to find α using the Newton-Raphson method with $x_1 = -1$. Explain why the student's method fails.

When
$$f'(x) = 3(-1)^2 - 3 = 0$$
 : $x_z = -1 - 8 \frac{(-1)^3 - 3(-1) + 3}{3(-1)^2 - 3}$

(3 marks)