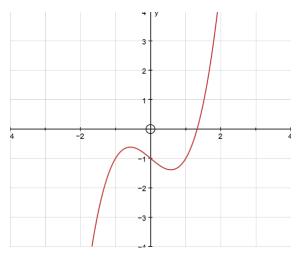
Pure Sector 4: Numerical Methods

Aims

- Locate roots of f(x) = 0 by considering changes of sign and understand when this method can fail.
- Solve equations approximately using simple iterative methods; draw associated cobweb and staircase diagrams.
- Solve equations using the Newton-Raphson method and other recurrence relations of the form xn + 1= g(xn)
- •

Bounds for Roots



If we are unable to solve an equation exactly, it is sometime useful to find approximate solutions. For example to solve $x^3 = x + 1$ we would rewrite it as $x^3 - x - 1 = 0$ and then try to factorise it. If we can't factorise then we could find approximate values for *x* where the graph crosses the *x*-axis. To do this we can sketch the graph to see how many roots (solutions) there are and roughly what the values of each root will be.

Locating a root allows us to say that a root lies between two values, these are called bounds. We can sketch a graph to do this or find bounds by change of sign. The change of sign method only works when the function is continuous. A continuous function does not change sign in an interval which contains an even number of roots.

If f(x) is **continuous** and changes sign between x = b and x = c, then the equation f(x) = 0 has a root α , where $b < \alpha < c$.

Example 1

Show that the equation $x^3 + x^2 + 3 = 0$ has a root between -1.8 and -1.9.

Example 2

Find the integer bounds for any roots of the equation $x^3 - 1 = x$.

You first need to rearrange so f(x) = 0. If you have two equation f(x) - g(x) = 0.

The curve $y = 3^x$ intersects the curve $y = 10 - x^3$ at the point where $x = \alpha$. Show that α lies between 1 and 2.

Example 4

$$f(x) = \frac{1}{x-4}, x \neq 4$$

- a) Show that there is a sign change across the interval (3,5)
- b) Using a suitable sketch, explain why this method is not appropriate.

Iteration

If an equation has a solution α , then you can use an interactive formula written as $x_{n+1} = g(x_n)$ to solve the equation numerically. If the starting point x_1 is close to α , then then iterative formula produces a sequence x_2, x_3, \dots which can converge to α .

Example 5

A sequence is defined by $x_{n+1} = \frac{x_n-3}{1+2x_n}$, $x_1 = 2$. Find the values of x_2 , x_3 and x_4 .

Example 6

For each of the sequences, find the values of x_2 , x_3 and x_4 and state whether the sequence is convergent or divergent. If the sequence is convergent state the limit, *L*. a) $x_{n+1} = 1 + 2x_n$, $x_1 = 5$

$$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n$$

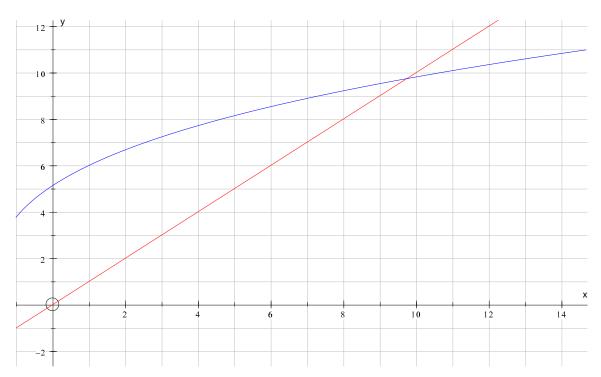
b)
$$x_{n+1} = \frac{5x_n+1}{1+2x_n}, x_1 = 2$$

- a) Show that $x^3 3x 5 = 0$ can be rearranged into the form $x = \sqrt[3]{3x + 5}$
- b) Using the iterative formula $x_{n+1} = \sqrt[3]{3x_n + 5}$, find a solution of $x^3 3x 5 = 0$, correct to 3dp

- a) Show that $f(x) = x^3 6x + 2$ has a root, α , between 0 and 1.
- b) Show that the equation f(x) = 0 can be rearranged into the form $x = \sqrt{\frac{6x-2}{x}}$ and comment on the suitability of the iterative formula $x_{n+1} = \sqrt{\frac{6x_n-2}{x_n}}$ with $x_1 = 0.5$ for estimating α .

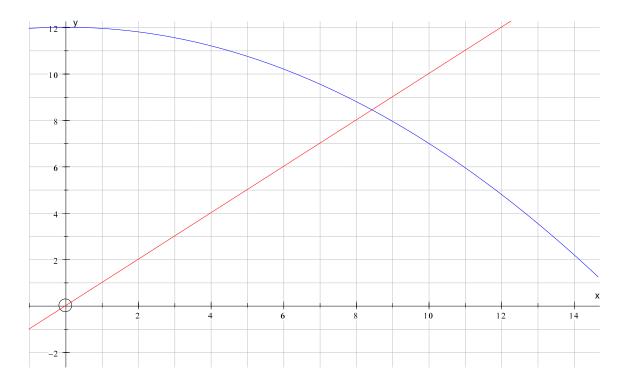
Always start by going up/down to the CURVE then across to the LINE then CURVE etc...

Solve $x^3 - 81x - 135 = 0$, using the iterative formula $x_{n+1} = \sqrt[3]{81x_n + 135}$, $x_1 = 2$



Example 9

Find out whether this sequence will converge from a starting point of $x_1 = 4$



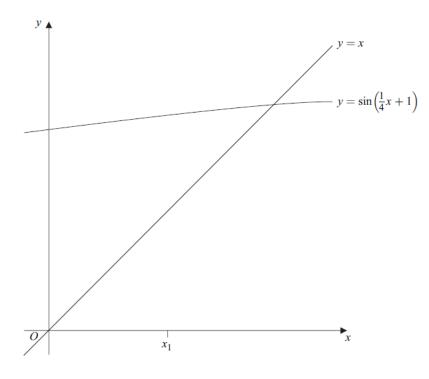
Find out whether this sequence will converge from a starting point of $x_1 = 0.5$

Exam Question

The equation $\sin^{-1} x = \frac{1}{4}x + 1$ can be rewritten as $x = \sin(\frac{1}{4}x + 1)$.

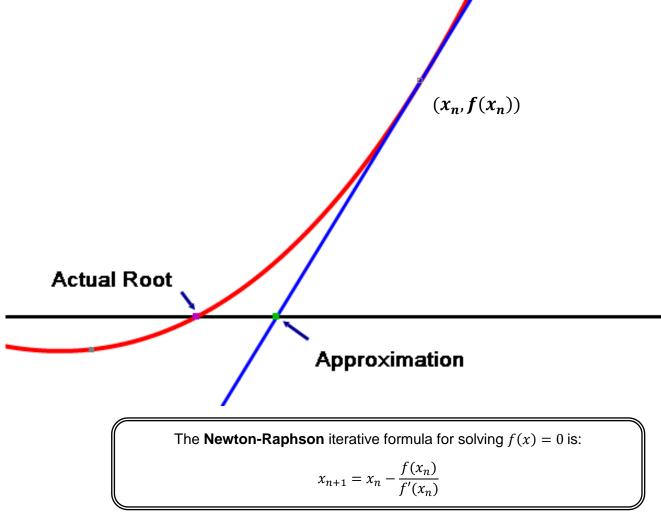
- (i) Use the iteration $x_{n+1} = \sin(\frac{1}{4}x_n + 1)$ with $x_1 = 0.5$ to find the values of x_2 and x_3 , giving your answers to three decimal places. (2 marks)
- (ii) The sketch on **Figure 1** shows parts of the graphs of $y = \sin(\frac{1}{4}x + 1)$ and y = x, and the position of x_1 .

On **Figure 1**, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of x_2 and x_3 on the *x*-axis. (2 marks)



Newton-Raphson

Newton-Raphson is another method to estimate the root of an equation. It uses the gradient of a curve at the point to find a tangent and then tells you where the root of that tangent is.



This method may fail when:

- The function cannot be differentiated.
- The first approximation is close to or on the *x* coordinate of a stationary point so the iteration diverge or converge to a different root.

Example 11

For $f(x) = x^3 - 7$, take $x_1 = 2$ as a first approximation to f(x) = 0, and use the Newton-Raphson method to find a second approximation, x_2 .

a) For $f(x) = \sin x$, take $x_1 = 4$ as a first approximation to f(x) = 0, and use the Newton-Raphson method to find an approximation to π , correct to 6 decimal places.

b) Explain why this would not work with $x_1 = 1$.

c) Explain why this would not work with $x_1 = \frac{\pi}{2}$

Exam Questions

The equation

$$x^3 - x^2 + 4x - 900 = 0$$

has exactly one real root, α .

Taking $x_1 = 10$ as a first approximation to α , use the Newton–Raphson method to find a second approximation, x_2 , to α . Give your answer to four significant figures. (3 marks)

A curve has equation $y = x^3 - 3x + 3$.

- (a) Show that the curve intersects the x-axis at the point (α , 0) where $-3 < \alpha < -2$.
- (b) A student attempts to find α using the Newton-Raphson method with $x_1 = -1$. Explain why the student's method fails.