Statistics Sector 2: Normal Approximation to Binomial

Aims:

 recognise when the symmetry of a binomial distribution may permit the use of a normal distribution as a model and hence deduce approximate values of the mean and standard deviation of the population.

The Normal distribution can be used to approximate the Binomial distribution.

If
$$X \sim B(n, p)$$
 then $X \approx N(np, np(1-p))$ if :
 n is large $(n \ge 20)$ and $p \approx 0.5$
 OR
 $np \ge 5$ and $n(1-p) \ge 5$

Example 1

Let X be a random variable such that $X \sim B(150,0.46)$. Find a suitable normal approximation for X, giving μ and σ^2 .

N is large and
$$p=0.5$$

 $np=150\times0.46=69=M$
 $np(1-p)=69(1-0.46)=37.26=5^2$
 $\times \sim N(69,37.26)$

Example 2

The random variable $X \sim (800, 0.52)$ is to be approximated using the normally distributed random variable $Y \sim N(\mu, \sigma^2)$.

- a) Verify that a normal approximation is appropriate, and specify the distribution of Y.
- b) Find an approximate value for P(400 < X < 440)

$$np = 800 \times 0.52 = 416$$

$$np(1-p) = 416(1-0.52) = 199.68 \quad \forall \land N(416, 199.68)$$

Example 3

A certain variety of flower seed is sold in packets containing about 1000 seeds. The packets claim that 45% will bloom white and 55% red. This may be assumed to be accurate.

If 100 seeds are planted, use a suitable approximation to find the probability that at most 30 will bloom white.

$$np=1000 \times 0.45 = 450$$

 $np(1-p) = 450(1-0.45) = 24.75$
 $P(X \le 30) = 0.00128 (3sf)$

Example 4

It is estimated that 8% of people are carriers of a certain disease. A random sample of people are tested for the disease.

- a) Amrit suggests taking a sample of 40 people. Explain whether or not a normal approximation would be appropriate to find the probability of more than 10% of them carrying the disease.
- b) What is the minimum sample size that should be used for a normal approximation in this case?
- c) Use this approximation to find the probability of more than 10% of them carrying the disease.

b)
$$NP = 5$$

 $N \times 0.08 = 5$
 $N = 62.5$: Sample size of at least 63.

c)
$$Np = 0.08 \times 63 = 5.04$$

 $Np(1-p) = 5.04(1-0.08) = 4.6368$
 $X \wedge N(5.04, 4.6368)$ $10^{\circ}b = 6.3$ people
 $P(x>6) = 0.328$ $P(x>7) = 0.181$