6. [*In this question* **i** *and* **j** *are horizontal unit vectors due east and due north respectively and position vectors are given relative to a fixed origin O.*]

Two ships, P and Q, are moving with constant velocities. The velocity of P is $(3\mathbf{i} - 2\mathbf{j}) \,\mathrm{km} \,\mathrm{h}^{-1}$ and the velocity of Q is $(5\mathbf{i} + 6\mathbf{j}) \,\mathrm{km} \,\mathrm{h}^{-1}$.

At 9 am, the position vector of P is (i + 4j) km and the position vector of Q is (7i + 8j) km.

- (a) (i) Write down the position vector of P at time t hours after 9 am.
 - (ii) Write down the position vector of Q at time t hours after 9 am. (3)

At time t hours after 9 am, $\overrightarrow{QP} = \mathbf{r} \,\mathrm{km}$.

(b) Show that
$$\mathbf{r} = (-6 - 2t)\mathbf{i} + (-4 - 8t)\mathbf{j}$$
 (2)

- (c) Hence find the distance between the ships when P is south west of Q. (5)
- 6. [In this question i and j are horizontal unit vectors due east and due north respectively]

 Two forces \mathbf{F}_1 and \mathbf{F}_2 act on a particle P of mass 0.5 kg.

$$\mathbf{F}_{1} = (4\mathbf{i} - 6\mathbf{j}) \text{ N and } \mathbf{F}_{2} = (p\mathbf{i} + q\mathbf{j}) \text{ N}.$$

Given that the resultant force of \mathbf{F}_1 and \mathbf{F}_2 is in the same direction as $-2\mathbf{i} - \mathbf{j}$,

(a) show that
$$p - 2q = -16$$
 (5)

Given that q = 3

- (b) find the magnitude of the acceleration of P, (5)
- (c) find the direction of the acceleration of *P*, giving your answer as a bearing to the nearest degree.

6(a)	$(i) \mathbf{r}_{p} = (\mathbf{i} + 4\mathbf{j}) + t(3\mathbf{i} - 2\mathbf{j})$	M1 A1	
	$(ii)\mathbf{r}_Q = (7\mathbf{i} + 8\mathbf{j}) + t(5\mathbf{i} + 6\mathbf{j})$	A1 (3))
(b)	$\mathbf{QP} = (\mathbf{i} + 4\mathbf{j}) + t(3\mathbf{i} - 2\mathbf{j}) - \left[(7\mathbf{i} + 8\mathbf{j}) + t(5\mathbf{i} + 6\mathbf{j}) \right]$	M1	
	$=(-6-2t)\mathbf{i}+(-4-8t)\mathbf{j}$ Given Answer	A1 (2	2)
(c)	(-6 - 2t) = (-4 - 8t)	M1	
	$t = \frac{1}{3}$	A1	
	$\mathbf{QP} = (-6 - \frac{2}{3})\mathbf{i} + (-4 - \frac{8}{3})\mathbf{j}$	M1	
	$QP = \sqrt{\left(-\frac{20}{3}\right)^2 + \left(-\frac{20}{3}\right)^2}$	M1	
	$=\frac{20\sqrt{2}}{3} = 9.4 \text{ km (or better)}$	A1	
		(5)	

6.(a)	$(4\mathbf{i} - 6\mathbf{j}) + (p\mathbf{i} + q\mathbf{j}) = (4+p)\mathbf{i} + (q-6)\mathbf{j}$	M1		
	$\frac{(4+p)}{(q-6)} = \frac{2}{1} \text{ or } -\frac{2}{1} \text{ (or } \frac{1}{2} \text{ or } -\frac{1}{2})$	DM 1 A1		
	2q-12=4+p			
	p-2q=-16 GIVEN ANSWER	DM 1 A1 (5)		
(b)	$q = 3 \Rightarrow p = -10$	B1		
	EITHER $0.5\mathbf{a} = -6\mathbf{i} - 3\mathbf{j}$ OR $ \mathbf{R} = \sqrt{(-6)^2 + (-3)^2}$	M1		
	$\mathbf{a} = -12\mathbf{i} - 6\mathbf{j} \qquad \qquad = \sqrt{45} \text{ oe}$	A1		
	$ \mathbf{a} = \sqrt{(-12)^2 + (-6)^2}$ $0.5a = \sqrt{45}$	M1		
	$a = \sqrt{180} = 13.4 \text{ms}^{-2}$ $a = \sqrt{180} = 13.4 \text{ms}^{-2}$	A1 (5)		
(c)	e.g. $\tan \theta = \frac{12}{6} \implies \theta = 63.4^{\circ}$	M1A1		
	Bearing = $180^{\circ} + 63.4^{\circ} = 243^{\circ}$ (nearest degree)			

7. [In this question **i** and **j** are horizontal unit vectors due east and due north respectively and position vectors are given relative to a fixed origin O.]

Two ships, P and Q, are moving with constant velocities. The velocity of P is $(9\mathbf{i} - 2\mathbf{j})$ km h⁻¹ and the velocity of Q is $(4\mathbf{i} + 8\mathbf{j})$ km h⁻¹

(a) Find the direction of motion of *P*, giving your answer as a bearing to the nearest degree.

(3)

When t = 0, the position vector of P is $(9\mathbf{i} + 10\mathbf{j})$ km and the position vector of Q is $(\mathbf{i} + 4\mathbf{j})$ km. At time t hours, the position vectors of P and Q are \mathbf{p} km and \mathbf{q} km respectively.

- (b) Find an expression for
 - (i) \mathbf{p} in terms of t,
 - (ii) \mathbf{q} in terms of t.

(3)

(c) Hence show that, at time t hours,

$$\overrightarrow{QP} = (8 + 5t)\mathbf{i} + (6 - 10t)\mathbf{j}$$
(2)

(d) Find the values of t when the ships are 10km apart.

(6)

6. A particle P is moving with constant velocity. The position vector of P at time t seconds $(t \ge 0)$ is \mathbf{r} metres, relative to a fixed origin O, and is given by

$$r = (2t - 3)i + (4 - 5t)j$$

(a) Find the initial position vector of P.

(1)

The particle P passes through the point with position vector $(3.4\mathbf{i} - 12\mathbf{j})\mathbf{m}$ at time T seconds.

(b) Find the value of *T*.

(3)

(c) Find the speed of P.

(4)

7(a)	$\tan \theta = \frac{2}{9} \theta = 12.5^{\circ}$ bearing 103°	M1 A1 A1 (3)
(b) (i) (ii)	$\mathbf{p} = (9\mathbf{i} + 10\mathbf{j}) + t(9\mathbf{i} - 2\mathbf{j})$ $\mathbf{q} = (\mathbf{i} + 4\mathbf{j}) + t(4\mathbf{i} + 8\mathbf{j})$	M1 A1 A1 (3)
(c)	$\overrightarrow{QP} = (8+5t)\mathbf{i} + (6-10t)\mathbf{j}$	M1 A1 (2)
(d)	$D^{2} = (8+5t)^{2} + (6-10t)^{2}$ $= 125t^{2} - 40t + 100$ $100 = 125t^{2} - 40t + 100$ $0 = 5t(25t - 8)$ $t = 0 \text{ or } 0.32$	M1 A1 M1 M1 A1 A1 (6)

6(a)	$\mathbf{r} = (-3\mathbf{i} + 4\mathbf{j}) \text{ m}$	B1 (1)
(b)	3.4 = 2T - 3 or $-12 = 4 - 5T$	M1 A1
	T = 3.2	A1 (3)
(c)	$\mathbf{r} = (-3\mathbf{i} + 4\mathbf{j}) + t(2\mathbf{i} - 5\mathbf{j})$	M1
	$\mathbf{v} = (2\mathbf{i} - 5\mathbf{j})$	A1
	speed = $\sqrt{(2^2 + (-5)^2)}$ = $\sqrt{29}$ = 5.4m s ⁻¹ or better	M1 A1 (4)
	1,	8

1.	[In this question \mathbf{i} and \mathbf{j} are horizontal unit vectors due east and due north respectively an position vectors are given relative to a fixed origin O .]	ıd
	Two cars P and Q are moving on straight horizontal roads with constant velocities. The velocity of P is $(15\mathbf{i} + 20\mathbf{j})$ m s ⁻¹ and the velocity of Q is $(20\mathbf{i} - 5\mathbf{j})$ m s ⁻¹	ie
	(a) Find the direction of motion of Q , giving your answer as a bearing to the neare degree.	
		3)
	At time $t = 0$, the position vector of P is 400 i metres and the position vector of Q 800 j metres. At time t seconds, the position vectors of P and Q are p metres and q metres respectively.	
	(b) Find an expression for	
	(i) \mathbf{p} in terms of t ,	
	(ii) \mathbf{q} in terms of t .	3)
	(c) Find the position vector of Q when Q is due west of P .	4)
4	An aeroplane flies in air that is moving due east at a speed of $V\mathrm{ms^{-1}}$	
	The velocity of the aeroplane relative to the air is $180\mathrm{ms^{-1}}$ due north.	
	The aeroplane actually travels on a bearing of 020°	
	(a) Find V [2 mark	s]
((b) Find the magnitude of the resultant velocity of the aeroplane. [3 mark]	s]

1(a)	$\tan \theta = \frac{5}{20}$	M1	
	$\theta = 14.036^{\circ}$ $\theta = 104^{\circ}$ nearest degree	A1 A1	(3)
(b)	$\mathbf{p} = 400\mathbf{i} + t(15\mathbf{i} + 20\mathbf{j})$ $\mathbf{q} = 800\mathbf{j} + t(20\mathbf{i} - 5\mathbf{j})$	M1 A1	(3
(c)	Equate their j components: $20t(\mathbf{j}) = (800 - 5t)(\mathbf{j})$ t = 32 $\mathbf{s} = 800 \mathbf{j} + 32(20 \mathbf{i} - 5 \mathbf{j})$ $= 640 \mathbf{i} + 640 \mathbf{j}$	M1 A1 M1 A1	(4) 10

4 (a)	$V = 180 \tan 20^{\circ}$ $= 65.5$ OR $\frac{V}{\sin 20^{\circ}} = \frac{180}{\sin 70^{\circ}}$ $V = 65.5$	M1 A1	2	M1: Using trigonometry (usually tan or sine rule) to find <i>V</i> A1: Correct answer from correct working (Division by 2 only acceptable if sin20° or cos70° seen.)
(b)	$\frac{180}{v} = \cos 20^{\circ}$ $v = \frac{180}{\cos 20^{\circ}} = 192$	M1A1		M1: Using trigonometry or Pythagoras to find <i>v</i>
	cos 20°	A1	3	A1: Correct expression A1: Correct answer

The unit vectors ${\bf i}$ and ${\bf j}$ are directed east and north respectively. A boat moves horizontally with a constant acceleration of $(-0.2{\bf i}+0.4{\bf j})\,{\rm m\,s^{-2}}$.

At time t=0, the boat is at the origin and has velocity $2{\bf i}\,{\rm m\,s^{-1}}$ (a) Write down an expression for the velocity of the boat at time t seconds.

[2 marks]

(b) Find the time when the boat is travelling due north.

[3 marks]

(c) Find an expression for the position vector of the boat at time t seconds.

(d) Find the speed of the boat when it is due north of the origin.

[6 marks]

5 (a)	$\mathbf{v} = 2\mathbf{i} + (-0.2\mathbf{i} + 0.4\mathbf{j})t$	M1		M1: Use of constant
		A1	2	acceleration equation
		A1	2	to find expression for
				v.
				A1: Correct
				expression.
(b)	$\mathbf{v} = (2 - 0.2t)\mathbf{i} + 0.4t\mathbf{j}$	M1		M1: Simplifying v .
	2 - 0.2t = 0	dM1		dM1: Putting i
	$t = \frac{2}{0.2} = 10 \text{ seconds}$			component equal to
	$t = \frac{1}{0.2} = 10$ seconds			zero.
		A1	3	A1: Correct time.
(c)	$\mathbf{r} = 2\mathbf{i} \times t + \frac{1}{2}(-0.2\mathbf{i} + 0.4\mathbf{j}) \times t^2$	M1		M1: Use of constant
	$\frac{\mathbf{r} - 2\mathbf{i} \times t + -(-0.2\mathbf{i} + 0.4\mathbf{j}) \times t}{2}$	A1	2	acceleration equation
				to find expression for
				r.
				A1: Correct
				expression.
(d)	$2t - 0.1t^2 = 0$	M1		M1: Putting i
	$2t - 0.1t^2 = 0$ $t = \frac{2}{0.1} = 20$			component equal to
	$t = \frac{1}{0.1} = 20$			zero.
		A1		
	$\mathbf{v} = (2 - 0.2 \times 20)\mathbf{i} + 0.4 \times 20\mathbf{j}$			A1: Correct equation.
	$=-2\mathbf{i}+8\mathbf{j}$			A1: Correct time.
		A1		M1: Substituting their
		M1		time into their
	$v = \sqrt{2^2 + 8^2} = 8.25 \text{ m s}^{-1}$	A1		expression for ${f v}$.
				A1: Correct simplified
		A1	6	velocity.
		Ai	U	A1: Correct speed.
	1			

4 Relative to the air, an aeroplane flies with velocity V on a bearing α , as shown in the diagram.

The air is moving due east at $20\,m\,s^{-1}$. The aeroplane travels at $120\,m\,s^{-1}$ on a bearing of $040^\circ.$

(a) Find V.

[3 marks]

(b) Find α , giving your answer to the nearest degree.

[4 marks]

4 (a)	$V^{2} = 120^{2} + 20^{2} - 2 \times 20 \times 120 \cos 50^{\circ}$ $V = \sqrt{11715} = 108 \mathrm{m s^{-1}}$ OR	M1A1 A1	3	M1: Use of cosine rule to find <i>V</i> . A1: Correct equation. A1: Correct <i>V</i> .
	${120\sin 40^{\circ} - 20 \choose 120\cos 40^{\circ}}$ $V^{2} = (120\sin 40^{\circ} - 20)^{2} + (120\cos 40^{\circ})^{2}$	(M1)		M1: Velocity vector with sin40/50 or cos40/50 and ±20.
	$V = 108 \mathrm{m s^{-1}}$	(A1) (A1)		A1: Correct expression for V or V^2 . A1: Correct V .
(b)	$\frac{\sin \beta}{20} = \frac{\sin 50^{\circ}}{\sqrt{11715}}$ $\beta = 8.1$	M1		M1: Use of sine rule to find angle in the velocity triangle.
	$\alpha = 40 - 8.1 = 032^{\circ}$	M1A1	4	A1: Correct angle. M1: Finding α having used the sine rule. Only award if their α is less than 40°
	OR 120cos40°			A1: Correct value for α.
	$\tan \theta = \frac{120\cos 40^{\circ}}{120\sin 40^{\circ} - 20}$ $\theta = 58.1377$	(M1) (A1)		M1: Use of appropriate trig to find angle in the velocity triangle.
	$\alpha = 90 - 58.1 = 032^{\circ}$	(M1A1)		A1: Correct angle.
				M1: Finding α having used appropriate trig. Only award if their α is less than 40°
				A1: Correct value for α.

Two particles, A and B, move on a horizontal surface with constant accelerations of $(8\mathbf{i} + 4\mathbf{j}) \,\mathrm{m}\,\mathrm{s}^{-2}$ and $(6\mathbf{i} + 10\mathbf{j}) \,\mathrm{m}\,\mathrm{s}^{-2}$ respectively. The unit vectors \mathbf{i} and \mathbf{j} are perpendicular.

At time t = 0, A has position $(7\mathbf{i} + 8\mathbf{j})$ m and velocity $(4\mathbf{i} + 3\mathbf{j})$ m s⁻¹.

At time t=0, B has position $(70\mathbf{i}+k\mathbf{j})\,\mathrm{m}$ and velocity $(2\mathbf{i}-1\mathbf{j})\,\mathrm{m}\,\mathrm{s}^{-1}$, where k is a constant.

The particles collide.

(a) Find the time when the particles collide.

[5 marks]

(b) Find k.

[3 marks]

_			•	•	

0 ()				54.6 4 '''
8 (a)	$\mathbf{r}_A = (7\mathbf{i} + 8\mathbf{j}) + (4\mathbf{i} + 3\mathbf{j})t + \frac{1}{2}(8\mathbf{i} + 4\mathbf{j})t^2$	B1		B1: Correct position vector for <i>A</i> .
	$\mathbf{r}_{B} = (70\mathbf{i} + k\mathbf{j}) + (2\mathbf{i} - \mathbf{j})t + \frac{1}{2}(6\mathbf{i} + 10\mathbf{j})t^{2}$	B1		B1: Correct position vector for <i>B</i> .
	$7 + 4t + 4t^{2} = 70 + 2t + 3t^{2}$ $t^{2} + 2t - 63 = 0$	M1A1		Both B1 marks can be awarded if the correct quadratic is obtained.
	t = 7 or -9			M1: Equates i components.
	t = 7	A1	5	A1: Forms correct simplified quadratic.
				A1: Final answer as 7.
(b)	$8 + 3 \times 7 + 2 \times 49 = 127$	M1A1		Forms equation from j
	$k - 7 + 5 \times 49 = 127$			components to find k.
	k = -111	A1	3	A1: Correct equation.
				A1: Correct value for <i>k</i> .
	Total		8	

7	A jet ski moves on a lake, with an acceleration of $(0.25\mathbf{i} + 1.2\mathbf{j}) \text{ m s}^{-2}$. At the point A_{j}	the
•	jet ski has velocity $(4\mathbf{i} - 1.6\mathbf{j}) \text{ m s}^{-1}$.	, 1110
	The unit vectors \boldsymbol{i} and \boldsymbol{j} are directed east and north respectively.	
(a)	Find the speed of the jet ski 2 seconds after it leaves A . [4 max	ırks]
(b)	At the point B , the jet ski has speed $10~{\rm m~s}^{-1}$. Find the average velocity of the jet ski	as
	it travels from A to B . [9 ma	rks]
4	An aeroplane is flying in air that is moving due east at $V\mathrm{ms^{-1}}$. Relative to the air the aeroplane has a velocity of $90\mathrm{ms^{-1}}$ due north. During a 20 second period, the motion of the air causes the aeroplane to move 240 metres to the east.	
(a)	Find V .	arkel
	LZ IIId	

(c) Find the direction of the resultant velocity, giving your answer as a three-figure bearing, correct to the nearest degree.

Find the magnitude of the resultant velocity of the aeroplane.

(b)

[3 marks]

[2 marks]

7 (a)	$\mathbf{v} = (4 + 0.25 \times 2)\mathbf{i} + (1.2 \times 2 - 1.6)\mathbf{j}$	M1		
	$=4.5\mathbf{i}+0.8\mathbf{j}$	A1		M1: Correct expression for the velocity when $t = 2$. A1: Correct simplified velocity.
	$v = \sqrt{4.5^2 + 0.8^2}$	dM1		MIL Fig. discourse its 1- of 4- outside
	$= 4.57 \mathrm{ms^{-1}}$	A1	4	dM1: Finding magnitude of the velocity. A1: Correct magnitude. AWRT 4.57.
(b)	$\mathbf{v} = (4 + 0.25t)\mathbf{i} + (1.2t - 1.6)\mathbf{j}$	M1		M1: Correct expression for velocity in an form, eg $(4\mathbf{i} - 1.6\mathbf{j}) + (0.25\mathbf{i} + 1.2\mathbf{j})t$
		A1		A1: Correct velocity as the sum of two components. PI.
	$10^2 = (4 + 0.25t)^2 + (1.2t - 1.6)^2$	M1		M1: Quadratic equation to find time whe speed is 10, including both their velocity
	$0 = 1.5025t^2 - 1.84t - 81.44$	A1		components.
		dM1		A1: Correct expanded quadratic, that is equal to zero. (Allow any multiple of the equation.)
	t = 8 or $t = -6.77t = 8$	A1		dM1: One or two times obtained from their quadratic.
	$\mathbf{r} = \left(4 \times 8 + \frac{1}{2} \times 0.25 \times 8^2\right)\mathbf{i}$			A1: Concludes that $t = 8$.
	$+\left(-1.6\times8 + \frac{1}{2}\times1.2\times8^{2}\right)\mathbf{j}$ $= 40\mathbf{i} + 25.6\mathbf{j}$	dM1		dM1: Finding the position vector at their time.
	Average Velocity = $\frac{40\mathbf{i} + 25.6\mathbf{j}}{8}$	A1		A1: Correct position vector. AWRT 40.0i + 25.6j
	$=5\mathbf{i}+3.2\mathbf{j}$	A1		
	O.D.			A1: Correct average velocity.
4. (a)	$240 = 20V$ $V = \frac{240}{20} = 12$	M1		M1: Correct equation. A1: Correct V.
		A1	2	
4. (b)	$v = \sqrt{90^2 + 12^2} = 90.8 \mathrm{m s^{-1}}$	M1A1	2	M1: Equation or expression to find v or based on the use of Pythagoras. Must ha a +. Allow their value of V from part (a) A1: Correct velocity. AWRT 90.8
				OR (If finding the angle first.) M1: Using 12 or 90 with the sin or cos or
				their angle. Allow their value of <i>V</i> from part (a). A1: Correct velocity. AWRT 90.8
4. (c)	$\tan \alpha = \frac{12}{90}$	M1A1		M1: seeing tan with 12 or their V from (and 90, either way round.
	$\alpha = 008^{\circ}$	A1	3	A1: Seeing AWRT 8 or 82. A1: Final answer of 008°. CAO

The unit vectors **i** and **j** are directed east and north respectively.

Two helicopters, A and B, are taking part in an air display. Both helicopters move in the same horizontal plane which is well above ground level. At the start of the display, A is at the origin, which is located in this horizontal plane, and B has position vector $(40\mathbf{i} + 50\mathbf{j})$ metres relative to this origin. The velocities of A and B at the start of the display are $(8\mathbf{i} + 4\mathbf{j})$ m s⁻¹ and $(6\mathbf{i} + 9\mathbf{j})$ m s⁻¹ respectively. Both helicopters move with constant acceleration. The acceleration of A is $(-0.2\mathbf{i} + 0.1\mathbf{j})$ m s⁻² and the acceleration of B is $(0.2\mathbf{i} - 0.1\mathbf{j})$ m s⁻².

Find the distance between A and B at the instant when their velocities are parallel.

[10 marks]

- A particle moves with constant acceleration between the points A and B. At A, it has velocity $(4\mathbf{i} + 2\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$. At B, it has velocity $(7\mathbf{i} + 6\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$. It takes 10 seconds to move from A to B.
 - (a) Find the acceleration of the particle.

[3 marks]

(b) Find the distance between A and B.

[5 marks]

(c) Find the average velocity as the particle moves from A to B.

[2 marks]

Q	Solution	Mark	Total	Comment
8	$\mathbf{v}_A = (8 - 0.2t)\mathbf{i} + (4 + 0.1t)\mathbf{j}$	B1		B1: Correct velocity for A. May be
	$\mathbf{v}_B = (6 + 0.2t)\mathbf{i} + (9 - 0.1t)\mathbf{j}$	B1		implied.
	k(8-0.2t) = 6 + 0.2t			B1: Correct velocity for B. May be
	k(4+0.1t) = 9 - 0.1t			implied.
	6 + 0.2t 9 - 0.1t	M1A1		M1: Forming an equation based on the
	$\frac{1}{8-0.2t} = \frac{1}{4+0.1t}$			ratio of i and j components of both
	(6+0.2t)(4+0.1t) = (9-0.1t)(8-0.2t)			velocity vectors. Allow
	$24 + 1.4t + 0.02t^2 = 72 - 2.6t + 0.02t^2$			6 + 0.2t - 4 + 0.1t
	4t = 48			$\frac{6+0.2t}{8-0.2t} = \frac{4+0.1t}{9-0.1t}$ oe.
	t = 12	4.1		A1: Correct value of <i>t</i> .
		A1		
				SC3 For obtaining $t = 12$ by trial and
				improvement. Replaces M1A1A1
				above. Also award B1B1.
	(0.12.01.12)	dM1		dM1: Finding position vectors of A
	$\mathbf{r}_A = (8 \times 12 - 0.1 \times 12^2)\mathbf{i} + (4 \times 12 + 0.05 \times 12^2)$	awii		and B at the time found by candidate
	$= 81.6\mathbf{i} + 55.2\mathbf{j}$	A1		provided that they have previous M1
	$\mathbf{r}_{R} = (40 + 6 \times 12 + 0.1 \times 12^{2})\mathbf{i} +$			or 12 from the SC.
				A1: Correct position vector for A.
	$(50+9\times12-0.05\times12^2)$ j			
	$=126.4\mathbf{i} + 150.8\mathbf{j}$	A1		
	$d = \sqrt{44.8^2 + 95.6^2} = 106 \text{ m}$	13.54		A1. C
	$u - \sqrt{44.0} + 93.0 - 100 \text{ m}$	dM1 A1	10	A1: Correct position vector for <i>B</i> .
		AI	10	dM1: Finding the difference between
				the position vectors.
				A1: Correct distance. Accept AWRT
				106
	Total		10	

Q	Solution	Mark	Total	Comment
. (a)	$7\mathbf{i} + 6\mathbf{j} = 4\mathbf{i} + 2\mathbf{j} + 10\mathbf{a}$	M1A1		M1: Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$. Allow if \mathbf{u}
	$\mathbf{a} = \frac{3\mathbf{i} + 4\mathbf{j}}{10} = (0.3\mathbf{i} + 0.4\mathbf{j}) \mathrm{m s}^{-2}$	A1	3	substituted for v and v substituted for u after a correct statement of the constant acceleration equation. A1: Correct expression. A1: Correct acceleration.
l. (b)	$\mathbf{r} = \frac{1}{2}((4\mathbf{i} + 2\mathbf{j}) + (7\mathbf{i} + 6\mathbf{j})) \times 10$ $= 5(11\mathbf{i} + 8\mathbf{j})$	M1A1		M1: Using $\mathbf{r} = \frac{1}{2}(\mathbf{u} + \mathbf{v})t$.
	$=55\mathbf{i}+40\mathbf{j}$	A1		A1: Correct expression. A1: Correct position vector.
	$d = \sqrt{55^2 + 40^2} = 68.0 \mathrm{m}$	dM1A1		00.0 01 34163.
4. (c)	Ave. Velocity = $\frac{55\mathbf{i} + 40\mathbf{j}}{10}$	M1		M1: Their displacement from part (b) divided by 10. A1: Correct average velocity.
	$= (5.5\mathbf{i} + 4\mathbf{j}) \mathrm{m s^{-1}}$	A1	2	Condone taking means!
	Total		10	Condone taking means:

- A yacht is sailing through water that is flowing due west at $2\,\mathrm{m\,s^{-1}}$. The velocity of the yacht relative to the water is $6\,\mathrm{m\,s^{-1}}$ due south. The yacht has a resultant velocity of $V\,\mathrm{m\,s^{-1}}$ on a bearing of θ .
 - (a) Find V.

[2 marks]

(b) Find θ , giving your answer to the nearest degree.

[3 marks]

2. (a)	$V = \sqrt{2^2 + 6^2} = \sqrt{40} = 6.32 \mathrm{m s^{-1}}$	M1A1	2	M1: Equation or expression to find V or V^2 based on Pythagoras. Must have a +. A1: Correct V . Accept AWRT 6.32.
				Accept $2\sqrt{10}$ or $\sqrt{40}$.
				Note that just $V^2 = 2^2 + 6^2$ Scores M1A0.
				OR (if angle found first)
				M1:Using 2 or 6 with the sin or cos of their angle. A1: Correct <i>V</i> .
2. (b)	$\tan^{-1}\left(\frac{6}{2}\right) = 71.6^{\circ}$	M1A1		M1: Seeing tan with 6 and 2. (Can be either way round.)
	$\sin^{-1}\left(\frac{6}{2\sqrt{10}}\right) = 71.6^{\circ}$	(M1A1)	3	A1: Seeing AWRT 72° or 18°. A1: Final answer of 198°. CAO