- 6 (a) The curve C has equation $y = \frac{1}{4^x}$. The line $y = \frac{3}{4}$ intersects C at the point A.
 - (i) Sketch the curve C, indicating the value of the intercept on the y-axis.

[2 marks]

(ii) Use logarithms to find the x-coordinate of A, giving your answer to three significant figures.

[3 marks]

(b) Given that $\log_4 c = m$ and $\log_{64} d = n$, express $\frac{c^2}{\sqrt{d^3}}$ in the form 4^p , where p is an expression in terms of m and n.

[4 marks]

Q	Solution	Mark	Total	Comment
6 (a)(i)		B1	2	Correct shaped graph in 1^{st} two quadrants only and indication of correct behaviour of curve for large positive and negative values of x . Ignore any scaling on axes. y -intercept indicated as 1 on diagram or stated as intercept =1 or as coords $(0, 1)$.
(ii)	$\frac{1}{4^x} = \frac{3}{4} \implies 4^{-x} = \frac{3}{4}$ (or $4^x = \frac{4}{3}$ or $4^{1-x} = 3$ or $4^{x-1} = \frac{1}{3}$)	M1		Correct 'rearrangement' to eg $4^{x} = \frac{4}{3} \text{ or } 4^{-x} = \frac{3}{4} \text{ or } 0.25^{x} = 0.75 \text{ PI}$ or log1-log4 ^x = log(3/4) or better
	$\log 4^{-x} = \log 0.75 \Rightarrow -x \log 4 = \log 0.75$ $[\log 4^{x} = \log(4/3) \Rightarrow x \log 4 = \log(4/3)]$ $[\log 4^{1-x} = \log 3 \Rightarrow (1-x) \log 4 = \log 3]$ $[\log 4^{x-1} = \log \frac{1}{3} \Rightarrow (x-1) \log 4 = \log \frac{1}{3}]$ $[4^{x} = 4/3, x = \log_{4}(4/3)];$ $[0.25^{x} = 0.75, x = \log_{0.25} 0.75]$	M1		Takes logs of both sides of eqn of form either $4^x = k$ or $4^{-x} = k$ OE and uses 3^{rd} law of logs or log to base 4 (or base 1/4) correctly
	x = 0.2075187 so $x = 0.208$ (to 3sf)	A1	3	Condone >3sf [Logs must be seen to be used otherwise <u>max</u> of M1M0A0]
(b)	$c = 4^{m}, d = 64^{n}$ $c^{2} = 4^{2m}$ $\sqrt{d^{3}} = (4^{3n})^{1.5} = 4^{4.5n}$ $\frac{c^{2}}{\sqrt{d^{3}}} = 4^{2m-4.5n}$	M1 A1		Either $c = 4^m$ or $d = 64^n$ $c^2 = 4^{2m}$
	$\sqrt{d^3} = (4^{3n})^{1.5} = 4^{4.5n}$	A1		$\sqrt{d^3} = 4^{4.5n}$ seen or used
	$\frac{c^2}{\sqrt{d^3}} = 4^{2m-4.5n}$	A1	4	$\frac{c^2}{\sqrt{d^3}} = 4^{2m-4.5n} \text{ OE expression for } p \text{ in terms of } m \text{ and } n.$
	Total		9	
	lotai		J	1

7 (a) (i) Express $\log_b(6x) - \log_b 18$ as a single term.

[1 mark]

(ii) Solve the equation

$$\log_b(x+4) = \log_b(6x) - \log_b 18 + \log_b(x-1)$$

where b is a positive constant.

[4 marks]

(b) (i) Given that $\log_m n = k$, express n in terms of m and k.

[1 mark]

(ii) Given that $p\log_8 x^2 = \log_2(x^2\sqrt{x})$, find the value of the constant p.

[4 marks]

Q	Solution	Mark	Total	Comment
7(a) (i)	$\log_b \frac{6x}{18}$	B1	1	$\log \frac{6x}{18}$ OE Condone base b missing
(ii)	$\log_b \frac{6x}{18} + \log_b (x - 1) = \log_b \frac{6x(x - 1)}{18}$	M1		Eg $\log D + \log(x-1) = \log D(x-1)$
				or $\log(x+4) - \log(x-1) = \log\left(\frac{x+4}{x-1}\right)$
				OE results so as to have no more than two log terms remaining in the given equation. Condone base <i>b</i> missing PI by a correct eqn. with no log terms provided no errors seen in (ii) in determining such an eqn.
	$\log_b(x+4) = \log_b \frac{6x(x-1)}{18}$ $\Rightarrow x+4 = \frac{6x(x-1)}{18}$			
	$\Rightarrow x + 4 = \frac{6x(x-1)}{18}$	A1		OE A correct eqn after all logarithms eliminated in a correct manner. Condone
				$\log(x+4) = \log \frac{6x(x-1)}{18}$ with 'log' on
	$x^2 - 4x - 12 = 0 \Rightarrow x = 6, x = -2$	A1		each side crossed out. x = 6, $x = -2$; if -2 is missing we must see either $(x - 6)(x + 2)$ or a valid
	x = 6	A1	4	statement for ignoring it 6 as the only solution.
(b)(i)	$n=m^k$	B1	1	
(ii)	$(\log_2)x^2\sqrt{x} = (\log_2)x^{2.5}$	B1		$x^2 \sqrt{x} = x^{2.5}$ seen or used at any stage
	$p\log_8 x^2 = \log_8 (x^2)^p$	M1		Use of log law $a \log b = \log b^a$ at any stage in (b)(ii) , or $8^T = x^{2p}$ OE seen
	Let $T = p \log_8 x^2 = \log_2 x^2 \sqrt{x}$			stage in (b)(ii), or $\delta = \lambda$ OE seen
	eg $2^T = x^{2.5}$, $8^T = x^{2p} = 2^{3T}$; $x^{2p} = x^{7.5}$	M1		Correctly converting to the same base OE and eliminating in a correct manner all
	$\log_2 x^{2.5} = \log_8 x^{2p} = \frac{\log_2 x^{2p}}{\log_2 8}$			logarithmic terms. Can also be awarded after B0 if cand has $x^2 \sqrt{x} = x^q$, where q
	$= \log_2 x^{\frac{2p}{3}}; \qquad \underline{x^{2.5} = x^{\frac{2p}{3}}}$			is non-integer
	2p = 7.5; p = 3.75			Correct value for p, obtained convincingly
	or eg $\frac{2p}{3} = 2.5$; $p = 3.75$	A1	4	for a general x. NMS scores 0/4
	Total		10	

9 (a) (i) Describe the geometrical transformation that maps the graph of $y=2^x$ onto the graph of $y=2^{2x}$.

[2 marks]

(ii) Describe the single geometrical transformation that maps the graph of $y = 2^x - 15$ onto the graph of $y = 2^{x+3} - 15$.

[2 marks]

- (b) The curve C_1 has equation $y=2^{2x}$. The curve C_2 has equation $y=2^{x+3}-15$. The curves C_1 and C_2 intersect at the points A and B.
 - (i) Given that $u = 2^x$, express 2^{x+3} in terms of u.

[1 mark]

(ii) Find the gradient of the line AB, giving your answer in the form $\frac{p}{\log_2 q}$.

[6 marks]

Q	Solution	Mark	Total	Comment
9(a)(i)	Stretch (I) in x (-direction) OE (II)	M1	- Total	Need (I) and either (II) or (III)
	(scale factor) 0.5 OE (III)	A1	2	Need (I) and (III) and (III)
				More than one transformation scores 0/2
(a)(ii)	Translation $\begin{bmatrix} -3\\0 \end{bmatrix}$	E2,1	2	E2 : 'translat' and $\begin{bmatrix} -3\\ 0 \end{bmatrix}$.
				If not E2 award E1 for either 'translat'
				or for $\begin{bmatrix} -3\\0 \end{bmatrix}$.
				More than one transformation scores 0/2
(b)(i)	$2^{x+3} = 2^3 2^x = 8u$	В1	1	$8u$ Accept 2^3u if in later work it is simplified to $8u$
(ii)	$u^2 - 8u + 15 = 0$			Eliminating y with $2^{2x} = u^2$ or $(2^x)^2$ to
		M1		form a quadratic eqn in u or in 2^x (terms in
	$(v+15)^2$			any order) OR eliminating x with
	$y = \left(\frac{y+15}{2^3}\right)^2 (y^2 - 34y + 225 = 0)$			$2^{2x} = y = \left(\frac{y+15}{2^3}\right)^2 \text{ condoning one sign}$
	u = 3, u = 5; v = 9, v = 25;	A2,1		or one numerical error Correct values for u (or 2^x) and correct
	$u = 3 \Rightarrow x = \log_2 3$;	,-		values for y. If not A2 award A1 for any two correct values. If y-values not simplified look for later evidence; eg p as '16' in the final answer is sufficient evidence.
	$u = 5 \Rightarrow x = \log_2 5$ $u = 5 \Rightarrow x = \log_2 5$	M1		From a quadratic eqn, use of
	$u - 3 \rightarrow x - \log_2 3$			$2^x = k \Rightarrow x = \log_2 k \text{ OE, for } k > 0$
				M0 if c's quadratic eqn would give non- real roots or no positive root when solved correctly
	Gradient of $4R = 25 - 9$			Dep on both previous M1.
	Gradient of $AB = \frac{25 - 9}{\log_2 5 - \log_2 3}$	dM1		$\frac{y_A - y_B}{x_A - x_B}$ used with c's x and y values
	16			
	$-\frac{1}{\log_2\left(\frac{5}{3}\right)}$	A1	6	OE in the requested form eg $\frac{-16}{\log_2(0.6)}$
	Total		11	

Given that $3\log_2(c+2) - \log_2\left(\frac{c^3}{2} + k\right) = 1$, express $(c+1)^2$ in terms of k.

[7 marks]

- 2 (a) Sketch the graph of $y = (0.2)^x$, indicating the value of the intercept on the *y*-axis. [2 marks]
 - (b) Use logarithms to solve the equation $(0.2)^x = 4$, giving your answer to three significant figures.

[2 marks]

(c) Describe the geometrical transformation that maps the graph of $y = (0.2)^x$ onto the graph of $y = 5^x$.

[1 mark]

Q9	Solution	Mark	Total	Comment
	$\log_2(c+2)^3 - \log_2\left(\frac{c^3}{2} + k\right) = 1$	M1		$3\log(c+2) = \log(c+2)^{3}$
	$\log_2\left(\frac{(c+2)^3}{\left(\frac{c^3}{2}+k\right)}\right) = 1$	M1		Either $\log A - \log B = \log \frac{A}{B}$ or $1 + \log_2 B = \log_2 2B$ used with correct A and B ; if cand is using their expansion for $(c+2)^3$ in place of $(c+2)^3$, ignore any errors in the expansion in awarding this M1 mark
	$\log_2\left(\frac{(c+2)^3}{\left(\frac{c^3}{2}+k\right)}\right) = \log_2 2$	B1		$1 = \log_2 2$ stated or used <u>at any stage</u> . This also includes the step $\log_2 f(c,k) = p \Rightarrow f(c,k) = 2^p$.
	$(c+2)^3 = 2\left(\frac{c^3}{2} + k\right)$ $c^3 + 6c^2 + 12c + 8$ $= 2\left(\frac{c^3}{2} + k\right)$	B2,1,0		(*) see below $(c+2)^3 = c^3 + 6c^2 + 12c + 8 \text{ seen or}$ used at any stage; B1 if 3 of the 4 terms are correct. May have to check correct collecting of like terms at a later stage in soln. [See below for altn for these two B marks]
	$\Rightarrow 6c^2 + 12c + 8 = 2k$	A1		OE Correct equation with no logs and no c^3 term.
	$\Rightarrow 6(c^2 + 2c + 1) = 2k - 2$ $\Rightarrow (c+1)^2 = \frac{2k-2}{6} = \frac{k-1}{3}$	A1	7	ACF for the expression in k .
	Total		7	

Q2	Solution	Mark	Total	Comment
(a)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	B1		Only one y - intercept, marked as 1 or coordinates $(0,1)$ stated or ' $y = 1$ when
		В1	2	x = 0' Correct graph having no other 'crossing point' on either axis.
(b)	$x \log 0.2 = \log 4$	M1	2	OE eg $(x =) \log_{0.2} 4$
	(x =) -0.861(35) = -0.861 (to 3sf)	A1	2	Condone > 3sf, rounded or truncated. If use of logarithms not explicitly seen then score 0/2
(c)	Reflection in the <i>y</i> -axis.	E1	1	OE E0 if more than one transformation
	Total		5	

9 (a)	Given that $\log_3 c = m$ and $\log_{27} d = n$, e	express $\frac{\sqrt{c}}{d^2}$ in the form 3^y , where y is an
	expression in terms of m and n .	

[4 marks]

(b) Show that the equation

$$\log_4(2x+3) + \log_4(2x+15) = 1 + \log_4(14x+5)$$

has only one solution and state its value.

[4 marks]

2. Find the exact solutions, in their simplest form, to the equations

(a)
$$e^{3x-9} = 8$$
 (3)

(b)
$$ln(2y+5) = 2 + ln(4-y)$$
 (4)

Q9	Solution	Mark	Total	Comment
(a)	$c = 3^m, d = 27^n$	M1		Either $c = 3^m$ or $d = 27^n$ seen or used
	$d = 3^{3n}, d^2 = 3^{6n}$	A1		Either $d = 3^{3n}$ or $d^2 = 3^{6n}$ seen or used
	$\sqrt{c} = 3^{0.5m}$	A1		$\sqrt{c} = 3^{0.5m}$ seen or used
	$\frac{\sqrt{c}}{d^2} = 3^{\frac{m}{2} - 6n}$	A1	4	$\frac{\sqrt{c}}{d^2} = 3^{\frac{m}{2} - 6n}$ OE expression for y in terms of m and n.
Altn	$\frac{1}{2}\log_3 c - 2\log_3 d = y\log_3 3$	(M1)		A correct expression in <i>y</i> in terms of logs to base 3 or base 27 where no further log laws are required
	$\log_3 d = \frac{\log_{27} d}{\log_{27} 3}$	(A1)		$\log_3 d = \frac{\log_{27} d}{\log_{27} 3} \text{ or } \log_{27} c = \frac{\log_3 c}{\log_3 27}$ seen or used
	$\log_{27} 3 = \frac{1}{3}$	(A1)		$\log_{27} 3 = \frac{1}{3}$ or $\log_3 27 = 3$ seen or used
1	$y = \frac{1}{2}m - 6n$	(A1)	(4)	Correct expression for y in terms of m and n OE eg $\frac{\sqrt{c}}{d^2} = 3^{\frac{m}{2}-6n}$
(b)	$1 = \log_4 4$	B 1		$1 = \log_4 4$ seen or used at any stage.
	$\log_4(2x+3)(2x+15) = 1 + \log_4(14x+5)$ $\log_4(2x+3)(2x+15) = \log_4 4(14x+5)$	M1		Applying a log law correctly to two correct log terms. [Condone missing base] NB: Lots of other possibilities after correct rearrangements! PI by $(2x+3)(2x+15) = 4(14x+5)$ OE with no errors seen
	(2x+3)(2x+15) = 4(14x+5)	A1		OE eqn with logs eliminated in a correct manner
	$4x^2 + 36x + 45 = 56x + 20$			
	$4x^2 - 20x + 25 = 0; (2x - 5)^2 = 0$			
	Only one solution 2.5	A1	4	Must include statement and correct value
	Total		8	
1	1014	1	-	I and the second

2.(a)
$$e^{3x-9} = 8 \Rightarrow 3x-9 = \ln 8$$
 M1
 $\Rightarrow x = \frac{\ln 8 + 9}{3}, = \ln 2 + 3$ A1, A1
(b) $\ln(2y+5) = 2 + \ln(4-y)$ M1
 $\ln\left(\frac{2y+5}{4-y}\right) = 2$ M1
 $\left(\frac{2y+5}{4-y}\right) = e^2$ M1
 $2y+5 = e^2(4-y) \Rightarrow 2y+e^2y = 4e^2-5 \Rightarrow y = \frac{4e^2-5}{2+e^2}$ dM1, A1

9 (a) Use logarithms to solve the equation $2^{3x} = 5$, giving your value of x to three significant figures.

[2 marks]

(b) Given that $\log_a k - \log_a 2 = \frac{2}{3}$, express a in terms of k.

[4 marks]

(c) (i) By using the binomial expansion, or otherwise, express $(1+2x)^3$ in ascending powers of x.

[3 marks]

(ii) It is given that

$$\log_2[(1+2n)^3 - 8n] = \log_2(1+2n) + \log_2[4(1+n^2)]$$

By forming and solving a suitable quadratic equation, find the possible values of n.

[5 marks]

Q9	Solution	Mark	Total	Comment
(a)	$3x\log 2 = \log 5$	M1		OE eg $3x = \log_2 5$ or eg $x \log 8 = \log 5$
	x = 0.773(976) = 0.774 (to 3sf)	A1	2	Condone > 3sf. If use of logarithms not
				explicitly seen then score 0/2
(b)	1 2			ı.
(6)	$\log_a \frac{k}{2} = \frac{2}{3}$	M1		Either $\log k - \log 2 = \log \frac{k}{2}$
	2 3			
				or $\frac{2}{3} = \log a^{\frac{2}{3}}$ seen at any stage
	2			3
	$\frac{k}{2} = a^{\frac{2}{3}}$	A1		OE eqn with logs eliminated with no
	2	711		incorrect work
	$\frac{2}{2}$ L $(1)^{\frac{3}{2}}$			$a^{\frac{m}{n}} = C \Rightarrow a = C^{\frac{n}{m}}$
	$a^{\frac{2}{3}} = \frac{k}{2} \implies a = \left(\frac{k}{2}\right)^{\frac{3}{2}}$	m1		$a^n = C \Rightarrow a = C^m$
	2 (2)			3
		A1	4	$a = \left(\frac{k}{2}\right)^{\frac{3}{2}}$ OE exact form with no obvious
			-	$\left(\frac{a-\sqrt{2}}{2}\right)$ OE exact form with no obvious
				incorrect working
(c)(i)	$(1+2x)^3 = 1+3(2x)+3(2x)^2+(2x)^3$			
	$= 1 + 6x + 12x^2 + 8x^3$	B3,2,1		B3: expansion correct and simplified
	1			B2: 3 of the 4 terms correct and simplified
			3	B2; 4 terms correct but not all simplified
			3	B1 2 of the 4 terms correct and simplified (ignore the ordering of the terms)
				(Ignoro inte erasting er inte terms)
(c)(ii)	$[(1+2n)^3-8n]=1-2n+12n^2+8n^3$	B1F		Ft at most two incorrect coefficients in (c)(i)
	$\log(1+2n) + \log 4(1+n^2) = \log 4(1+n^2)(1+2n)$	M1		Log law 1 applied correctly to RHS of
				given eqn., ignore base.
				Those who rearrange the terms first before applying log law 2 correctly must also
				attempt to deal with the resulting fraction
				in a correct manner.
	Given equation becomes			
	$1 - 2n + 12n^2 + 8n^3 = 8n^3 + 4n^2 + 8n + 4$			
	$8n^2 - 10n - 3 (=0)$	A1		Correct three term quadratic
	(4n+1)(2n-3) (=0)	A1		PI by correct two roots from a correct quadratic equation
	1 3			quadratic equation
	$n = -\frac{1}{4}, n = \frac{3}{2}$	A1	5	Need both as the final two values of n with
	-			no extras
	Total		14	

6. (a) Given $y = 2^x$, show that

$$2^{2x+1} - 17(2^x) + 8 = 0$$

can be written in the form

$$2y^2 - 17y + 8 = 0 (2)$$

(b) Hence solve

$$2^{2x+1} - 17(2^x) + 8 = 0 (4)$$

6.(a)	Replaces 2^{2x+1} with $2^{2x} \times 2$ or states $2^{2x+1} = 2^{2x} \times 2$ or states $(2^x)^2 = 2^{2x}$	Uses the addition or power law of indices on 2^{2x} or 2^{2x+1} . E.g. $2^x \times 2^x = 2^{2x}$ or $\left(2^x\right)^2 = 2^{2x}$ or $2^{2x+1} = 2 \times 2^{2x}$ or $2^{x+0.5} = 2^x \times \sqrt{2}$ or $2^{2x+1} = \left(2^{x+0.5}\right)^2$.	M1
	$2^{2x+1} - 17 \times 2^{x} + 8 = 0$ $\Rightarrow 2y^{2} - 17y + 8 = 0*$	Cso. Complete proof that includes explicit statements for the addition and power law of indices on 2^{2x+1} with no errors. The equation needs to be as printed including the "= 0". If they work backwards, they do not need to write down the printed answer first but must end with the version in 2^x including '= 0'.	A1*
(b)	$2(2^{x})^{2} - 17(2^{x}) + 8 = 0 \Rightarrow (2(2^{x})^{2} - 17(2^{x}) + 8 \Rightarrow (2(2^{x})^{2} - 17(2^{x}) + 17(2^{x}) + 8 \Rightarrow (2(2^{x})^{2} - 17(2^{x}) + 1$	or $(y-1)(y-8)(=0) \Rightarrow y = \dots$ or $(2^{x})-1)((2^{x})-8)(=0) \Rightarrow 2^{x} = \dots$ her in terms of y or in terms of 2^{x} or solving a 3 term quadratic he on e.g. $y^{2} - \frac{17}{2}y + 4 = 0$ requires $\pm 4 = 0 \Rightarrow y = \dots$	M1
	$(y=)\frac{1}{2},8 \text{ or } (2^x=)\frac{1}{2},8$	Correct values	A1
	$\Rightarrow 2^{x} = \frac{1}{2}, 8 \Rightarrow x = -1,3$	M1: Either finds one correct value of x for their 2^x or obtains a correct numerical expression in terms of logs e.g. for $k > 0$ $2^x = k \Rightarrow x = \log_2 k \text{ or } \frac{\log k}{\log 2}$ A1: $x = -1,3$ only. Must be values of x .	M1 A1
			(4)

- 7. Given that $y = 2^x$,
 - (a) express 4^x in terms of y.

(1)

(b) Hence, or otherwise, solve

$$8(4^x) - 9(2^x) + 1 = 0$$

(4)

7.(a)	$(4^x =) y^2$	B1	
	Must be seen i	"4" = "not required n part (a)	
		• ` ` `	(1)
(b)	$8y^{2} - 9y + 1 = (8y - 1)(y - 1) = 0 \Rightarrow y = \dots$ or $(8(2^{x}) - 1)((2^{x}) - 1) = 0 \Rightarrow 2^{x} = \dots$	For attempting to solve the given equation as a 3 term quadratic in y or as a 3 term quadratic in 2^x leading to a value of y or 2^x (Apply usual rules for solving the quadratic – see general guidance) Allow x (or any other letter) instead of y for this mark e.g. an attempt to solve $8x^2 - 9x + 1 = 0$	M1
	$2^{x}(\text{or }y) = \frac{1}{8}, 1$	Both correct answers of $\frac{1}{8}$ (oe) and 1 for 2^x or y or their letter but not x unless 2^x (or y) is implied later	A1
	x = -3 $x = 0$	M1: A correct attempt to find one numerical value of x from their 2^x (or y) which must have come from a 3 term quadratic equation . If logs are used then they must be evaluated. A1: Both $x = -3$ and/or $x = 0$ May be implied by e.g. $2^{-3} = \frac{1}{8} \text{ and } 2^0 = 1 \text{ and no}$ extra values.	M1A1

8. (i) Find the real value of x such that

$$\log_x 600 = 3$$

Give your answer to 2 decimal places.

(2)

(ii) Solve the equation

$$\log_9(3x) + \log_9\left(\frac{x^4}{81}\right) = 2$$

giving the exact answer in the form $x = 3^k$, where k is a rational number.

(5)

7. (i) Find the value of y for which

$$1.01^{y-1} = 500$$

Give your answer to 2 decimal places.

(2)

(ii) Given that

$$2\log_4(3x+5) = \log_4(3x+8) + 1, \qquad x > -\frac{5}{3}$$

(a) show that

$$9x^2 + 18x - 7 = 0 ag{4}$$

(b) Hence solve the equation

$$2\log_4(3x+5) = \log_4(3x+8) + 1, \qquad x > -\frac{5}{3}$$
 (2)

8. (i)	$\log_x 600 = 3 \text{ means } x^3 = 600$	M1	
	$x = \sqrt[3]{600} = 8.43$	A1	(2)
(ii) Way 1	$\log_9 3x + \log_9 \frac{x^4}{81} = \log_9 \frac{3x^k}{81}$ where $k = 4$ or 5	M1	
	Uses $\log_9 81 = 2$ or $9^2 = 81$	M1	
	So $3x^5 = 81 \times 81$	A1	
	So $x^5 = \frac{81 \times 81}{3} = 3^7$ so $x = $ (must be power of 3)	dM1	
	$x = 3^{1.4}$ (accept $k = 1.4$)	A1	
			(5)
Way 2	$\log_9 3 + \log_9 x + 4\log_9 x - \log_9 81 = 2$	M1	
	$5\log_9 x = \log_9 81 + \log_9 81 - \log_9 3$	M1	
	$5\log_9 x = 3.5$	A1	
	$\log_3 x = \frac{7}{5}$ so $x = $ (must be power of 3)	dM1	
	$x = 3^{1.4}$ (accept $k = 1.4$)	A1	
			(5)

7. (i) Use of power rule so
$$(y-1)\log 1.01 = \log 500$$
 or $(y-1) = \log_{1.01} 500$ M1

625.56

(ii) (a) Ignore labels (a) and (b) in part ii and mark work as seen $\log_4(3x+5)^2 =$ Applies power law of logarithms Uses $\log_4 4 = 1$ or $4^1 = 4$ M1

Uses quotient or product rule so e.g. $\log(3x+5)^2 = \log 4(3x+8)$ or $\log \frac{(3x+5)^2}{(3x+8)} = 1$ M1

Obtains with no errors $9x^2 + 18x - 7 = 0*$

(b) Solves given or "their" quadratic equation by any of the standard methods Obtains $x = \frac{1}{3}$ and $-\frac{7}{3}$ and rejects $-\frac{7}{3}$ to give just $\frac{1}{3}$ (2)

- $2\log(x+a) = \log(16a^6)$, where a is a positive constant 7. (i) Find x in terms of a, giving your answer in its simplest form.
 - $\log_3(9y + b) \log_3(2y b) = 2$, where b is a positive constant (ii)

Find y in terms of b, giving your answer in its simplest form. **(4)**

(i) Given that 8.

$$\log_3(3b+1) - \log_3(a-2) = -1, \quad a > 2$$

express b in terms of a.

(3)

(ii) Solve the equation

$$2^{2x+5} - 7(2^x) = 0$$

giving your answer to 2 decimal places.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(3)

- 100000		i de la companya de	1 1
7. (i)	Use of power rule so $\log(x+a)^2 = \log 16$	a^6 or $2\log(x+a) = 2\log 4a^3$ or	M1
	$\log(x+a) = \log(16a^6)^{\frac{1}{2}}$		IVII
	Removes logs and square roots, or halves the	en removes logs to give $(x+a) = 4a^3$	3.61
	Or $x^2 + 2ax + a^2 - 16a^6 = 0$ followed by fac	etorisation or formula to give $x = \sqrt{16a^6} - a$	M1
	$(x =) 4a^3 - a$ (depends on previous M	's and must be this expression or equivalent)	Alcao
(;;)	(0 . 1)		(3)
(ii) Way 1	$\log_3 \frac{(9y+b)}{(2y-b)} = 2$	Applies quotient law of logarithms	M1
	$\frac{(9y+b)}{(9y+b)} = 3^2$	Uses $\log_3 3^2 = 2$	M1
	(2y-b)	0363 1053 7 - 2	1011
	$(9y+b) = 9(2y-b) \Rightarrow y =$	Multiplies across and makes y the subject	M1
	$y = \frac{10}{9}b$		A1cso
Way 2	. ,	and Mr. 1	(4)
way 2	Or: $\log_3(9y+b) = \log_3 9 + \log_3(2y-b)$	2 nd M mark	M1
	$\log_3(9y + b) = \log_3 9(2y - b)$	1 st M mark	M1
	(0 . 1) 0(2 . 1)		M1
	$(9y+b) = 9(2y-b) \Rightarrow y = \frac{10}{9}b$	Multiplies across and makes y the subject	Alcso
			(4)
			[7]

8(i)	Two Ways of answering the question are given in part (i)	
Way 1	$\log_3\left(\frac{3b+1}{a-2}\right) = -1$ or $\log_3\left(\frac{a-2}{3b+1}\right) = 1$ Applying the subtraction law of logarithms	M1
	$\frac{3b+1}{a-2} = 3^{-1} \left\{ = \frac{1}{3} \right\} \text{or} \left(\frac{a-2}{3b+1} \right) = 3$ Making a correct connection between log base 3 and 3 to a power.	M1
	${9b+3=a-2 \Rightarrow} b = \frac{1}{9}a - \frac{5}{9}$ $b = \frac{1}{9}a - \frac{5}{9}$ or $b = \frac{a-5}{9}$	
		[3]
	In Way 2 a correct connection between log base 3 and "3 to a power" is used before applying the subtraction or addition law of logs	
(i)	Either $\log_3(3b+1) - \log_3(a-2) = -\log_3 3$ or $\log_3(3b+1) + \log_3 3 = \log_3(a-2)$	2 nd M1
Way 2	$\log_3(3b+1) = \log_3(a-2) - \log_3 3 = \log_3\left(\frac{a-2}{3}\right)$ or $\log_3 3(3b+1) = \log_3(a-2)$	1 st M1
	${3b+1=\frac{a-2}{3}}$ $b=\frac{1}{9}a-\frac{5}{9}$	A1
		[3]
(ii)	$32(2^{2x}) - 7(2^x) = 0$ Deals with power 5 correctly giving ×32	M1
Way 1 See also common approach below in notes	So, $2^x = \frac{7}{32}$ or $y = \frac{7}{32}$ or awrt 0.219	A1 oe dM1
	$\log(\frac{7}{32})$ and $\log(\frac{7}{32})$ A valid method for solving $2^x = \frac{7}{32}$	
	$x \log 2 = \log \left(\frac{7}{32}\right)$ or $x = \frac{\log \left(\frac{7}{32}\right)}{\log 2}$ or $x = \log_2 \left(\frac{7}{32}\right)$ A valid method for solving $2^x = \frac{7}{32}$ Or $2^x = k$ to achieve $x = \dots$	
	x = -2.192645 awrt -2.19	A1
		[4]

- 7. (i) Use logarithms to solve the equation $8^{2x+1} = 24$, giving your answer to 3 decimal places.
- **(3)**

(ii) Find the values of y such that

$$\log_2(11y - 3) - \log_2 3 - 2\log_2 y = 1, \qquad y > \frac{3}{11}$$
 (6)

	1		1	
	$8^{2x+1} = 24$			
7. (i)	$(2x+1)\log 8 = \log 24$ or	or $8^{2x} = 3$ and so $(2x)\log 8 = \log 3$ or	M1	
	$(2x+1)\log 8 = \log 24$ or $(2x+1) = \log_8 24$	$(2x) = \log_8 3$		
	$x = \frac{1}{2} \left(\frac{\log 24}{\log 8} - 1 \right)$ or $x = \frac{1}{2} (\log_8 24 - 1)$	$x = \frac{1}{2} \left(\frac{\log 3}{\log 8} \right)$ or $x = \frac{1}{2} (\log_8 3)$ o.e.	dM1	
	=0.264	2 (10g0) 2	A1	
				(3)
	$\log_2(11y - 3) - \log_2 3 - 2\log_2 y = 1$			
(ii)	$\log_2(11y - 3) - \log_2 3 - \log_2 y^2 = 1$		M1	
	$\log_2 \frac{(11y-3)}{3y^2} = 1$ or $\log_2 \frac{(11y-3)}{y^2} = 1 + \log_2 3 = 2.58496501$			
	$\log_2 \frac{(11y - 3)}{3y^2} = \log_2 2 \text{ or } \log_2 \frac{(11y - 3)}{y^2} = \log_2 6 \text{ (allow awrt 6 if replaced by 6 later)}$			
	Obtains $6y^2 - 11y + 3 = 0$ o.e. i.e. $6y^2 = 11y - 3$ for example			
	Solves quadratic to give $y =$			1
	$y = \frac{1}{3}$ and $\frac{3}{2}$ (need both- one should not be rejected)			(6)
				(6) [9]
1	T.			