- A curve, defined for x > 0, has equation $y = \frac{8}{x^3} + 3x$.
 - (a) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

[3 marks]

(b) Find an equation of the normal to the curve at the point (2, 7).

[3 marks]

2 A curve is defined for x > 0 by the equation

$$y = 3x + x^{\frac{3}{2}} - 7$$

(a) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

[2 marks]

- (b) The point P(4, k) lies on the curve.
 - (i) Find the value of the integer k.

[1 mark]

(ii) Find an equation of the normal to the curve at the point P.

[3 marks]

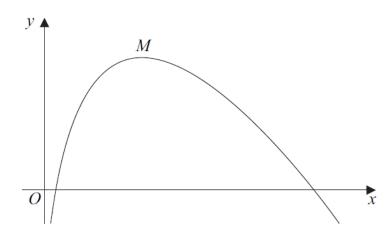
(iii) The normal to the curve at P intersects the x-axis at the point Q. Find the x-coordinate of Q.

[2 marks]

Q	Solution	Mark	Total	Comment
3(a)	$\frac{8}{x^3} = 8x^{-3}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = -24x^{-4} + 3$	B1 B2, 1	3	PI by its derivative as $24x^{-4}$ or $-24x^{-4}$ ACF. If not B2 , award B1 for either $-24x^{-4}$ OE or for $kx^{-4} + 3$, $k \ne 0$, 32
(b)	At $P(2, 7)$ $\frac{dy}{dx} = -24(2)^{-4} + 3 (= 1.5)$ Gradient of normal $= -\frac{2}{3}$ Eqn of normal $y - 7 = -\frac{2}{3}(x - 2)$	M1 dM1 A1		Attempt to find c's $\frac{dy}{dx}$ when $x = 2$. $m \times m' = -1$ used ACF eg $y = -\frac{2}{3}x + \frac{25}{3}$
	Total		6	

Q	Solution	Mark	Total	Comment
2(a)	$dv = 3 \frac{1}{2}$	B2,1		ACF. If not B2 , award B1 for correct
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 + \frac{3}{2}x^{\frac{1}{2}}$		2	differentiation of either $x^{3/2}$ or $3x - 7$
(b)(i)	(k =) 13	B1	1	13
(ii)	At $P(4,k)$ $\frac{dy}{dx} = 3 + \frac{3}{2}(4)^{0.5}$ (= 6)	M1		Attempt to find c's $\frac{dy}{dx}$ when $x = 4$. M0 if c's answer (a) is a constant
	Gradient of normal = $-\frac{1}{6}$	dM1		$m \times m' = -1$ used
	Eqn of normal $y-13 = -\frac{1}{6}(x-4)$	A1F	3	ACF only ft on c's non-zero value of k ie check c's equation is equivalent to $6y+x=4+6k$, for c's non-zero value of k
(iii)	When $y = 0$, $0 - 13 = -\frac{1}{6}(x - 4)$	M1		Attempts to find x when $y=0$ in c's <u>linear</u> equation answer to (b)(ii)
	x = 82	A1	2	82 82 with or without working scores 2/2
	Total		8	

3 The diagram shows a curve with a maximum point M.



The curve is defined for x > 0 by the equation

$$y = 6x^{\frac{1}{2}} - x - 3$$

(a) Find
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
.

[2 marks]

(b) Hence find the y-coordinate of the maximum point M.

[3 marks]

(c) Find an equation of the normal to the curve at the point P(4, 5).

[3 marks]

(d) It is given that the normal to the curve at P, when translated by the vector $\begin{bmatrix} k \\ 0 \end{bmatrix}$, passes through the point M. Find the value of the constant k.

[3 marks]

The point A lies on the curve with equation $y = x^{\frac{1}{2}}$. The tangent to this curve at A is parallel to the line 3y - 2x = 1. Find an equation of this tangent at A.

[5 marks]

Q3	Solution	Mark	Total	Comment
(a)		B2,1		ACF. If not B2, award B1 for correct
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{6}{2}x^{-0.5} - 1 = 3x^{-0.5} - 1$		2	differentiation of either $6x^{1/2}$ or $-x-3$
(b)	$3x^{-0.5} - 1 = 0$	M1		Evidence of c's $\frac{dy}{dx}$ equated to 0 to form
	$3x^{-0.5} = 1, x = 9$	A1F		an equation in x. Only ft if c's $\frac{dy}{dx} = ax^{-0.5} - 1$ ie $x_M = a^2$
	(y-coordinate of M is) 6	A1	3	NMS scores 0/3
(c)	At $P(4,5)$ $\frac{dy}{dx} = 3(4)^{-0.5} - 1 (=0.5)$	M1		Attempt to find c's $\frac{dy}{dx}$ when $x = 4$.
	Gradient of normal = -2	m1 A1	3	$m \times m' = -1$ used ACF eg $y + 2x = 13$
	Eqn of normal $y-5=-2(x-4)$	AI	3	Acr eg $y + 2x - 13$
(d)	Translated normal: y-5 = -2(x-k-4)	M1		Either $x \rightarrow x - k$ or $x \rightarrow x + k$ with no change to y in cand's eqn of normal seen or used
	Passes through M (9, 6) so $6-5 = -2(9-k-4)$	m1		Subst of c's M coordinates (both +'ve) into cand's eqn of normal with $x \rightarrow x - k$ and no
	k = 5.5	A1	3	change to y. A correct value of k with no errors seen.

Q8	Solution	Mark	Total	Comment
	Gradient of the line $3y - 2x = 1$ is $\frac{2}{3}$	B1		(Gradient) $\frac{2}{3}$ seen or used. Condone 0.66,
				0.67 or better for $\frac{2}{3}$.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}x^{-0.5}$	B1		Correct differentiation of $x^{\frac{1}{2}}$
	At A , $\frac{1}{2}x^{-0.5} = \frac{2}{3}$	M1		c's $\frac{dy}{dx}$ expression = c's numerical
				gradient of given line.
	$A\left(\frac{9}{16},\frac{3}{4}\right)$	A1		Correct exact coordinates of A
	Eqn of tang at A: $y - \frac{3}{4} = \frac{2}{3} \left(x - \frac{9}{16} \right)$	A1	5	ACF eg $y = \frac{2}{3}x + \frac{3}{8}$ or eg $3y - 2x = \frac{9}{8}$ must be exact
	Total		5	must be exact

$$x = \frac{1}{2}t^4 - 18t^2 + 54t, \qquad 0 \leqslant t \leqslant 5$$

- (a) Find:
 - (i) $\frac{\mathrm{d}x}{\mathrm{d}t}$;

[2 marks]

(ii) $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$

[1 mark]

(b) Verify that x has a stationary value when t=3, and determine, with a reason, whether this stationary value is a maximum value or a minimum value.

[4 marks]

- (c) Find the rate of change of x with respect to t in cm per second when t=1. [2 marks]
- (d) Determine, with a reason, whether the distance of the car from O is increasing or decreasing at the instant when t=2.

[2 marks]

Q3	Solution	Mark	Total	Comment
(a)(i) (ii)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t} = \right) \frac{4t^3}{2} - 36t + 54$ $\left(\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = \right) 6t^2 - 36$	M1 A1 B1 ft	2	two terms correct all correct FT their $\frac{dx}{dt}$
	$\frac{4\times27}{2} - 36\times3 + 54$	M1		sub $t = 3$ into "their" $\frac{dx}{dt}$
	= $54 - 108 + 54 = 0$ so stationary $\left(\text{when } t = 3, \frac{d^2 x}{dt^2}\right) = (54 - 36) = 18$	A1 M1		shown = 0 plus statement sub $t = 3$ into their $\frac{d^2x}{dt^2}$ and evaluate correctly
	18 > 0 therefore minimum (point)	A1	4	with correct reason such as $\frac{d^2x}{dt^2} > 0$
(c)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = 2 \times 1^3 - 36 \times 1 + 54$	M1		Sub $t = 1$ into "their" $\frac{dx}{dt}$
(d)	$= 20$ $\left(\frac{\mathrm{d}x}{\mathrm{d}t} = \right) 2 \times 2^3 - 36 \times 2 + 54 = -2$	A1 M1	2	Sub $t = 2$ into "their" $\frac{dx}{dt}$
	-2 < 0 therefore decreasing	E1	2	must have reason (with no incorrect notation) and all working correct
	Total		11	

- A curve has equation $y = 20x x^2 2x^3$. The curve has a stationary point at the point M where x = -2.
 - (a) Find the *x*-coordinate of the other stationary point of the curve.

[4 marks]

(b) Find the value of $\frac{d^2y}{dx^2}$ at the point M, and hence determine, with a reason, whether M is a minimum point or a maximum point.

[3 marks]

(c) Sketch the curve.

[2 marks]

The water level in a reservoir rises and falls during a four-hour period of heavy rainfall. The height, $h \, \mathrm{cm}$, of water above its normal level, t hours after it starts to rain, can be modelled by the equation

$$h = 4t^3 - \frac{59}{2}t^2 + 72t$$
, $0 \le t \le 4$

(a) Find the rate of change of the height of water, in cm per hour, 3 hours after it starts to rain.

[4 marks]

(b) Find the values of t for which the height of the water is decreasing.

[5 marks]

Q2	Solution	Mark	Total	Comment
(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right) 20 - 2x - 6x^2$	M1 A1		two terms correct all correct
	(10-6x)(2+x) (=0) OE	A1		correct factors or correct use of formula for correct quadratic possibly multiplied by -1 or divided by ±2
	(other stationary point when) $x = \frac{5}{3}$	A1cso	4	OE eg $\frac{20}{12}$, $1\frac{2}{3}$, 1.6 but not $\frac{-20}{-12}$
(b)	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right) = -2 - 12x$	B1		
	when $x = -2$, $\frac{d^2 y}{dx^2} = (-2 + 24) = 22$	B1ft		Sub $x = -2$ into their $\frac{d^2 y}{dx^2}$ and evaluate correctly
	22 > 0 therefore minimum (point)	E1ft	3	FT their value of $\frac{d^2y}{dx^2}$ but must have
(c)	Cubic graph through origin with one max & one min on either side of <i>y</i> -axis	M1		may be reflection of given graph in x-axis for M1
		A1	2	Graph roughly as shown in all 4 quadrants

Q8	Solution	Mark	Total	Comment
(a)	$\left(\frac{\mathrm{d}h}{\mathrm{d}t} = \right) 12t^2 - 59t + 72 \qquad \mathbf{OE}$	M1 A1		two terms correct (may have x for t) all correct – must have t
	$t = 3 \Rightarrow \left(\frac{\mathrm{d}h}{\mathrm{d}t}\right) = 12 \times 3^2 - 59 \times 3 + 72$	dM1		substituting $t = 3$ into their $\frac{dh}{dt}$
	(108 - 177 + 72 =) 3	A1	4	
(b)	(Decreasing) $\Rightarrow 12t^2 - 59t + 72 < 0$	B1ft		FT their $\frac{\mathrm{d}h}{\mathrm{d}t}$ but must have " < 0"
	(4t-9)(3t-8)	M1		attempt at factors or correct use of formula
	CVs are $(t =) \frac{9}{4}, (t =) \frac{8}{3}$	A1		
	$\begin{array}{c cccc} + & - & + \\ \hline & 9 & & 8 \\ \hline 4 & & 3 \end{array}$	M1		use of sign diagram or sketch $\frac{9}{4} \qquad \frac{8}{3}$
	$\frac{9}{4} < t < \frac{8}{3}$	A1	5	fractions must be simplified & B1 earned for final A1
	may have $t < \frac{8}{3}$ AND $t > \frac{9}{4}$			no ISW here

The gradient, $\frac{dy}{dx}$, at the point (x, y) on a curve is given by

$$\frac{dy}{dx} = 54 + 27x - 6x^2$$

(a) (i) Find $\frac{d^2y}{dx^2}$.

[2 marks]

(ii) The curve passes through the point $P\left(-1\frac{1}{2}, 4\right)$.

Verify that the curve has a minimum point at P.

[4 marks]

(b) (i) Show that at the points on the curve where y is decreasing

$$2x^2 - 9x - 18 > 0$$

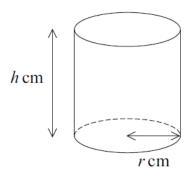
[2 marks]

(ii) Solve the inequality $2x^2 - 9x - 18 > 0$.

[4 marks]

Q7	Solution	Mark	Total	Comment
(a)(i)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right) -2x - 9x^2$	M1 A1		one term correct all correct (no +c etc)
	when $x = -2$, $\frac{dy}{dx} = (4 - 36 =) -32$	A1		
	y = "their - 32"x + c & attempt to find c using $x = -2$ and $y = 24$	m1		or $y-24 = "their - 32"(x2)$
	y = -32x - 40	A1	5	must write in this form; no ISW here
	$y = 0 \Rightarrow x = -\frac{5}{4} \text{ OE}$	B1F	1	strict FT from their answer to (a)(i)
(b)(i)	$4x - \frac{x^3}{3} - \frac{3x^4}{4}(+c)$	M1 A1		two terms correct all correct
	$\left[4 \times 1 - \frac{1^{3}}{3} - \frac{3 \times 1^{4}}{4}\right] - \left[4 \times (-2) - \frac{(-2)^{3}}{3} - \frac{3(-2)^{4}}{4}\right]$	m1		"their" F(1) – F(-2)
	$\left[4 - \frac{1}{3} - \frac{3}{4}\right] - \left[-8 + \frac{8}{3} - \frac{48}{4}\right]$	A1		correct with powers of 1 and (-2) and minus signs handled correctly
	$=20\frac{1}{4}$	A1	5	$20.25, \frac{81}{4}, \frac{243}{12}$ OE
(ii)	Area of missing triangle = $(\frac{1}{2} \times 24 \times \frac{3}{4})$ 9	B1		or correct single equivalent fraction
	Area of region = "their" (b)(i) - "their" Δ	M1		"their" $(20\frac{1}{4}-9)$
	$=11\frac{1}{4}$	A1	3	$11.25, \frac{45}{4}, \frac{135}{12}$ OE
	Total		14	

The diagram shows a cylindrical container of radius r cm and height h cm. The container has an **open** top and a circular base.



The **external** surface area of the container's curved surface and base is 48π cm².

When the radius of the base is $r \, \text{cm}$, the volume of the container is $V \, \text{cm}^3$.

(a) (i) Find an expression for h in terms of r.

[3 marks]

(ii) Show that $V=24\pi r-\frac{\pi}{2}r^3$.

[2 marks]

(b) (i) Find $\frac{\mathrm{d}V}{\mathrm{d}r}$.

[2 marks]

(ii) Find the positive value of r for which V is stationary, and determine whether this stationary value is a maximum value or a minimum value.

[4 marks]

Q6	Solution	Mark	Total	Comment
(a)(i)	$(SA =) \pi r^2 + 2\pi rh$	B1		correct surface area
	$\pi r^{2} + 2\pi r h = 48\pi$ $\Rightarrow 2rh = 48 - r^{2} \Rightarrow h = \dots$ $h = \frac{48 - r^{2}}{2r}$	M1	3	equating "their" SA to 48π and attempt at $h = $ or $h = \frac{24}{r} - \frac{r}{2}$ OE
(ii)	$V = \pi r^2 h = \dots$ $= \pi f(r)$	A1 M1	3	correct volume expression
	$V = \pi r^{2} \left(\frac{48 - r^{2}}{2r} \right) = 24\pi r - \frac{\pi}{2} r^{3}$	A1	2	& elimination of h using "their" (a)(i) AG (be convinced)
(b)(i)	$\left(\frac{\mathrm{d}V}{\mathrm{d}r}\right) = 24\pi - \frac{3}{2}\pi r^2$	M1 A1	2	one term correct all correct, must simplify r^0
(ii)	$24\pi - \frac{3}{2}\pi r^2 = 0 \Rightarrow r^2 = \frac{48\pi}{3\pi}$	M1		"their" $\frac{dV}{dr} = 0$ and attempt at $r^n =$
	r = 4	A1		from correct $\frac{\mathrm{d}V}{\mathrm{d}r}$
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = -\frac{6\pi r}{2}$	B1 √		FT "their" $\frac{\mathrm{d}V}{\mathrm{d}r}$
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} < 0$ when $r = 4$ \Rightarrow Maximum	A1cso	4	explained convincingly, all working and notation correct
	Total		11	

3 (a) Describe a sequence of **two** geometrical transformations that maps the graph of $y = \ln x$ onto the graph of $y = \ln(3x + 4)$.

[4 marks]

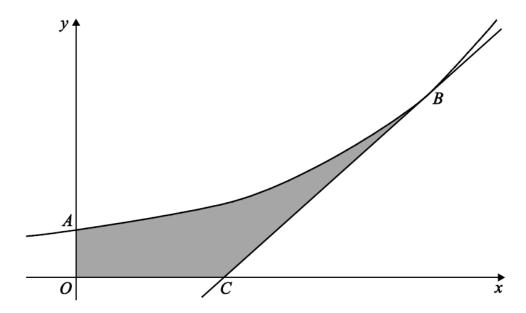
(b) The **normal** to the curve $y = \ln(3x + 4)$ at the point $P(2, \ln 10)$ intersects the *x*-axis at the point A.

Find the exact value of the x-coordinate of A.

[4 marks]

Q3	Solution	Mark	Total	Comment
(a)	Stretch I			
	Parallel to x-axis II	M1		I and II or III (or line $y = 0$)
	SF 1/3 III	A1		I + II + III
	then			
	Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$	B1		
	$\begin{bmatrix} b \end{bmatrix}$ $k = -4/3$	B1		
	$\frac{\kappa - 473}{\text{OR}}$			
	Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$	(B1)		
	k = -4	(B1)		
	then			
	Stretch I	(M1)		
	Parallel to x-axis II			
	SF 1/3 III	(A1)		As above
	OR (either order)			ĺ
	$\lceil k \rceil$	(B1)		
	Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$			
	k = -4/3	(B1)		
	Translation $\begin{bmatrix} 0 \\ k \end{bmatrix}$	(M1)		
	$\begin{bmatrix} k \end{bmatrix}$ $k = \ln 3$	(A1)		
		(AI)		
			4	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{3x+4} \text{oe}$	M1		
	At $x = 2$, Gradient = 0.3	A1		
	Equation of normal:			
	$y - \ln 10 = -\frac{10}{3}(x - 2)$	M1		Allow -1/(their grad)
	Intersects x – axis:			
	$x = 0.3\ln 10 + 2 \qquad \text{ACF}$	A1	4	
			4	

The diagram shows the curve $y = e^{2x}$, intersecting the *y*-axis at the point *A*, and the tangent to this curve at the point *B*, where $x = \ln 4$, intersecting the *x*-axis at the point *C*.



(a) (i) Find an equation of the tangent to the curve at B.

[3 marks]

(ii) Hence show that the coordinates of C are $\left(\ln 4 - \frac{1}{2}, 0\right)$.

[1 mark]

Q10	Solution		Mark	Total	Comment
(a)(i)	$x = \ln 4, y = e^{2\ln 4}$				
	$y = \left(e^{\ln 16} = \right)16$		B1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x}$		M1		
	$y-16=32(x-\ln 4)$	OE	A1		With no exponentials
				3	
(ii)	$[y=0] -\frac{16}{32} = x - \ln 4$ $x = \ln 4 - \frac{1}{2}$ or $[x = \ln 4 - 0.5]$ $y - 16 = 32(\ln 4 - 0.5 - \ln 4)$ $y = 32 \times -0.5 + 16 = 0$		B1		Must see this line oe AG All correct and no errors seen. Must be using a correct equation from (i), (condone e ^{2ln4} unsimplified)
				1	

4 (a) Describe a sequence of **two** geometrical transformations that maps the graph of $y = e^x$ onto the graph of $y = e^{2x-5}$.

[4 marks]

(b) The **normal** to the curve $y = e^{2x-5}$ at the point $P(2, e^{-1})$ intersects the x-axis at the point A and the y-axis at the point B.

Show that the area of the triangle OAB is $\frac{(e^2+1)^m}{e^n}$, where m and n are integers.

[6 marks]

a	Stretch I [Parallel to] x [-axis] II (or line $y = 0$) [SF] 0.5 III then Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$	M1 A1 M1		I and II or III I + II + III
	(or line $y = 0$) [SF] 0.5 III then Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$	A1		I + II + III
	[SF] 0.5 III then Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$ [2.5]	A1		I + II + III
	then Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$ $\begin{bmatrix} 2.5 \end{bmatrix}$			
	Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$ $\begin{bmatrix} 2.5 \end{bmatrix}$	M1		(and) Grant I I I I I I I I I I I I I I I I I I I
	[2.5]	M1		
	$\begin{bmatrix} 2.5 \\ 0 \end{bmatrix}$			or (2^{nd}) Stretch [parallel to] y [-axis]
				6
		A1		SF e ⁻⁵
	OR			(for the '2 stretch' method, if the 'y'
	$\lfloor - \rfloor$			direction stretch is first, marks can
	Translation $\begin{bmatrix} \kappa \\ 0 \end{bmatrix}$	(M1)		only be earned if there is a second
	[5]			stretch in 'x' direction.
	$\begin{bmatrix} 5 \\ 0 \end{bmatrix}$	(A1)		The stretches can be in either order)
	then			
	Stretch I	(M1)		I and II or III
	[Parallel to] x[-axis] II [SF] 0.5 III	(A1)	4	I + II + III
	[SF] 0.5 III	(111)		
b	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x-5}$	D4		
	dx	B1		
	Grad normal = $-\frac{1}{\text{their gradient}}$	DIE		
	their gradient	B1F		Condone expression in terms of x
	(equation normal)			
	1 e			
	<u> </u>	B1		Must be exact values
	$(\operatorname{At} A \ y = 0)$			
	$(At A y = 0)$ $x = 2 + \frac{2}{e^2}$ oe	M1		Attempt to find at least one intercept
	e^2	1/11		from 'their' normal, subst $x = 0$ or
	(At B x = 0)			y = 0 in any straight line equation
	$y = e + \frac{1}{1} = \frac{e^2 + 1}{1}$ oe	A1		Both x and y values correct
	e e			-
	(At $B \ x = 0$) $y = e + \frac{1}{e} = \frac{e^2 + 1}{e}$ oe $\left((Area =) \ 0.5 \times \frac{(e^2 + 1)}{e} \times \frac{2(1 + e^2)}{e^2} \right)$ $= \frac{(e^2 + 1)^2}{e^3}$			
	$(e^2+1)^2$	A 1		
	$=\frac{\sqrt{1-r^2}}{e^3}$	A1		
			6	
	Total		10	

(b) A curve has equation $y = f(x)$ where $f(x) = 6 \ln x + x^2 - 8x$	(b)	A curve has equation	v = f(x)	where	f(x)	$= 6 \ln x + x^2 -$	-8x +
--	-----	----------------------	----------	-------	------	---------------------	-------

(i) Find the exact values of the coordinates of the stationary points of the curve.

[5 marks]

(ii) Hence, or otherwise, find the exact values of the coordinates of the stationary points of the curve with equation

$$y = 2f(x - 4)$$

[2 marks]

2. It is given that

$$y = 15x + 108x^{\frac{1}{2}} + 4x^{\frac{5}{2}} \qquad x > 0$$

Find, in simplest form,

(a)
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$

(b)
$$\frac{d^2y}{dx^2}$$

(c) Find the value of
$$\frac{d^2y}{dx^2}$$
 when $x = 9$

bi	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6}{x} + 2x - 8$	B1		Condone $\frac{6x^5}{x^6}$
	$\left(\frac{dy}{dx} = 0\right) \ 6 + 2x^2 - 8x = 0$	M1		Equate to zero (PI) and eliminate their fraction correctly.
	x=1, x=3 (x=1), y=-4 $(x=3), y=6\ln 3-12$ or $\ln 729-12$	A1 A1 A1	5	Oe for other exact correct values If M0 then SC1 for (1, -4) and/or (3, 6 ln 3 – 12)
ii	x = 5, y = -8 $x = 7, y = 12 \ln 3 - 24$	M1 A1	2	their $x + 4$ and $2 \times$ their y on either of their 'pairs' All correct: oe exact

Question Number	Scheme	Notes	Marl	ks
2.(a)		For $15x \to 15$ or $x^{\frac{1}{2}} \to x^{-\frac{1}{2}}$ or $x^{\frac{5}{2}} \to x^{\frac{3}{2}}$	M1	
		Any 2 correct terms, may be simplified or unsimplified.	A1	
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right)15 + 54x^{-\frac{1}{2}} + 10x^{\frac{3}{2}}$	All correct and simplified on one line. Allow equivalent forms for the powers of x e.g. $\frac{1}{x^{\frac{1}{2}}}, \frac{1}{\sqrt{x}} \text{ for } x^{-\frac{1}{2}}$ $\sqrt{x^3}, x\sqrt{x} \text{ for } x^{\frac{3}{2}}$	A1	
		$\sqrt{x^3}$, $x\sqrt{x}$ for x^2		[3]
(b)		For $x^n \to x^{n-1}$ on one of their terms from (a) but not for $k \to 0$	M1	
	$\left(\frac{d^2y}{dx^2}\right) - 27x^{-\frac{3}{2}} + 15x^{\frac{1}{2}}$	For a correct simplified answer on one line or		
	$\left(\mathrm{d}x^2\right)^{-27x}$	for $Ax^{-\frac{3}{2}} + Bx^{\frac{1}{2}}$ where A and B are simplified and follow their "54" and "10" from (a) all on one line.	Alft	
				[2]
	Penalise the occurrence of "+ c" in (a) or (b)	only once and penalise it the first time it occurs.		
(c)	When $x = 9$, $\left(\frac{d^2 y}{dx^2}\right) - 1 + 45 = 44$	44 only	B1	
				[1]
			6 mai	rks

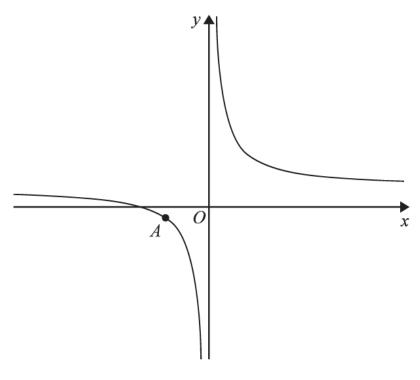


Figure 1

Figure 1 shows a sketch of part of the curve H with equation

$$y = \frac{12}{x} + 5 \quad x \neq 0$$

(a) Find an equation for the normal to H at the point A (-2, -1), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(5)

The points B and C also lie on the curve H.

The normal to H at the point B and the normal to H at the point C are each parallel to the straight line with equation 4y = 3x + 5

(b) Find the coordinates of the points B and C, given that the x coordinate of B is positive.

Question Number	Scheme	Notes	Marks
9.(a)	$y = \frac{12}{x} + 5 \implies \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{12}{x^2}$	$\frac{12}{x} \to \frac{k}{x^2} \left(\text{or } kx^{-2} \right)$	M1
	At $x = -2$ $\frac{dy}{dx} = -\frac{12}{4}$ or -3	Correct value (may be implied by later work)	Al
	Gradient of normal is $-1 \div -\frac{12}{4} \left(= \frac{1}{3} \right)$	Correct application of the perpendicular gradient rule. May be implied by use of $-\frac{1}{12}$ as the normal gradient for those candidates who think the gradient is 12.	Ml
	$y+1 = \frac{1}{3}(x+2)$ or $y = \frac{1}{3}x+c \text{ and}$ $-1 = \frac{1}{3}(-2)+c \Rightarrow c = \dots$	A correct straight line method using their changed gradient and the point $(-2, -1)$. This must follow use of calculus to find the gradient.	M1
	3y - x + 1 = 0	Correct equation in the required form. (Allow any integer multiple)	A1
			<u> </u>
(b)	Gradient of given line is $\frac{3}{4}$	May be implied by use of $-\frac{4}{3}$	B1
	$\frac{x^2}{12} = \frac{3}{4} \Rightarrow x = \dots$	Sets up a correct equation using what they think is the gradient of the given line and attempts to solve.	M1
	$x = \pm 3$	Both correct values required	A1
	$x = \dots \Rightarrow \frac{12}{x} + 5 = \dots$	Uses at least one x to find a value for y using $y = \frac{12}{x} + 5$. Dependent on the first method mark.	dM1
<u> </u>	(3, 9) and (-3, 1)	Dependent on the first method mark.	
	or e.g. $x = 3, y = 9$	Correct coordinates correctly paired	A1
	x = -3, y = 1		
			10
			10 mar

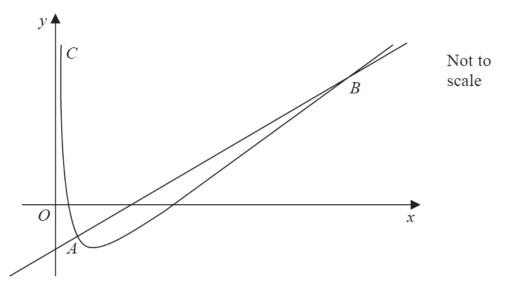


Figure 3

Figure 3 shows a sketch of part of the curve C with equation

$$y = \frac{1}{2}x + \frac{27}{x} - 12, \qquad x > 0$$

The point A lies on C and has coordinates $\left(3, -\frac{3}{2}\right)$.

(a) Show that the equation of the normal to C at A can be written as 10y = 4x - 27 (5)

The normal to C at A meets C again at the point B, as shown in Figure 3.

(b) Use algebra to find the coordinates of B.

Question Number	Sch	neme	Marks
10(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} - \frac{27}{x^2}$	M1: $\frac{1}{2}$ or $-\frac{27}{x^2}$ A1: $\frac{dy}{dx} = \frac{1}{2} - \frac{27}{x^2}$ oe e.g. $\frac{1}{2}x^0 - 27x^{-2}$	M1A1
	$x = 3 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} - \frac{27}{9} = \left(-\frac{5}{2}\right)$	Substitutes $x = 3$ into their $\frac{dy}{dx}$ to obtain a numerical gradient	M1
	$m_T = -\frac{5}{2} \Rightarrow m_N = -1 \div -\frac{5}{2}$ $\Rightarrow y - \left(-\frac{3}{2}\right) = \frac{2}{5}(x - 3)$	The correct method to find the equation of a normal. Uses $-\frac{1}{m_T}$ with $\left(3, -\frac{3}{2}\right)$ where m_T has come from calculus. If using $y = mx + c$ must reach as far as $c = \dots$	M1
	10y = 4x - 27*	Cso (correct equation must be seen in (a))	A1*
(b)		Equate equations to produce an	(5)
(b)	$\frac{1}{2}x + \frac{27}{x} - 12 = \frac{4x - 27}{10}$ or $y = \frac{10y + 27}{8} + \frac{108}{10y + 27} - 12$	equation just in x or just in y. Do not allow e.g. $\frac{1}{2}x^2 + 27 - 12x = \frac{4x - 27}{10}$ Unless $\frac{1}{2}x + \frac{27}{x} - 12 = \frac{4x - 27}{10}$ was seen previously. Allow sign slips only.	M1
	$x^{2}-93x+270=0$ or $20y^{2}-636y-999=0$	Correct 3 term quadratic equation (or any multiple of). Allow terms on both sides e.g. $x^2 - 93x = -270$ (The "= 0" may be implied by their attempt to solve)	A1
	$(x-90)(x-3) = 0 \Rightarrow x = \dots \text{ or}$ $x = \frac{93 \pm \sqrt{93^2 - 4 \times 270}}{2} \text{ or}$ $(10y-333)(2y+3) = 0 \Rightarrow y = \dots \text{ or}$ $y = \frac{636 \pm \sqrt{636^2 - 4 \times 20 \times (-999)}}{2 \times 20}$	Attempt to solve a 3TQ (see general guidance) leading to at least one for x or y. Dependent on the first method mark.	dM1
	x = 90 or $y = 33.3$ oe	Cso. The x must be 90 and the y an equivalent number such as e.g. $\frac{333}{10}$	A1
	x = 90 and $y = 33.3$ oe	Cso. The x must be 90 and the y an equivalent number such as e.g. $\frac{333}{10}$	A1
			(5)

Given

$$y = \sqrt{x} + \frac{4}{\sqrt{x}} + 4, \qquad x > 0$$

 $y = \sqrt{x} + \frac{4}{\sqrt{x}} + 4, \quad x > 0$ find the value of $\frac{\mathrm{d}y}{\mathrm{d}x}$ when x = 8, writing your answer in the form $a\sqrt{2}$, where a is a rational number.

Question Number	Scheme	Marks
2.	$y = \sqrt{x} + \frac{4}{\sqrt{x}} + 4 = x^{\frac{1}{2}} + 4x^{-\frac{1}{2}} + 4$	
	Decreases any power by 1. Either $x^{\frac{1}{2}} \to x^{-\frac{1}{2}} \text{ or } x^{-\frac{1}{2}} \to x^{-\frac{3}{2}} \text{ or } 4 \to 0 \text{ or } x^{\text{their } n} \to x^{\text{their } n-1} \text{ for fractional } n.$	Ml
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{1}{2}x^{-\frac{1}{2}} + 4 \times -\frac{1}{2}x^{-\frac{3}{2}}$ $\left(=\frac{1}{2}x^{-\frac{1}{2}} - 2x^{-\frac{3}{2}}\right)$ Correct derivative, simplified or unsimplified including indices. E.g. allow $\frac{1}{2} - 1$ for $-\frac{1}{2}$ and allow $-\frac{1}{2} - 1$ for $-\frac{3}{2}$	Al
	Attempts to substitute $x = 8$ into their 'changed' (even integrated) expression that is clearly not y. If they attempt algebraic manipulation of their dy/dx before substitution, this mark is still available.	Ml
	B1: $\sqrt{8} = 2\sqrt{2}$ seen or implied anywhere, including from substituting $x = 8$ into y . May be seen explicitly or implied from e.g. $8^{\frac{3}{2}} = 16\sqrt{2} \text{ or } 8^{\frac{5}{2}} = 128\sqrt{2} \text{ or } 4\sqrt{8} = 8\sqrt{2}$ A1: $\cos \frac{1}{16}\sqrt{2}$ or $\frac{\sqrt{2}}{16}$ and allow rational equivalents for $\frac{1}{16}$ e.g. $\frac{32}{512}$ Apply isw so award this mark as soon as a correct answer is seen.	- B1A1
	·	(5 marks)

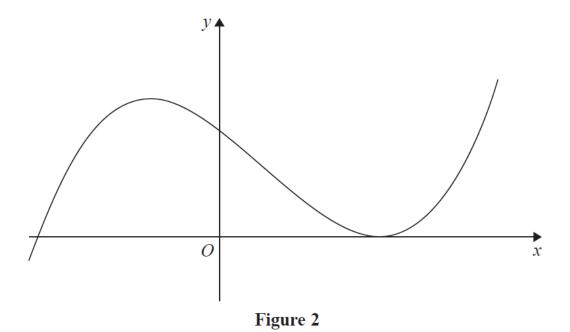


Figure 2 shows a sketch of part of the curve y = f(x), $x \in \mathbb{R}$, where

$$f(x) = (2x - 5)^2(x + 3)$$

- (a) Given that
 - (i) the curve with equation y = f(x) k, $x \in \mathbb{R}$, passes through the origin, find the value of the constant k,
 - (ii) the curve with equation y = f(x + c), $x \in \mathbb{R}$, has a minimum point at the origin, find the value of the constant c.

(3)

(b) Show that
$$f'(x) = 12x^2 - 16x - 35$$

Points A and B are distinct points that lie on the curve y = f(x).

The gradient of the curve at A is equal to the gradient of the curve at B.

Given that point A has x coordinate 3

(c) find the x coordinate of point B.

0.(a)(i)		M1: Attempts to find the 'y' intercept.	
-()(•)		Accept as evidence $(-5)^2 \times 3$ with or	
		without the bracket. If they expand	
		f(x) to polynomial form here then	
		they must then select their constant	
	$k = (-5)^2 \times 3 = 75$	to score this mark. May be implied by sight of 75 on the diagram.	M1A1
	()	A1: $k = 75$. Must clearly be identified	
		as k. Allow this mark even from an	
		incorrect or incomplete expansion as	
		long as the constant $k = 75$ is obtained. Do not isw e.g. if 75 is seen	
		followed by $k = -75$ score M1A0.	
(ii)	_	$c = \frac{5}{2}$ oe (and no other values). Do	
	$c = \frac{5}{2}$ only	not award just from the diagram –	B1
	<u> </u>	must be stated as the value of c .	
4.5			(3)
(b)	`	$(0x+25)(x+3) = 4x^3 - 8x^2 - 35x + 75$	
		mial by attempting to square the first	
		bracket or expands $(2x-5)(x+3)$ and	M1
		plies by $2x-5$ b) but may be done in part (a).	
		e.g. $(2x-5)^2 = 4x^2 \pm 25$	
		M1: Reduces powers by 1 in all terms	
		including any constant →0 A1: Correct proof. Withhold this	
	$(f'(x) =)12x^2 - 16x - 35*$	mark if there have been any errors	M1A1*
		including missing brackets earlier e.g.	
		$(2x-5)^{2}(x+3) = 4x^{2} - 20x + 25(x+3) = \dots$	(2)
l		Substitutes $x = 3$ into their $f'(x)$ or	(3)
(c)	$f'(3) = 12 \times 3^2 - 16 \times 3 - 35$	the given $f'(x)$. Must be a changed	M1
(0)		function i.e. not into $f(x)$.	1,11
		Sets their $f'(x)$ or the given $f'(x) =$	
	$12x^2 - 16x - 35 = '25'$	their f'(3) with a consistent f'.	dM1
	12x 10x 33 = 23	Dependent on the previous method mark.	WIVII
		$12x^2 - 16x - 60 = 0$ or equivalent 3	
		term quadratic e.g. $12x^2 - 16x = 60$.	
	$12x^2 - 16x - 60 = 0$	(A correct quadratic equation may be	A1 cso
		implied by later work). This is cso so must come from correct work – i.e.	
		they must be using the given $f'(x)$.	
		Solves 3 term quadratic by suitable	
	$(x-3)(12x+20) = 0 \Rightarrow x =$	method – see General Principles.	ddM1
	$(x-3)(12x+20) = 0 \Rightarrow x =$		ddM1
	$(x-3)(12x+20) = 0 \Rightarrow x = \dots$	method – see General Principles. Dependent on both previous	ddM1
	$(x-3)(12x+20) = 0 \Rightarrow x = \dots$	method – see General Principles. Dependent on both previous method marks. $x = -\frac{5}{3}$ oe clearly identified. If $x = 3$ is also given and not rejected, this	ddM1
		method – see General Principles. Dependent on both previous method marks. $x = -\frac{5}{3}$ oe clearly identified. If $x = 3$ is also given and not rejected, this mark is withheld.	
	$(x-3)(12x+20) = 0 \Rightarrow x = \dots$ $x = -\frac{5}{3}$	method – see General Principles. Dependent on both previous method marks. $x = -\frac{5}{3}$ oe clearly identified. If $x = 3$ is also given and not rejected, this mark is withheld. (allow -1.6 recurring as long as it is	ddM1 A1 cso
		method – see General Principles. Dependent on both previous method marks. $x = -\frac{5}{3}$ oe clearly identified. If $x = 3$ is also given and not rejected, this mark is withheld. (allow -1.6 recurring as long as it is clear i.e. a dot above the 6). This is cso and must come from correct	
		method – see General Principles. Dependent on both previous method marks. $x = -\frac{5}{3}$ oe clearly identified. If $x = 3$ is also given and not rejected, this mark is withheld. (allow -1.6 recurring as long as it is clear i.e. a dot above the 6). This is cso and must come from correct work – i.e. they must be using the	
		method – see General Principles. Dependent on both previous method marks. $x = -\frac{5}{3}$ oe clearly identified. If $x = 3$ is also given and not rejected, this mark is withheld. (allow -1.6 recurring as long as it is clear i.e. a dot above the 6). This is cso and must come from correct	

7. Given that

$$y = 3x^2 + 6x^{\frac{1}{3}} + \frac{2x^3 - 7}{3\sqrt{x}}, \quad x > 0$$

find $\frac{dy}{dx}$. Give each term in your answer in its simplified form.

(6)

Attempts to split the fraction into 2 terms and obtains either $\alpha x^{\frac{1}{2}}$ or $\beta x^{-\frac{1}{2}}$. This may be implied by a correct power of x in their differentiation of one of these terms. But beware of $\beta x^{\frac{1}{2}}$ coming from $\frac{2x^3-7}{3\sqrt{x}}=2x^3-7+3x^{-\frac{1}{2}}$ Differentiates by reducing power by one for any of their powers of x Al: $6x$. Do not accept $6x^1$. Depends on second M mark only. Award when first seen and isw. Al: $2x^{-\frac{1}{2}}$. Must be simplified so do not accept e.g. $\frac{2}{1}x^{-\frac{1}{2}}$ but allow $\frac{2}{3\sqrt{x}}$. Depends on second M mark only. Award when first seen and isw. Al: $\frac{5}{3}x^{\frac{1}{2}}$. Must be simplified but allow e.g. Ala1A1A1 $1\frac{2}{x^{15}}$ or e.g. $\frac{5}{3}\sqrt{x^3}$. Award when first seen and isw. Al: $\frac{7}{6}x^{-\frac{1}{2}}$. Must be simplified but allow e.g. $\frac{1}{6}x^{-\frac{1}{2}}$ or e.g. $\frac{7}{6\sqrt{x^3}}$. Award when first seen and isw. In an otherwise fully correct solution, penalise the presence of + c by deducting the final A1	I	•	i i
any of their powers of x M1 A1: 6x. Do not accept $6x^1$. Depends on second M mark only. Award when first seen and isw. A1: $2x^{-\frac{3}{2}}$. Must be simplified so do not accept e.g. $\frac{2}{1}x^{-\frac{3}{2}}$ but allow $\frac{2}{\sqrt[3]{x^2}}$. Depends on second M mark only. Award when first seen and isw. A1: $\frac{5}{3}x^{\frac{3}{2}}$. Must be simplified but allow e.g. A1: $\frac{5}{3}x^{\frac{3}{2}}$. Must be simplified but allow e.g. A1: $\frac{1}{3}x^{\frac{3}{2}}$ or e.g. $\frac{5}{3}\sqrt{x^3}$. Award when first seen and isw. A1: $\frac{7}{6}x^{-\frac{1}{2}}$ or e.g. $\frac{7}{6\sqrt{x^3}}$. Award when first seen and isw. In an otherwise fully correct solution, penalise the presence of + c by deducting the final A1	$\frac{2x^3 - 7}{3\sqrt{x}} = \frac{2x^3}{3\sqrt{x}} - \frac{7}{3\sqrt{x}} = \frac{2}{3}x^{\frac{2}{3}} - \frac{7}{3}x^{-\frac{1}{2}}$	and obtains either $\alpha x^{\frac{1}{2}}$ or $\beta x^{-\frac{1}{2}}$. This may be implied by a correct power of x in their differentiation of one of these terms. But beware of $\beta x^{-\frac{1}{2}}$ coming from	M1
second M mark only. Award when first seen and isw. A1: $2x^{-\frac{2}{3}}$. Must be simplified so do not accept e.g. $\frac{2}{1}x^{-\frac{2}{3}}$ but allow $\frac{2}{\sqrt[3]{x^2}}$. Depends on second M mark only. Award when first seen and isw. A1: $\frac{5}{3}x^{\frac{3}{2}}$. Must be simplified but allow e.g. A1: $\frac{5}{3}x^{\frac{3}{2}}$. Must be simplified but allow e.g. A1: $\frac{1}{3}x^{15}$ or e.g. $\frac{5}{3}\sqrt{x^3}$. Award when first seen and isw. A1: $\frac{7}{6}x^{-\frac{3}{2}}$. Must be simplified but allow e.g. $\frac{1}{6}x^{-1\frac{1}{2}}$ or e.g. $\frac{7}{6\sqrt{x^3}}$. Award when first seen and isw. In an otherwise <u>fully correct solution</u> , penalise the presence of + c by deducting the final A1	$x^n \to x^{n-1}$		M1
[6]	In an otherwise <u>fully correct solution</u> , penalis	second M mark only. Award when first seen and isw. A1: $2x^{-\frac{2}{3}}$. Must be simplified so do not accept e.g. $\frac{2}{1}x^{-\frac{2}{3}}$ but allow $\frac{2}{\sqrt[3]{x^2}}$. Depends on second M mark only. Award when first seen and isw. A1: $\frac{5}{3}x^{\frac{3}{2}}$. Must be simplified but allow e.g. $1\frac{2}{3}x^{1.5}$ or e.g. $\frac{5}{3}\sqrt{x^3}$. Award when first seen and isw. A1: $\frac{7}{6}x^{-\frac{3}{2}}$. Must be simplified but allow e.g. $1\frac{1}{6}x^{-1\frac{1}{2}}$ or e.g. $\frac{7}{6\sqrt{x^3}}$. Award when first seen and isw. The the presence of $\frac{7}{6}$ and $\frac{7}{6}$ are the presence of $\frac{7}{6}$ by deducting the final seen and isw.	A1A1A1A1
			[6]

11. The curve C has equation $y = 2x^3 + kx^2 + 5x + 6$, where k is a constant.

(a) Find
$$\frac{dy}{dx}$$
 (2)

The point P, where x = -2, lies on C.

The tangent to C at the point P is parallel to the line with equation 2y - 17x - 1 = 0

Find

(b) the value of k,

(4)

(c) the value of the y coordinate of P,

(2)

(d) the equation of the tangent to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(2)

110111001		1		
11. (a)	$y = 2x^3 + kx^2$	$x^2 + 5x + 6$		
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right) 6x^2 + 2kx + 5$	M1: $x^n \to x^{n-1}$ for one of the terms including $6 \to 0$ A1: Correct derivative	M1 A1	
		A1. Confect derivative	[2]	
(b)		Uses or states $\frac{17}{2}$ or equivalent e.g. 8.5.	[2]	
	Gradient of given line is $\frac{17}{2}$	Must be stated or used in (b) and not just	B1	
		seen as part of $y = \frac{17}{2}x + \frac{1}{2}$.		
	$\left(\frac{dy}{dx}\right)_{x=-2} = 6(-2)^2 + 2k(-2) + 5$	Substitutes $x = -2$ into their derivative (not the curve)	M1	
		dM1: Puts their expression = their $\frac{17}{2}$		
	$"24 - 4k + 5" = "\frac{17}{2}" \Longrightarrow k = \frac{41}{8}$	(Allow BOD for 17 or -17 but not the normal gradient) and solves to obtain a value for k. Dependent on the previous method mark .	dM1 A1	
		A1: $\frac{41}{8}$ or $5\frac{1}{8}$ or 5.125		
	Note:			
	$6x^2 + 2kx + 5 = \frac{17}{2}x + \frac{1}{2}$ scores no marks on its own but may score the first M mark if they			
	substitute $x = -2$ into the lhs. If they rearrange this no man			
			[4]	
(c)		M1: Substitutes $x = -2$ and their numerical k into $y =$		
	$y = -16 + 4k - 10 + 6 = 4"k" - 20 = \frac{1}{2}$	into $y = \dots$ A1: $y = \frac{1}{2}$	M1 A1	
	Allow the marks for part (c) to be scored in part (b).			
			[2]	
(d)	$y - \frac{1}{2} = \frac{17}{2} (x - 2) \Rightarrow -17x + 2y - 35 = 0$	M1: Correct attempt at linear equation with their 8.5 gradient (not the normal gradient)		
	or	using $x = -2$ and their $\frac{1}{2}$	M1 A1	
	$y = "\frac{17}{2}"x + c \Rightarrow c = \Rightarrow -17x + 2y - 35 = 0$ or		WIIAI	
	$2y - 17x = 1 + 34 \Rightarrow -17x + 2y - 35 = 0$	A1: cao (allow any integer multiple)		
		1	[2]	

6. The curve *C* has equation

$$y = \frac{(x^2 + 4)(x - 3)}{2x}, \quad x \neq 0$$

- (a) Find $\frac{dy}{dx}$ in its simplest form. (5)
- (b) Find an equation of the tangent to C at the point where x = -1

Give your answer in the form ax + by + c = 0, where a, b and c are integers.

	+	T	
6(a)	$(x^2+4)(x-3) = x^3 - 3x^2 + 4x - 12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
	$\frac{x^3 - 3x^2 + 4x - 12}{2x} = \frac{x^2}{2} - \frac{3}{2}x + 2 - 6x^{-1}$	M1: Attempt to divide each term by $2x$. The powers of x of at least two terms must follow from their expansion. Allow an attempt to multiply by $2x^{-1}$ A1: Correct expression. May be un-simplified but powers of x must be combined e.g. $\frac{x^2}{2}$ not $\frac{x^3}{2x}$	M1A1
		ddM1: $x^n \rightarrow x^{n-1}$ or $2 \rightarrow 0$ Dependent on both previous method marks.	
	$\frac{dy}{dx} = x - \frac{3}{2} + \frac{6}{x^2}$ oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$	A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept 1x or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 . If they lose the previous	ddM1A1
		A1 because of an incorrect constant only then allow recovery here and in part (b) for a correct derivative.	
			(5)
(b)	At $x = -1$, $y = 10$	Correct value for y	B1
	$\left(\frac{dy}{dx}\right) - 1 - \frac{3}{2} + \frac{6}{1} = 3.5$	M1: Substitutes $x = -1$ into their expression for dy/dx A1: 3.5 oe cso	M1A1
	y-'10'='3.5'(x1)	Uses their tangent gradient which must come from calculus with $x = -1$ and their numerical y with a correct straight line method. If using $y = mx + c$, this mark is awarded for correctly establishing a value for c .	M1
	2y-7x-27=0	$\pm k(2y-7x-27) = 0 \cos 0$	A1
	I .	* * * * * * * * * * * * * * * * * * * *	l

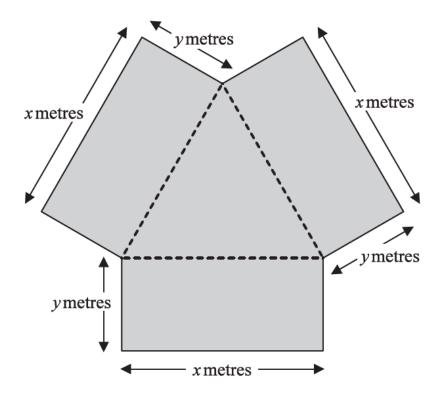


Figure 4

Figure 4 shows a plan view for a flower bed. Its shape is an equilateral triangle of side x metres with three congruent rectangles attached to the triangle along its sides. Each rectangle has length x metres and width y metres, as shown in Figure 4.

Given that the total area of the flower bed is $3 \,\mathrm{m}^2$ and that 0 < x < 2.632 (3d.p.),

(a) show that the perimeter P metres, around the outside of the flower bed, is given by the equation

$$P = 3x + \frac{6}{x} - \frac{\sqrt{3}}{2}x$$
 (6)

(b) Use calculus to find the minimum value of *P*, giving your answer to 3 significant figures. (5)

(c) Justify, using calculus, that the value you have found in part (b) is a minimum value.

(c) Justify, using calculus, that the value you have found in part (b) is a minimum value.
(2)

10 (a)	${A = }\frac{1}{2}x^2 \sin 60^\circ + 3xy \text{ or } \frac{1}{2}x\sqrt{x^2 - \frac{x^2}{4}} + 3xy$	M1 A1
	$\{A = \} \frac{1}{2}x^2 \sin 60^\circ + 3xy \text{or} \frac{1}{2}x\sqrt{x^2 - \frac{x^2}{4}} + 3xy$ $3 = \frac{\sqrt{3}x^2}{4} + 3xy \implies y = \frac{1}{x} - \frac{\sqrt{3}x}{12} \text{o.e.}$	A1
	$\{P=\} 3x+6 y$	B1
	$P = 3x + 6\left(\frac{1}{x} - \frac{\sqrt{3}x}{12}\right)$	M1
	So $P = 3x + \frac{6}{x} - \frac{\sqrt{3}}{2}x$	A1 *
(b)		(6)
	$\left(\frac{dP}{dr}\right) = 3 - \frac{6}{r^2} - \frac{\sqrt{3}}{2}$	M1 A1
	Puts their $P' = 0$ and attempts to solve for x^2 or x	M1
	$\Rightarrow x = \sqrt{\frac{12}{6 - \sqrt{3}}} = \sqrt{\frac{24 + 4\sqrt{3}}{11}} \text{or } 1.68$	A1
	$\Rightarrow P = 7.16 \text{ (m)}$	A1
	$A^{2}P$ 12	(5) M1
(c)	$\frac{d^2P}{dx^2} = \frac{12}{x^3} > 0 \Rightarrow Minimum$	A1 (2)
		(13 marks)

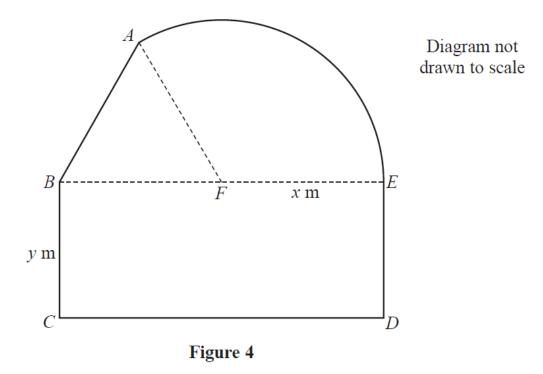


Figure 4 shows a plan view of a sheep enclosure.

The enclosure ABCDEA, as shown in Figure 4, consists of a rectangle BCDE joined to an equilateral triangle BFA and a sector FEA of a circle with radius x metres and centre F.

The points B, F and E lie on a straight line with FE = x metres and $10 \le x \le 25$

(a) Find, in m^2 , the exact area of the sector *FEA*, giving your answer in terms of x, in its simplest form.

Given that BC = y metres, where y > 0, and the area of the enclosure is 1000 m^2 ,

(b) show that

$$y = \frac{500}{x} - \frac{x}{24} \left(4\pi + 3\sqrt{3} \right) \tag{3}$$

(2)

(c) Hence show that the perimeter P metres of the enclosure is given by

$$P = \frac{1000}{x} + \frac{x}{12} \left(4\pi + 36 - 3\sqrt{3} \right) \tag{3}$$

- (d) Use calculus to find the minimum value of P, giving your answer to the nearest metre. (5)
- (e) Justify, by further differentiation, that the value of P you have found is a minimum. (2)

$\frac{1}{2}x^2 \times \left(\frac{2\pi}{3}\right) \text{ or } \frac{120}{360} \times \pi x^2 \text{ simplified or unsimplified}$ Area $(FFA) = \frac{1}{2}x^2 \left(\frac{2\pi}{3}\right) = \frac{\pi x^2}{360}$	M1
$\frac{\pi x^2}{3}$	A1
Darte (b) and (a) may be worked to get her	[2
	M1
$1 ? A = (-x^2 \sin 60) + -\pi x^2 + 7xy$	+
$1000 = \frac{\sqrt{3} x^2}{4} + \frac{\pi x^2}{3} + 2xy \implies y = \frac{500}{x} - \frac{\sqrt{3} x}{8} - \frac{\pi x}{6}$ $\implies y = \frac{500}{x} - \frac{x}{24} \left(4\pi + 3\sqrt{3} \right) *$ Correct proof.	A1 *
$\{P = \} x + x\theta + y + 2x + y \left\{ = 3x + \frac{2\pi x}{3} + 2y \right\}$ Correct expression in x and y for their θ measured in rads	B1ft
2 $y = +2\left(\frac{500}{x} - \frac{x}{24}\left(4\pi + 3\sqrt{3}\right)\right)$ Substitutes expression from (b) into y term.	M1
J	A1 *
$\frac{1}{x} = \frac{1}{12} \left(\frac{1}{12} \left(\frac{1}{12} + \frac{1}{12} \left(\frac{1}{12} + \frac{1}{12} + \frac{1}{12} \right) \right) + \frac{1}{12} \left(\frac{1}{12} + $	AI
D + /D 1/ 1 111 1 1 4	<u> </u>
$\frac{1000}{1000} \rightarrow \frac{\pm \lambda}{1000}$	M1
(need not be simplified).	A1;
	M1
$\Rightarrow x = \sqrt{\frac{1000(12)}{4\pi + 36 - 3\sqrt{3}}} \text{ (= 16.63392808)} \qquad \sqrt{\frac{1000(12)}{4\pi + 36 - 3\sqrt{3}}} \text{ or awrt 17 (may be implied)}$	Al
$\left\{ P = \frac{1000}{(16.63)} + \frac{(16.63)}{12} \left(4\pi + 36 - 3\sqrt{3} \right) \right\} \Rightarrow P = 120.236 \text{ (m)}$ awrt 120	A1
	[5
$\frac{d^2 P}{dx^2} = \frac{2000}{x^3} > 0 \Rightarrow \text{Minimum} \qquad \frac{2000}{x^3} \text{ (need not be simplified) and } > 0 \text{ and conclusion.}$	M1 A1ft
Only follow through on a correct P'' and x in range $10 < x < 25$.	[2
	Area(FEA) = $\frac{1}{2}x^2\left(\frac{2\pi}{3}\right)$; = $\frac{\pi x^2}{3}$ simplified $\frac{\pi x^2}{3}$ Parts (b) and (c) may be marked together $\{A = \} \frac{1}{2}x^2 \sin 60^\circ + \frac{1}{3}\pi x^2 + 2xy \qquad \text{Attempt to sum 3 areas (at least one correct)} $ Correct expression for at least two terms of A $1000 = \frac{\sqrt{5}x^2}{4} + \frac{\pi x^2}{3} + 2xy \Rightarrow y = \frac{500}{x} - \frac{\sqrt{3}x}{8} - \frac{\pi x}{6}$ $\Rightarrow y = \frac{500}{x} - \frac{x}{24}(4\pi + 3\sqrt{3}) * \qquad \text{Correct expression in } x \text{ and } y \text{ for their } \theta \text{ measured in rads}$ $\dots 2y = +2\left(\frac{500}{x} - \frac{x}{24}(4\pi + 3\sqrt{3})\right) \qquad \text{Substitutes expression from (b) into } y \text{ term.}$ $P = 3x + \frac{2\pi x}{3} + \frac{1000}{x} - \frac{\pi x}{3} - \frac{\sqrt{3}}{4}x \Rightarrow P = \frac{1000}{x} + 3x + \frac{\pi x}{3} - \frac{\sqrt{3}}{4}x$ $\Rightarrow P = \frac{1000}{x} + \frac{1}{12}(4\pi + 36 - 3\sqrt{3}) * \qquad \text{Correct proof.}$ Parts (d) and (e) should be marked together $\frac{dP}{dx} = -1000x^{-2} + \frac{4\pi + 36 - 3\sqrt{3}}{12}; = 0 \qquad \frac{1000}{x} + \frac{12}{4\pi + 36 - 3\sqrt{3}} \text{ or awrt } 17 \text{ (may be implified)}$ $\frac{dP}{dx} = -\frac{1000}{(16.63)} + \frac{(16.63)}{12}(4\pi + 36 - 3\sqrt{3}) \Rightarrow P = 120.236 \text{ (m)} \qquad \text{awrt } 120$ Finds P'' and considers sign.

9. A solid glass cylinder, which is used in an expensive laser amplifier, has a volume of $75 \pi \text{ cm}^3$.

The cost of polishing the surface area of this glass cylinder is £2 per cm² for the curved surface area and £3 per cm² for the circular top and base areas.

Given that the radius of the cylinder is r cm,

(a) show that the cost of the polishing, $\pounds C$, is given by

$$C = 6\pi r^2 + \frac{300\pi}{r} \tag{4}$$

(b) Use calculus to find the minimum cost of the polishing, giving your answer to the nearest pound.

(5)

(c) Justify that the answer that you have obtained in part (b) is a minimum.

(1)

4.

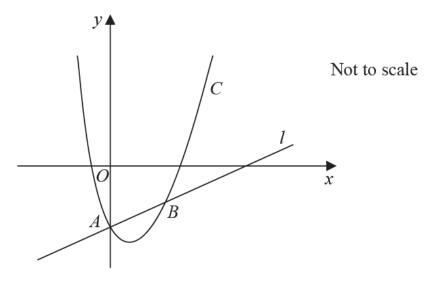


Figure 1

Figure 1 shows a sketch of part of the curve C with equation

$$y = e^{-2x} + x^2 - 3$$

The curve C crosses the y-axis at the point A.

The line l is the normal to C at the point A.

(a) Find the equation of l, writing your answer in the form y = mx + c, where m and c are constants.

9. (a)	Either: (Cost of polishing top and bottom (two circles) is $3 \times 2\pi r^2$ or (Cost of polishing curved surface area is) $2 \times 2\pi rh$ or both - just need to see at least one of these products	B1
	Uses volume to give $(h =) \frac{75\pi}{\pi r^2}$ or $(h =) \frac{75}{r^2}$ (simplified) (if V is misread – see below)	B1ft
	$(C) = 6\pi r^2 + 4\pi r \left(\frac{75}{r^2}\right)$ Substitutes expression for h into area or cost expression of form $Ar^2 + Brh$	M1
	$C = 6\pi r^2 + \frac{300\pi}{r}$	A1* (4)
(b)	$C = 6\pi r^{2} + \frac{300\pi}{r} $ * $ \left\{ \frac{dC}{dr} = \right\} 12\pi r - \frac{300\pi}{r^{2}} $ or $12\pi r - 300\pi r^{-2}$ (then isw)	M1 A1 ft
	$12\pi r - \frac{300\pi}{r^2} = 0$ so $r^k = \text{value}$ where $k = \pm 2, \pm 3, \pm 4$	dM1
	Use cube root to obtain $r = \left(their \frac{300}{12}\right)^{\frac{1}{3}} = \left(2.92\right)$ - allow $r = 3$, and thus $C = \frac{1}{3}$	ddM1
	Then $C = \text{awrt } 483 \text{ or } 484$	Alcao (5)
(c)	$\left\{\frac{\mathrm{d}^2 C}{\mathrm{d}r^2} = \right\} 12\pi + \frac{600\pi}{r^3} > 0 \text{ so minimum}$	B1ft (1)
		[10]

4.(a)
$$\frac{dy}{dx} = -2e^{-2x} + 2x$$
At $x = 0$
$$\frac{dy}{dx} = -2 \Rightarrow \frac{dx}{dy} = \frac{1}{2}$$
Equation of normal is $y - (-2) = \frac{1}{2}(x - 0) \Rightarrow y = \frac{1}{2}x - 2$
M1 A1

(5)

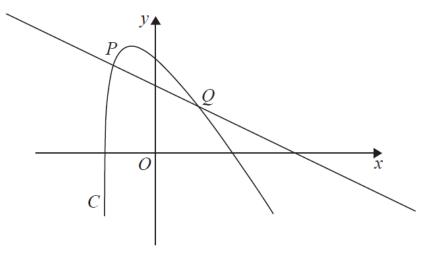


Figure 2

Figure 2 shows a sketch of part of the curve C with equation

$$y = 2\ln(2x+5) - \frac{3x}{2}, \quad x > -2.5$$

The point P with x coordinate -2 lies on C.

(a) Find an equation of the normal to C at P. Write your answer in the form ax + by = c, where a, b and c are integers.

(5)

The normal to C at P cuts the curve again at the point Q, as shown in Figure 2.

(b) Show that the x coordinate of Q is a solution of the equation

$$x = \frac{20}{11}\ln(2x+5) - 2\tag{3}$$

5. (a)	At P $x = -2 \Rightarrow y = 3$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{2x+5} - \frac{3}{2}$	M1, A1
	$\left \frac{dy}{dx} \right _{x=-2} = \frac{5}{2} \Rightarrow \text{ Equation of normal is } y - '3' = -\frac{2}{5} (x - (-2))$	M1
	$\Rightarrow 2x + 5y = 11$	A1
		(5)
(b)	Combines $5y + 2x = 11$ and $y = 2\ln(2x+5) - \frac{3x}{2}$ to form equation in x	
	$5\left(2\ln(2x+5) - \frac{3x}{2}\right) + 2x = 11$	M1
	$\Rightarrow x = \frac{20}{11} \ln(2x+5) - 2$	dM1 A1*
		(3)