Pure Sector 2: Differentiation 1

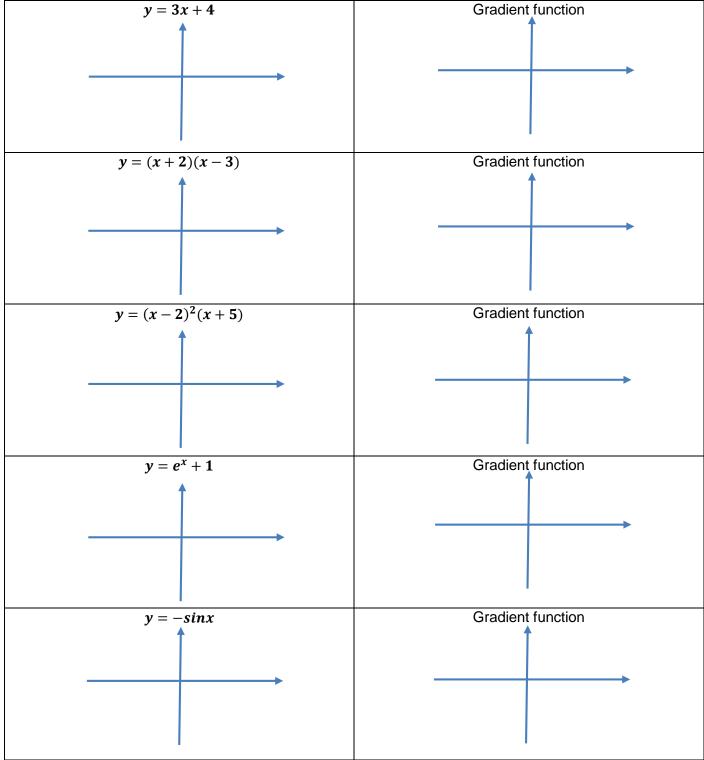
Aims

- Use and apply differentiation from first principles for small powers of n in the function x^n , sinx and cosx.
- Differentiate $f(x) = x^n$ for rational values of n.
- Sketch the gradient of a curve and find the gradient using differentiation.
- Differentiate $\sin kx$ and $\cos kx$.

Sketching the Gradient Function

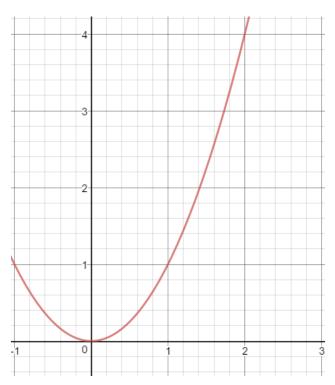
Tips for sketching gradient functions:

- When the graph is increasing the gradient is positive.
- When the graph is decreasing the gradient is negative.
- When the tangent is horizontal the gradient is zero. A point on the graph where this happens is called a **stationary point** or **turning point**.



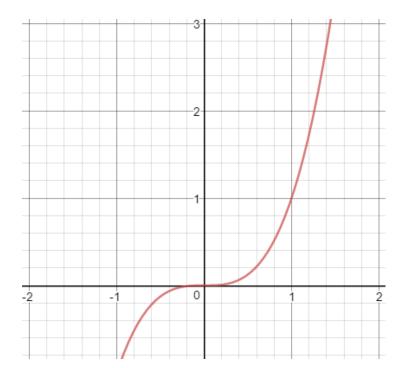
Differentiation from first principles of x^n

Example 2



Example 3

 $f(x) = x^3$



$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

a. Prove from first principles that the derivative of y = 4 is zero.

b. Differentiate $f(x) = x^2 - 6x$ from first principles.

c. Prove from first principles that if $f(x) = x^4$ then $f'(x) = 4x^3$

$$y = ax^n \Rightarrow \frac{dy}{dx} = anx^{n-1}$$

 $f(x) = ax^n \Rightarrow f'(x) = anx^{n-1}$
Where a and n are constants

Note- the derivative is the same for an equation or a function the notation is just different

Example 5

Find the derivative with respect to x of the following functions and simplify where possible-

a. $y = x^2$ b. $y = 7x^{100}$ c. $f(x) = -2x^{10}$ d. $y = 3x^{-2}$ e. $y = 4x^5$ f. $f(x) = 2x^{\frac{1}{3}}$ g. y = -5xh. f(x) = 2i. $y = -6x^{-1}$ j. $y = 8x^{\frac{1}{2}}$

Exercise A

Find the derivative with respect to x of the following functions and simplify where possiblea. $y = x^5$ b. $f(x) = 9x^{-3}$

- c. $y = x^9$ d. $y = 7x^2$
- e. $f(x) = 6x^{\frac{1}{3}}$ f. $f(x) = x^7$
- g. $y = x^{12}$ h. $y = 2x^9$
- i. $f(x) = x^{20}$ j. $y = \frac{3}{5}x^{-1}$
- k. $y = \frac{7}{8}x^3$ l. $f(x) = \frac{2}{5}x^2$

m.
$$y = 2x^{14}$$
 n. $y = x^{-\frac{3}{2}}$

0.
$$f(x) = 4x^{11}$$
 p. $y = \frac{3x^3}{4}$

q.
$$y = 7x^3$$
 r. $f(x) = -4x^{-7}$

s.
$$f(x) = -2x^{17}$$

t. $f(x) = \frac{3}{2}x^7$

u.
$$y = -x^{\frac{9}{7}}$$
 V. $y = \frac{2}{3}x^{-3}$

w.
$$y = 12x$$

 x. $y = -\frac{5x^3}{2}$

y.
$$f(x) = 4$$
 z. $y = x^{100}$

Find the gradient of the curve $y = 3x^5$ at the point (2,96)

Example 7

Find the coordinates of the point on the curve $f(x) = 8x^2$ where the gradient is 64.

Example 8

The radius, *r* cm, of a circular ink spot is given by $r = \frac{t^2}{8} + 1$, where *t* is the number of seconds after it first appears. Find the rate of change of the radius after 4s.

Exercise B

Find the gradient of these functions at the points indicated -
a. $y = x^2 at (3,9)$ b. $y = x^3 at (-1,-1)$ c. $y = x^5 at (2,32)$ d. $y = 4x^2 at (5,100)$ e. $y = 3x^3 at (-4, -192)$ f. $y = -x^5 at (1, -1)$ g. $y = 10x^2 at (6,36)$ h. $y = -7x^4 at (-2, -112)$ i. y = 12x at (13,156)j. $y = 3x^2 at (-7,147)$

k. $y = -10x^7 at (1, -10)$ l. $y = 5x^5 at (2, 160)$

Exercise C

Find the gradient of these functions at the points indicated – a. $y = x^{-2} at \left(2, \frac{1}{4}\right)$ b. $y = 3x^{\frac{1}{2}} at (9, 9)$

c.
$$f(x) = -2x^{-3} at (1, -2)$$

d. $y = 4x^{-\frac{1}{4}} at (16, 2)$

- a. Find the coordinates of the point on the curve $f(x) = \frac{1}{2}x^2$ where the gradient is 7
- b. Find the coordinates of the point on the curve $f(x) = 3x^4$ where the gradient is -96
- c. Find the coordinates of the points on the curve $y = x^3$ where the gradient is 12

Differentiating term by term

Example 10

Differentiate $f(x) = 3x^2 + 5x - 3$ with respect to x

Example 11

Find the gradient of the curve $y = 3x - 8x^2$ at the point *P* (3, -63)

Example 12

Find the coordinates of the point on the curve $y = 2x^2 - 3x + 4$ where it is parallel to the line y = 5x + 3.

Example 13

Differentiate $y = x^{-2} + 3x^{\frac{1}{2}} - 4x^{-2}$ with respect to x

Example 14 Differentiate $y = 2x^{-5} - 4x^{-\frac{1}{4}} + 6$ with respect to x

Differentiating with fractional and negative indices

The Laws of Indices

•
$$x^m \times x^n = x^{m+n}$$

• $x^m \div x^n = x^{m-n}$
• $(x^m)^n = x^{mn}$
• $\sqrt[n]{x} = x^{\frac{1}{n}}$

Always convert to exponent form before differentiating

Example 15

Find the derivative with respect to x of the following functions and simplify where possiblea. $y = \frac{3}{x^2}$ b. $y = \sqrt[5]{x}$

c.
$$y = 7\sqrt{x}$$
 d. $f(x) = \frac{1}{4x^3}$

e.
$$f(x) = \sqrt[3]{x^2} + 2x + 3$$
 f. $y = \frac{5}{4\sqrt{x}} - 2x^{-1}$

g.
$$f(x) = \frac{5}{x^3} - \frac{2}{3x^2} + \frac{1}{4x}$$

h. $y = \frac{7}{x^3} - \frac{4}{3x} + 8x^2$

Differentiating Products and Fractions

Always expand/simplify before differentiating

Example 16

Find the derivative with respect to *x* of the following functions and simplify where possiblea. y = (x - 6)(x + 2)

b.
$$f(x) = (3x+2)(2x-5)$$

c. y = x(x+2)(2x+3)

d.
$$f(x) = 2x^{\frac{1}{2}}(3x^2 - x)$$

$$e. \qquad y = \frac{x^6 - 8x^3 + 7}{x}$$

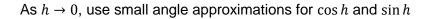
Differentiation of sin x and cos x from first principles

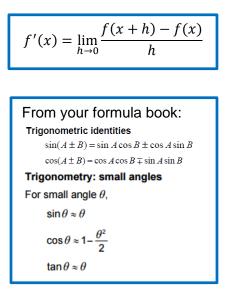
Example 17

f(x) = sinx

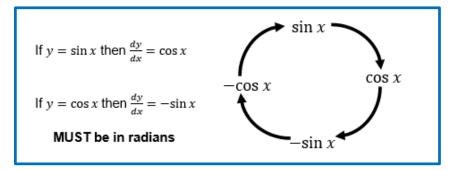
$$f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

Use the compound angle formula from your formula book





Show that the derivative of $\cos x$ is $-\sin x$ by using differentiation from first principles.



Chain Rule

If
$$u = g(x)$$
 and $y = f(u)$, then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
or
If $u = g(x)$ and $y = fg(x)$, then $\frac{dy}{dx} = f'(u) \times g'(x)$

Example 19

Differentiate the following expressions:

- a. $y = (2x 3)^5$
- b. $y = (5x 2)^8$
- c. $y = (7 x)^2$

- d. $y = (4x 1)^{-3}$
- e. $y = 3(2 3x)^{\frac{7}{2}}$
- f. $y = (4x^3 2)^7 + x^2$

Chain Rule - Exponentials and Logarithms

If
$$y = e^x$$
 then $\frac{dy}{dx} = e^x$
If $y = e^{f(x)}$ then $\frac{dy}{dx} = f'(x)e^{f(x)}$
If $y = \ln x$ then $y = \frac{1}{x}$
If $y = \ln(f(x))$ then $y = \frac{f'(x)}{f(x)}$

Example 20

Differentiate the following expressions:

- a. $y = e^{2x}$
- b. $y = 3x^{-3} e^{3x-1}$
- c. $y = 4e^{3-2x}$
- d. $y = e^{(x^2 5x + 9)}$
- e. $y = \ln 3x$
- f. $y = \ln(4x 6) + 5\sqrt{x}$
- g. $y = 3\ln(x^2 + 4x 1)$
- h. $y = 2\ln(8 5x) 10e^{4x}$

If
$$y = \sin(f(x))$$
 then $\frac{dy}{dx} = f'(x)\cos(f(x))$
If $y = \cos(f(x))$ then $\frac{dy}{dx} = -f'(x)\sin(f(x))$

Differentiate the following:

- a. $y = \sin 2x$
- b. $f(x) = 2\cos 4x$
- c. $f(x) = -\sin 5x$
- d. $y = 3\sin x 7\cos 2x$
- e. $y = \cos 6x 2\sin 8x$
- f. $y = 2x^2 5sinx$
- g. $f(x) = cosx + \frac{3}{x^2}$

h. $f(x) = \frac{2x^4 - 7sinx}{3}$