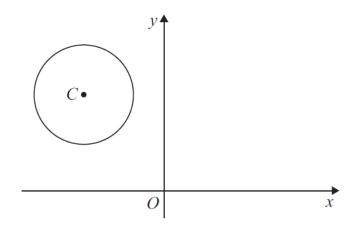
**6** The diagram shows a circle and the origin *O*.



The circle has centre C(-8, 12) and radius  $\sqrt{13}$ .

(a) Write down the equation of the circle in the form

$$(x-a)^2 + (y-b)^2 = k$$

[2 marks]

- **(b)** The point P has coordinates (-5, 10).
  - (i) Verify that P lies on the circle.

[1 mark]

(ii) Find an equation of the tangent to the circle at the point P, giving your answer in the form px + qy + r = 0, where p, q and r are integers.

[5 marks]

(c) Find the coordinates of the point on the circle that is closest to O.

[4 marks]

| Q6     | Solution                                                          | Mark      | Total | Comment                                    |
|--------|-------------------------------------------------------------------|-----------|-------|--------------------------------------------|
| (2)    | $(x_1 + 8)^2 + (x_2 + 12)^2 =$                                    |           |       |                                            |
| (α)    | $(x+8)^2 + (y-12)^2 = \dots$<br>or RHS=13                         | M1        |       |                                            |
|        | or RHS-13                                                         | 1411      |       |                                            |
|        | $(x+8)^2 + (y-12)^2 = 13$                                         | A1        | 2     | or $(x8)^2 + (y-12)^2 = 13$                |
| (b)(i) | $(-5+8)^2 + (10-12)^2 = 9+4=13$                                   |           |       | correct convincing arithmetic              |
|        | Therefore $P$ lies on the circle                                  | B1        | 1     | plus <b>statement</b> (not just ticks etc) |
| (ii)   | Gradient $PC = \frac{10-12}{-5+8}$                                | 3.54      |       | . 1.6. 1                                   |
|        |                                                                   | M1        |       | correct unsimplified                       |
|        | $=-\frac{2}{3}$                                                   | A1        |       |                                            |
|        | Gradient of tangent = $\frac{3}{2}$                               | A1ft      |       |                                            |
|        | $y-10 = "their \frac{3}{2}"(x+5)$                                 | dM1       |       | must be attempting tangent and not norma   |
|        | Equation of tangent $3x - 2y + 35 = 0$                            | A1        | 5     | terms all on one side with integer         |
|        | or $0 = 2y - 3x - 35$ etc                                         | AI        | 3     | coefficients                               |
|        | or $0=2y=3x=33$ ex                                                |           |       |                                            |
| (c)    | Eqn of $OC: y = -\frac{3}{2}x$                                    | <b>B1</b> |       |                                            |
|        | $(x+8)^2 + (-1.5x-12)^2 = 13$                                     | M1        |       | Sub into circle eqn or equate to radius    |
|        | $\frac{13}{4}x^2 + 52x + 208 = 13 \Rightarrow x^2 + 16x + 60 = 0$ |           |       |                                            |
|        | x = -6, -10 <b>OE</b>                                             | <b>A1</b> |       | both values of x                           |
|        | Closest point (-6,9)                                              | A1        | 4     | must simplify to integers                  |
|        | Total                                                             |           | 12    |                                            |

- **5** A circle with centre C(7, -8) passes through the point P(2, -2).
  - (a) Find the gradient of the normal to the circle at the point P.

[2 marks]

(b) Find the equation of the circle in the form

$$(x-a)^2 + (y-b)^2 = k$$

[3 marks]

(c) The point Q is the point on the circle that is closest to the x-axis. Find the exact value of the y-coordinate of Q.

[2 marks]

(d) The point R also lies on the circle. The length of the chord PR is 8. Show that the shortest distance from C to PR is  $n\sqrt{5}$ , where n is an integer.

[3 marks]

- 6 A circle with centre C has equation  $x^2 + y^2 + 20x 14y + 49 = 0$ .
  - (a) Express this equation in the form

$$(x-a)^2 + (y-b)^2 = r^2$$

[3 marks]

- (b) Show that the circle touches the y-axis and crosses the x-axis in two distinct points. [4 marks]
- (c) A line has equation y = kx + 2, where k is a constant.
  - (i) Show that the *x*-coordinates of any points of intersection of the circle and the line satisfy the equation

$$(1+k^2)x^2+10(2-k)x+25=0$$

[2 marks]

(ii) Hence, find the value of k for which the line is a tangent to the circle.

[3 marks]

| Q5  | Solution                                                                                  | Mark      | Total | Comment                                                                                      |
|-----|-------------------------------------------------------------------------------------------|-----------|-------|----------------------------------------------------------------------------------------------|
| (a) | $Grad PC = \frac{-28}{2 - 7}$                                                             | M1        |       | condone one sign error in one term                                                           |
|     | $= -\frac{6}{5} \mathbf{OE}$                                                              | A1        | 2     | withhold <b>A1</b> if gradient of perpendicular attempted. No <b>ISW</b> here.               |
| (b) | $(x-7)^2 + (y+8)^2 = \dots$                                                               | M1        |       | or $(x-7)^2 + (y-8)^2 =$                                                                     |
|     | $(x-7)^2 + (y+8)^2 = \dots$<br>$5^2 + 6^2$ or $25+36$ or $61$<br>$(x-7)^2 + (y+8)^2 = 61$ | B1        |       | or seen under square root                                                                    |
|     | $(x-7)^2 + (y+8)^2 = 61$                                                                  | <b>A1</b> | 3     | or $(x-7)^2 + (y-8)^2 = 61$                                                                  |
| (c) | $-8 + "their" \sqrt{k}$ or $-8 \pm "their" \sqrt{k}$ $-8 + \sqrt{61}$                     | M1<br>A1  | 2     | also allow $-8 - "their" \sqrt{k}$ for <b>M1</b>                                             |
| (d) | M is midpoint of $PR(CM^2 =) "their 61"-42(CM^2 =) 45$                                    | М1        |       | Pythagoras used correctly with "4" and with hyp <sup>2</sup> = " <i>their</i> " k or correct |
|     | $(CM^2 =)$ 45                                                                             | A1        |       | or $(CM =) \sqrt{45}$                                                                        |
|     | (shortest distance =) $3\sqrt{5}$                                                         | A1cso     | 3     | all notation correct                                                                         |
|     | Total                                                                                     |           | 10    |                                                                                              |

| (a)    | $(x+10)^2 + (y-7)^2 = \dots$                        | M1        |   | one of these terms correct                                           |
|--------|-----------------------------------------------------|-----------|---|----------------------------------------------------------------------|
|        |                                                     | A1        |   | LHS correct ignoring any extra constants                             |
|        | $(x+10)^2 + (y-7)^2 = 10^2$ (or=100)                | A1        | 3 | or $(x-10)^2 + (y-7)^2 =$<br>or $(x-10)^2 + (y-7)^2 = 10^2$ (or=100) |
| (b)    | $10^2 + (y - 7)^2 = 10^2$                           | M1        |   | putting x=0 in "their" equation                                      |
|        | $\Rightarrow (y-7)^2 = 0 \Rightarrow y = 7$         |           | - | and attempt to solve for y                                           |
|        | Repeated root means circle touches y-axis           | <b>E1</b> |   | completely correct working and both parts of the conclusion          |
|        | $(x+10)^2 + 7^2 = 100$                              | M1        |   | putting $y = 0$ in "their" equation                                  |
|        | $(x+10)^2 = 51$ $\Rightarrow x = -10 \pm \sqrt{51}$ |           | - | and attempt to solve for x                                           |
|        | Two roots so circle crosses <i>x</i> -axis twice    | E1        | 4 | completely correct working and both parts of the conclusion          |
| (c)(i) | $(x+10)^2 + (kx-5)^2 = 100$                         | M1        |   | sub $y = kx + 2$ into "their" circle equation                        |
|        | $x^2 + 20x + 100 + k^2x^2 - 10kx + 25 = 100$        | A 1       | 2 | and attempt to multiply out brackets                                 |
|        | $(1+k^2)x^2 + 10(2-k)x + 25 = 0$                    | A1cso     | 2 | AG be convinced -                                                    |
|        | must have terms exactly as printed answer           |           |   | condone $0 = (1+k^2)x^2 + 10(2-k)x + 25$                             |
| (ii)   | $10^{2}(2-k)^{2}-4\times25(1+k^{2})$                | M1        |   | correct discriminant unsimplified                                    |
|        | $400 - 400k + 100k^2 - 100 - 100k^2 (= 0)$          | A1        |   | multiplying out correctly                                            |
|        | $k = \frac{3}{2}$                                   | A1cso     | 3 | must see "=0" before final answer                                    |

- **5** A circle with centre C(5, -3) passes through the point A(-2, 1).
  - (a) Find the equation of the circle in the form

$$(x-a)^2 + (y-b)^2 = k$$

[3 marks]

(b) Given that AB is a diameter of the circle, find the coordinates of the point B.

[2 marks]

(c) Find an equation of the tangent to the circle at the point A, giving your answer in the form px + qy + r = 0, where p, q and r are integers.

[5 marks]

(d) The point T lies on the tangent to the circle at A such that AT = 4.

Find the length of CT.

[3 marks]

- **4** A circle with centre *C* has equation  $x^2 + y^2 + 2x 6y 40 = 0$ .
  - (a) Express this equation in the form

$$(x-a)^2 + (y-b)^2 = d$$

[3 marks]

**(b) (i)** State the coordinates of *C*.

[1 mark]

(ii) Find the radius of the circle, giving your answer in the form  $n\sqrt{2}$ .

[2 marks]

- (c) The point P with coordinates (4, k) lies on the circle. Find the possible values of k. [3 marks]
- (d) The points Q and R also lie on the circle, and the length of the chord QR is 2. Calculate the shortest distance from C to the chord QR.

[2 marks]

| Q5  | Solution                                                                                            | Mark      | Total | Comment                                                 |
|-----|-----------------------------------------------------------------------------------------------------|-----------|-------|---------------------------------------------------------|
| (2) | $(5)^2 \cdot (5)^2 = 5$                                                                             | M1        |       | 22 ( 5) <sup>2</sup> ( 2) <sup>2</sup> -                |
| (a) | $(x-5)^2 + (y+3)^2 = \dots$                                                                         |           |       | or $(x-5)^2 + (y-3)^2 = \dots$                          |
|     | $7^2 + 4^2$ or $49 + 16$ or $65$<br>$(x-5)^2 + (y+3)^2 = 65$                                        | <b>B1</b> |       | or seen under square root                               |
|     | $(x-5)^2 + (y+3)^2 = 65$                                                                            | A1        | 3     | or $(x-5)^2 + (y-3)^2 = 65$                             |
| (b) | $x_{R} = 12$                                                                                        | B1        |       |                                                         |
| (2) | $y_{R} = -7$                                                                                        | B1        | 2     | B(12,-7)                                                |
|     | $y_B - r$                                                                                           | 21        | _     |                                                         |
| (c) | $\frac{1}{1}$                                                                                       | M1        |       | condone one sign error in one term                      |
| (0) | $\operatorname{Grad} AC = \frac{1 - 3}{-2 - 5}$                                                     | WII       |       | FT their $B$ if grad $AB$ or grad $BC$ is used.         |
|     | $=-\frac{4}{7}$                                                                                     | <b>A1</b> |       |                                                         |
|     | 1                                                                                                   |           |       |                                                         |
|     | Grad tgt = $\frac{7}{4}$                                                                            | B1F       |       |                                                         |
|     | F ( St. 1 1 1 7 2)                                                                                  | m.1       |       | 7                                                       |
|     | Equation of tgt: $y-1 = "their" \frac{7}{4}(x2)$                                                    | m1        |       | or $y = "their" \frac{7}{4}x + c$ & attempt to find $c$ |
|     |                                                                                                     |           |       | using $x = -2$ and $y = 1$                              |
|     | 7x - 4y + 18 = 0                                                                                    | <b>A1</b> | 5     | any multiple – must have integer                        |
|     |                                                                                                     |           |       | coefficients and all terms on one side                  |
| (d) | $CT^2 = AT^2 + AC^2$                                                                                |           |       |                                                         |
|     | $(CT^2 =)$ $4^2 + "their" 65$                                                                       | M1        |       | Pythagoras with hyp=CT                                  |
|     | 1 Then 05                                                                                           |           |       | & $AC^2$ ="their" k or correct                          |
|     | $\begin{pmatrix} CT^2 = \end{pmatrix}  4^2 + "their" 65$ $\begin{pmatrix} CT^2 = \end{pmatrix}  81$ | A1        |       | or $(CT =)\sqrt{81}$                                    |
|     | (CT =)9                                                                                             | A1        | 3     | all notation correct; must simplify $\sqrt{81}$         |
|     | ` ′                                                                                                 |           |       |                                                         |
|     | Total                                                                                               |           | 13    |                                                         |

|        | Total                                                                              |             | 11 | -                                                                             |
|--------|------------------------------------------------------------------------------------|-------------|----|-------------------------------------------------------------------------------|
|        | $D^2 = 50 - 1 = 49$ (distance =) 7                                                 | A1          | 2  | Do not accept $\sqrt{49}$ or $\pm 7$                                          |
| (d)    | $D^2 + 1^2 = \text{``their } r^2 \text{''}$                                        | M1          |    | Pythagoras used correctly with 1 and $r$                                      |
|        | k = -2, k = 8 $(k-3) = 23$                                                         | A1          | 3  |                                                                               |
|        | $k^2 - 6k - 16(=0)$ or $(k-3)^2 = 25$                                              | A1          |    |                                                                               |
| (c)    | $4^{2} + k^{2} + 2 \times 4 - 6k - 40 = 0$ or "their" $(4+1)^{2} + (k-3)^{2} = 50$ | M1          |    | sub $x = 4$ , correctly into given circle equation (or their circle equation) |
|        | $(r=)\sqrt{50}$ $=5\sqrt{2}$                                                       | A1          | 2  |                                                                               |
| (ii)   | $(r=)\sqrt{50}$                                                                    | M1          |    | correct or <b>FT</b> their $\sqrt{RHS}$ provided $RHS > 0$                    |
| (b)(i) | C(-1,3)                                                                            | <b>B1</b> √ | 1  | correct or <b>FT</b> from their equation in (a)                               |
|        | $(x+1)^2 + (y-3)^2 = 50$                                                           | A1          | 3  |                                                                               |
|        |                                                                                    |             | ,  | terms                                                                         |
| . ,    | $(x+1)^2 + (y-3)^2 \dots$                                                          | A1          |    | LHS correct with perhaps extra constant                                       |
| (a)    | $(x+1)^2 + (y-3)^2$                                                                | M1          |    | one of these terms correct                                                    |

|  | 5. | The | circle | C | has | ec | uation |
|--|----|-----|--------|---|-----|----|--------|
|--|----|-----|--------|---|-----|----|--------|

$$x^2 + y^2 - 3x + 6y = 1$$

Find

(a) the coordinates of the centre of C,

(2)

(b) the value of the radius of C.

**(2)** 

The point P(5, -3) lies on the circle C.

(c) Find an equation of the tangent to C at the point P.

(2)

## **5.** The circle *C* has equation

$$x^2 + y^2 - 2x + 14y = 0$$

Find

(a) the coordinates of the centre of C,

**(2)** 

(b) the exact value of the radius of C,

**(2)** 

(c) the y coordinates of the points where the circle C crosses the y-axis.

**(2)** 

(d) Find an equation of the tangent to C at the point (2, 0), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

**(4)** 

| (a)          | Obtain LHS as $(x \pm \frac{3}{2})^2 + (y \pm 3)^2 =$                                                                                                             | M1       |              |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
|              | Centre is $(\frac{3}{2}, -3)$ .                                                                                                                                   | A1       | (2)          |
| (b)          | Uses $(x \pm \frac{3}{2})^2 - \frac{9}{4} + (y \pm 3)^2 - 9 = 1$ to give $r = \sqrt{1 + \frac{9}{4} + \frac{9}{4}}$ or just $r^2 = 1 + \frac{9}{4} + \frac{9}{4}$ | M1       |              |
|              | $r^{2} = 1 + \frac{9}{4} + 9$ $r = \frac{7}{2}$                                                                                                                   | A1       | (2)          |
| Special case | Uses (5, -3) from (c) to find radius $(5 - \frac{3}{2})^2 + (-3 + 3)^2 =$                                                                                         | M1       |              |
|              | $r=\frac{7}{2}$                                                                                                                                                   | A1       | (2)          |
| (c)          | Way 1: Deduces gradient is infinite (from diagram or from perpendicular to zero gradient                                                                          | M1       |              |
|              | So equation is $x = 5$                                                                                                                                            | A1       | (2)          |
|              | Way 2: Implicit differentiation $\frac{dy}{dx} = \frac{3-2x}{2y+6} = \frac{3-10}{0}$ so infinite gradient o.e.                                                    | M1       |              |
|              | So equation is $x = 5$                                                                                                                                            | A1 (6 ma | (2)<br>arks) |

| 5   | You may mark (a) and (b) together $x^2 + y^2 - 2x + 14y = 0$                                                                  |         |     |
|-----|-------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| (a) | Obtain LHS as $(x \pm 1)^2 + (y \pm 7)^2 = \dots$                                                                             | M1      |     |
|     | Centre is $(1, -7)$ .                                                                                                         | A1      | (2) |
| (b) | Uses $r^2 = a^2 + b^2$ or $r = \sqrt{a^2 + b^2}$ where their centre was at $(\pm a, \pm b)$<br>$r = \sqrt{50}$ or $5\sqrt{2}$ | M1      | (2) |
| (c) | Substitute $x = 0$ in either form of equation of circle and solve resulting quadratic to give $y =$                           | M1      | (-) |
|     | $y^2 + 14y = 0$ so $y = 0$ and $-14$ or $\underline{(y \pm 7)^2 - 49} = 0$ so $y = 0$ and $-14$                               | A1      | (2) |
| (d) | Gradient of radius joining centre to (2,0) is $\frac{"-7"-0}{"1"-2}$ (= 7)                                                    | M1      |     |
|     | Gradient of tangent is $\frac{-1}{m} = (-\frac{1}{7})$                                                                        | M1      |     |
|     | So equation is $y-0 = -\frac{1}{7}(x-2)$ and so $x + 7y - 2 = 0$                                                              | M1, A1  | (4) |
|     |                                                                                                                               | (10 mar | •   |

| 5. | The | circle | C has | ec | uation |
|----|-----|--------|-------|----|--------|
|    |     |        |       |    |        |

$$x^2 + y^2 - 10x + 6y + 30 = 0$$

Find

(a) the coordinates of the centre of C,

**(2)** 

(b) the radius of C,

**(2)** 

(c) the y coordinates of the points where the circle C crosses the line with equation x = 4, giving your answers as simplified surds.

(3)

| _         |                                                                                                                                                                    | 1     |            |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| 5         | $x^2 + y^2 - 10x + 6y + 30 = 0$                                                                                                                                    |       |            |
| (a)       | Uses any appropriate method to find the coordinates of the centre, e.g achieves $(x \pm 5)^2 + (y \pm 3)^2 = \dots$ Accept $(\pm 5, \pm 3)$ as indication of this. | M1    |            |
|           | Centre is $(5, -3)$ .                                                                                                                                              | A1    | (2)        |
| (b) Way 1 | Uses $(x \pm "5")^2 - "5^2" + (y \pm "3")^2 - "3^2" + 30 = 0$ to give $r = \sqrt{"25" + "9" - 30}$ or $r^2 = "25" + "9" - 30$ (not $30 - 25 - 9$ )                 | M1    | (2)        |
|           | r=2                                                                                                                                                                | Alcao |            |
|           |                                                                                                                                                                    |       | (2)        |
| Or Way 2  | Using $\sqrt{g^2 + f^2 - c}$ from $x^2 + y^2 + 2gx + 2fy + c = 0$ (Needs formula stated or correct working)                                                        | M1    |            |
|           | r=2                                                                                                                                                                | A1    |            |
|           |                                                                                                                                                                    |       | (2)        |
| (c) Way 1 | Use $x = 4$ in an equation of circle and obtain equation in y only                                                                                                 | M1    |            |
|           | e.g $(4-5)^2 + (y+3)^2 = 4$ or $4^2 + y^2 - 10 \times 4 + 6y + 30 = 0$                                                                                             |       |            |
|           | Solve their quadratic in $y$ and obtain <b>two</b> solutions for $y$                                                                                               | dM1   |            |
|           | e.g. $(y+3)^2 = 3$ or $y^2 + 6y + 6 = 0$ so $y = -3 \pm \sqrt{3}$                                                                                                  | A1    |            |
| Or Way 2  | Divide triangle $PTQ$ and use Pythagoras with $"r"^2 - ("5"-4)^2 = h^2,$                                                                                           | M1    | (3)        |
|           | Find h and evaluate " $-3$ " $\pm h$ . May recognise $(1, \sqrt{3}, 2)$ triangle.                                                                                  | dM1   |            |
|           | $\int_{r}^{h} \int_{r}^{r} \operatorname{So} y = -3 \pm \sqrt{3}$                                                                                                  |       |            |
|           | $ \begin{array}{c} \downarrow V \\ P \end{array} $                                                                                                                 | A1    |            |
|           |                                                                                                                                                                    |       | (3)<br>[7] |



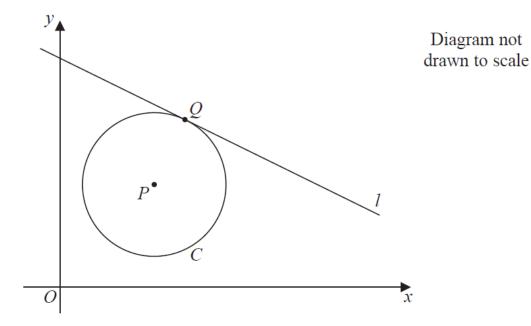


Figure 2

The circle C has centre P(7, 8) and passes through the point Q(10, 13), as shown in Figure 2.

(a) Find the length PQ, giving your answer as an exact value.

**(2)** 

(b) Hence write down an equation for C.

**(2)** 

The line l is a tangent to C at the point Q, as shown in Figure 2.

(c) Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

**(4)** 

- **2.** A circle C with centre at the point (2, -1) passes through the point A at (4, -5).
  - (a) Find an equation for the circle C.

**(3)** 

(b) Find an equation of the tangent to the circle C at the point A, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

**(4)** 

| 3.                  | P(7,8) and $Q(10,13)$                                                          |                                                                           |       |
|---------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|
| (a)                 | $\{PQ = \} \sqrt{(7-10)^2 + (8-13)^2} \text{ or } \sqrt{(10-7)^2 + (10-10)^2}$ | Applies distance formula. Can be implied.                                 | M1    |
|                     | $\{PQ\} = \sqrt{34}$                                                           | $\sqrt{34}$ or $\sqrt{17}.\sqrt{2}$                                       | A1    |
|                     |                                                                                |                                                                           | [2]   |
| (b)                 | $(x-7)^2 + (y-8)^2 = 34 \left( \text{or} \left( \sqrt{34} \right)^2 \right)$   | $(x \pm 7)^2 + (y \pm 8)^2 = k$                                           | M1    |
| Way 1               | $(x-7) + (y-8) - 34 \left(01 \left(\sqrt{34}\right)\right)$                    | where $k$ is a positive value.<br>$(x-7)^2 + (y-8)^2 = 34$                | A1 oe |
|                     |                                                                                |                                                                           | [2]   |
| (c)<br><b>Way 1</b> | $\{\text{Gradient of radius}\} = \frac{13-8}{10-7} \text{ or } \frac{5}{3}$    | This must be seen or implied in part (c).                                 | В1    |
| -                   | 1 ( 2)                                                                         | Using a perpendicular gradient method on their                            |       |
|                     | Gradient of tangent $= -\frac{1}{m} \left( = -\frac{3}{5} \right)$             | gradient. So Gradient of tangent = $-\frac{1}{\text{gradient of radius}}$ | M1    |
|                     | 3                                                                              |                                                                           |       |
|                     | $y - 13 = -\frac{3}{5}(x - 10)$                                                | y - 13 = (their changed gradient)(x - 10)                                 | M1    |
|                     | 3x + 5y - 95 = 0                                                               | 3x + 5y - 95 = 0 o.e.                                                     | A1    |
|                     |                                                                                |                                                                           | [4]   |
| (c)<br>Way 2        | $2(x-7) + 2(y-8)\frac{dy}{dx} = 0$                                             | Correct differentiation (or equivalent).  Seen or implied                 | B1    |
|                     |                                                                                | Substituting <b>both</b> $x = 10$ and $y = 13$ into a                     |       |
|                     | $2(10-7) + 2(13-8)\frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{3}{5}$     | valid differentiation to find a value for $\frac{dy}{dx}$                 | M1    |
|                     | 3                                                                              |                                                                           |       |
|                     | $y - 13 = -\frac{3}{5}(x - 10)$                                                | y - 13 = (their gradient)(x - 10)                                         | M1    |
|                     | 3x + 5y - 95 = 0                                                               | 3x + 5y - 95 = 0 o.e.                                                     | A1    |
|                     |                                                                                |                                                                           | [4]   |

|              | Way 1                                                              | Way 2                                        |    |     |
|--------------|--------------------------------------------------------------------|----------------------------------------------|----|-----|
| 2 (a)        |                                                                    | $+y^2 \mp 4x \pm 2y + c = 0$                 | M1 |     |
|              | Attempts to use $r^2 = (4-2)^2 + (-5+1)^2$ $4^2$                   | $+(-5)^2 - 4 \times 4 + 2 \times -5 + c = 0$ | M1 |     |
|              | Obtains $(x-2)^2 + (y+1)^2 = 20$ $x^2$                             | $+ y^2 - 4x + 2y - 15 = 0$                   | A1 | (3) |
|              | <b>N.B. Special case:</b> $(x-2)^2 - (y+1)^2 = 20$ is not a        | a circle equation but earns M0M1A0           |    |     |
| (b)<br>Way 1 | Gradient of radius from centre to $(4, -5) = -2$                   | (must be correct)                            | B1 |     |
|              | Tangent gradient = $-\frac{1}{\text{their numerical gradient of}}$ | f radius                                     | M1 |     |
|              | Equation of tangent is $(y+5) = \frac{1}{2}(x-4)$                  |                                              | M1 |     |
|              | So equation is $x - 2y - 14 = 0$ (or $2y - x + 14 = 0$             | or other integer multiples of this answer)   | A1 |     |
|              |                                                                    |                                              |    | (4) |