The first four terms in the binomial expansion of $(1+2x)^9$ in ascending powers of x are $1+ax+bx^2+cx^3$. Find the values of the integers a, b and c. 5 (a)

[3 marks]

Hence find the value of the coefficient of x^3 in the expansion of $\left(3-\frac{1}{2}x\right)^2(1+2x)^9$. **[4 marks]** (b)

The expression $(1-2x)^5$ can be written in the form 7 (a)

$$1 + px + qx^2 + rx^3 + 80x^4 - 32x^5$$

By using the binomial expansion, or otherwise, find the values of the coefficients $p,\,q$ and r.

[3 marks]

Find the value of the coefficient of x^{10} in the expansion of $(1-2x)^5(2+x)^7$. [5 marks] (b)

Q	Solution	Mark	Total	Comment
5(a)	a = 9(2) = 18	B1		Condone 18x
	$b = \frac{9(8)(2)^2}{2} = 144$	B1		Condone $144x^2$
	$c = \frac{9(8)(7)(2)^3}{2(3)} = 672$	B1	3	Condone $672x^3$
(b)	$\left(3 - \frac{1}{2}x\right)^2 = 9 - 3x + \frac{1}{4}x^2$	В1		
	x^3 terms from expn of $\left(3 - \frac{1}{2}x\right)^2 \left(1 + 2x\right)^9$			
	are '9' cx^3 and '-3' bx^3 and ' $\frac{1}{4}$ ' ax^3	M1		Any two of the three, ft from products of non-zero terms using c's two expansions. May just see the coefficients without the x^3
	$'9'cx^3 + '-3'bx^3 + '\frac{1}{4}'ax^3$	A1F		Relevant products identified, with or without $'x^3$, ft on at most two errors in
				values for $a, b, c, 9, -3, \frac{1}{4}$.
	$9 \times 672 - 3 \times 144 + 0.25 \times 18$			
	(coefficient of $x^3 =)$ 5620.5	A1	4	OE Condone 5620.5x ³ OE
	Total		7	

Q7	Solution	Mark	Total	Comment
(a)	p = -10; q = 40; r = -80	B1 B1 B1	3	Accept correct embedded values for p , q and r within the expansion
(b)	$(2+x)^7 = \dots + mx^5 + nx^6 + x^7$	M1		Attempting to find at least two of x^5 term, x^6 term, x^7 term in the expansion of $(2+x)^7$
	m = 84, $n = 14$	A1		Either correct. (M1 must be scored). PI by later correct work
	Coefficients of x^{10} terms in expansion of $(1-2x)^5(2+x)^7$ are $-32m+80n+r$	m1		Identifying at least two of the three products $-32m$, $80n$, r that give x^{10} terms
	Coeff. of $x^{10} = (-32)(84) + (80)(14) + r$ = $-2688 + 1120 + r = -1568 + r$	A1F		Only ft c's value of r in (a). If not shown in any of these forms, can be implied by final answer which matches correct evaluation of $(-1568+c's r)$
	Coeff. of $x^{10} = -1648$	A1	5	-1648 or left as ' $-1648 x^{10}$ '. Ignore other powers of x terms
	Total		8	

- **4 (a)** Find the binomial expansion of $(1-2x)^{\frac{1}{4}}$ up to and including the term in x^2 . **[2 marks]**
 - (b) (i) Find the binomial expansion of $(81 16x)^{\frac{1}{4}}$ up to and including the term in x^2 . [3 marks]
 - (ii) Use your expansion from part (b)(i) to find an approximation for $\sqrt[4]{76}$, giving your answer to five decimal places.

[2 marks]

- 3 (a) Find the binomial expansion of $(1-9x)^{\frac{2}{3}}$ up to and including the term in x^2 . [2 marks]
 - (b) (i) Find the binomial expansion of $(64 9x)^{\frac{2}{3}}$ up to and including the term in x^2 . [3 marks]
 - (ii) Use your expansion from part (b)(i) to find an estimate for $67^{\frac{2}{3}}$, giving your answer in the form $p+\frac{q}{r}$ where p,q and r are positive integers with q< r.

[2 marks]

Q 4	Solution	Mark	Total	Comment
(a)	$(1 - 2x)^{\frac{1}{4}} = 1 - \frac{1}{2}x + kx^2$	M1		where $k \neq 0$.
	$=1-\frac{1}{2}x-\frac{3}{8}x^2$	A 1	2	Ignore any higher powers of x .
	Allow ACF for the coefficients - e.g. $1 - \frac{2}{4}x$	$-\frac{12}{32}x^2$ W	ould be I	M1 A1 but signs must be simplified
(b)(i)	$(81 - 16x)^{\frac{1}{4}} = 81^{\frac{1}{4}} \left(1 - \frac{16}{81}x\right)^{\frac{1}{4}}$	B1		ACF - e.g. $3\left(1 - \frac{16}{81}x\right)^{\frac{1}{4}}$.
	$\left(1 - \frac{16}{81}x\right)^{\frac{1}{4}}$ $= 1 + \left(\frac{1}{4}\right)\left(-\frac{16}{81}\right)x$ $+ \left(\frac{1}{4}\right)\left(-\frac{3}{4}\right)\left((-)\frac{16}{81}x\right)^{2}\left(\frac{1}{2!}\right)$ $(81 - 16x)^{\frac{1}{4}} = 3\left(1 - \frac{4}{81}x - \frac{8}{2187}x^{2}\right)$	M1 A1	3	Condone missing brackets if recovered For their $(1 + kx)^{\frac{1}{4}}$ ACF: e.g. $3 - \frac{4}{27}x - \frac{8}{729}x^2$ (3 NOT $81^{\frac{1}{4}}$)
(ii)	For $\sqrt[4]{76}$ we need $81 - 16x = 76 \rightarrow x = \frac{5}{16}$ Substituting $x = \frac{5}{16}$ in their (b)(i) $\sqrt[4]{76} = 2.95263$	M1 A1	2	or $x = 0.3125$ Either seen or implied by correct answer CAO - Must be correct to 5 d.p.
	Beware calculator answer is 2.95259			

(a)	$(1 - 9x)^{\frac{2}{3}} = 1 + \frac{2}{3}(-9x) + kx^2$	M1		or better with $k \neq 0$
	$=1-6x-9x^2$	A1	2	Coefficients must be simplified.
(b)(i)	$(64 - 9x)^{\frac{2}{3}} = 64^{\frac{2}{3}} \left(1 - \frac{9}{64}x\right)^{\frac{2}{3}}$	B1		ACF – e.g. $16\left(1 - \frac{9}{64}x\right)^{\frac{2}{3}}$
	$\left(1 - \frac{9}{64}x\right)^{\frac{2}{3}} = 1 + \frac{2}{3} \times \left(-\frac{9}{64}x\right) + \frac{2}{3} \times \frac{-1}{3} \left(-\frac{9}{64}x\right)^{2} \times \frac{1}{2}$	M1		OE – condone missing brackets.
	$(64 - 9x)^{\frac{2}{3}} = 16 - \frac{3}{2}x - \frac{9}{256}x^2$	A1	3	Accept $16\left(1 - \frac{3}{32}x - \frac{9}{4096}x^2\right)$
(b)(ii)	Substituting $x = -\frac{1}{3}$ (OE) into their (b)(i)	M1		$64 - 9x = 67 \Rightarrow x = -\frac{1}{3} \text{ or } -\frac{3}{9}$
	$\left(67^{\frac{2}{3}}\right) = 16 + \frac{127}{256}$	A1	2	Must have correct expansion in (b)(i)
				and use $x = -\frac{1}{3}$. OE for $\frac{127}{256}$ - e.g. $\frac{254}{512}$ etc.
				NMS is 0/2 since 'Hence'

4 (a) Find the binomial expansion of $(1-4x)^{-\frac{1}{2}}$ up to and including the term in x^2 .

[2 marks]

(b) Find the binomial expansion of $(16+4x)^{\frac{3}{4}}$ up to and including the term in x^2 .

[3 marks]

(c) Hence find the expansion of $\sqrt{\frac{(16+4x)^{\frac{3}{2}}}{(1-4x)}}$ in ascending powers of x up to and including the term in x^2 .

[2 marks]

- **4 (a)** Find the binomial expansion of $(1+5x)^{\frac{1}{5}}$ up to and including the term in x^2 . **[2 marks]**
 - **(b) (i)** Find the binomial expansion of $(8+3x)^{-\frac{2}{3}}$ up to and including the term in x^2 . [3 marks]
 - (ii) Use your expansion from part (b)(i) to find an estimate for $\sqrt[3]{\frac{1}{81}}$, giving your answer to four decimal places.

[2 marks]

Q4	Solution	Mark	Total	Comment
(a)	$(1 - 4x)^{-\frac{1}{2}} = 1 + 2x + kx^2$	M1		$k \neq 0$
	$= 1 + 2x + 6x^2$	A 1	2	
		·		
(b)	$(16+4x)^{\frac{3}{4}} = 16^{\frac{3}{4}} \left(1 + \frac{4x}{16}\right)^{\frac{3}{4}}$	B1		OE e.g. $8 \left(1 + \frac{x}{4}\right)^{\frac{3}{4}}$
	$\left(1 + \frac{4}{16}x\right)^{\frac{3}{4}} = 1 + \frac{3}{4} \cdot \left(\frac{4x}{16}\right) + \frac{3}{4} \cdot -\frac{1}{4}\left(\frac{4x}{16}\right)^{2} \cdot \frac{1}{2} \dots$	M1		Condone missing / poor use of brackets
	$(16+4x)^{\frac{3}{4}}=$			
	$8\left(1 + \frac{3}{16}x - \frac{3}{512}x^2\right)$ or $8 + \frac{3}{2}x - \frac{3}{64}x^2$	A 1	3	Must be 8 not $16^{3/4}$
	or $(16+4x)^{\frac{3}{4}} = 16^{\frac{3}{4}} + \frac{3}{4}(16)^{-\frac{1}{4}}(4x) + \frac{3}{4} \cdot -\frac{3}{4}$	$\frac{1}{4}(16)^{-1}$	$\frac{5}{4}(4x)^2$.	$\frac{1}{2} \mathbf{M1} = 8 + \frac{3}{2}x - \frac{3}{64}x^2 \mathbf{A2}$
(c)	$(1+2x+6x^2)\left(8+\frac{3}{2}x-\frac{3}{64}x^2\right)$	M1		Setting up the product of their two expansions - be convinced
	$= 8 + \frac{35}{2}x + \frac{3261}{64}x^2$	A1	2	CAO

Q4	Solution	Mark	Total	Comment
(a)	$1 + \frac{1}{5} \times 5x + kx^2$	M1		k any non-zero numerical expression
	$1+x-2x^2$	A1	2	Simplified to this
(b) (i)	$(8+3x)^{-\frac{2}{3}} = 8^{-\frac{2}{3}} \left(1 + \frac{3}{8}x\right)^{-\frac{2}{3}}$	B1		ACF for $8^{-\frac{2}{3}} = \frac{1}{4}$
	$(8+3x)^{-\frac{2}{3}} = 8^{-\frac{2}{3}} (1+\frac{3}{8}x)^{-\frac{2}{3}}$ $(1+\frac{3}{8}x)^{-\frac{2}{3}}$ $(2)(3) 1(2)(5)(3)^{2}$			Expand correctly using their $\frac{3}{8}x$
	$=1+\left(-\frac{2}{3}\right)\left(\frac{3}{8}x\right)+\frac{1}{2}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)\left(\frac{3}{8}x\right)^{2}$	M1		Condone poor use of or missing brackets
	$\frac{1}{4} - \frac{1}{16}x + \frac{5}{256}x^2$	A1	3	Accept $=\frac{1}{4}\left(1 - \frac{1}{4}x + \frac{5}{64}x^2\right)$
(ii)	$x = \frac{1}{3}$	M1		$x = \frac{1}{3}$ used in their expansion from (b)(i)
	0.2313 (4dp)	A1	2	Note 3 in 4 th decimal place
	Total		7	

- (a) Find the first 4 terms, in ascending powers of x, in the binomial expansion of 3. $(1 + kx)^{10}$ where k is a positive constant. Give each term in its simplest form. **(3)** Given that, in this expansion, the coefficients of x and x^3 are equal, (b) find the exact value of k, **(3)** (c) find the coefficient of x^2 **(1)** (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(2 + kx)^7$ where k is a non-zero constant. Give each term in its simplest form. **(4)** Given that the coefficient of x^3 in this expansion is 1890 (b) find the value of k. **(3)**
- 1. Find the first 4 terms, in ascending powers of x, of the binomial expansion of $\left(3 \frac{1}{3}x\right)^5$

giving each term in its simplest form.

(4)

	$(1+kx)^{10}$	
3. (a)	$1 + {}^{10}C_1(kx) + {}^{10}C_2(kx)^2 + {}^{10}C_3(kx)^3$	
	$ 1 + {}^{10}C_1(kx) + {}^{10}C_2(kx)^2 + {}^{10}C_3(kx)^3 \dots $ $ 1 + \left({}^{10}C_1 \times \dots \times x \right) + \left({}^{10}C_2 \times \dots \times x^2 \right) + \left({}^{10}C_3 \times \dots \times x^3 \right) \dots $	M1
	$=1+10kx, +45k^2x^2+120k^3x^3$	B 1, A1
		$\begin{array}{ c c } \hline B1, & & \\ \hline & & & \\ \hline \end{array}$
(b)	$120k^3 = 10k$	M1
	$k^2 = \frac{1}{12} \text{ so } k = \dots$	M1
		A1
	$k = \frac{\sqrt{3}}{6}$ o.e	
		(3)
(c)	15	B1
	$\frac{15}{4}$ o.e.	(1)
		(7 marks)

1.
$$(3 - \frac{1}{3}x)^{5} -$$

$$3^{5} + {}^{5}C_{1}3^{4}(-\frac{1}{3}x) + {}^{5}C_{2}3^{3}(-\frac{1}{3}x)^{2} + {}^{5}C_{3}3^{2}(-\frac{1}{3}x)^{3} \dots$$
First term of 243
$$({}^{5}C_{1} \times ... \times x) + ({}^{5}C_{2} \times ... \times x^{2}) + ({}^{5}C_{3} \times ... \times x^{3}) \dots$$

$$= (243...) - \frac{405}{3}x + \frac{270}{9}x^{2} - \frac{90}{27}x^{3} \dots$$

$$= (243...) - 135x + 30x^{2} - \frac{10}{3}x^{3} \dots$$
A1
A1
A1
(4)
[4]

_	/ \	Tr' 1.41	~	4	•	11		C	C 41	1			C
	(0)	Hind the	Tiret 4	terme	1111 0	ecending	nowers	$\alpha t v$	Of th	1e h	unomial	evnancion	α t
J.	(a)	Timu uic	msus	terms.	\mathbf{m}	iscending	DOWCIS	UI A.	OI U	ι	шошаі	expansion	. UI

$$(2-9x)^4$$

giving each term in its simplest form.

(4)

$$f(x) = (1 + kx)(2 - 9x)^4$$
, where k is a constant

The expansion, in ascending powers of x, of f(x) up to and including the term in x^2 is

$$A - 232x + Bx^2$$

where A and B are constants.

(b) Write down the value of A.

(1)

(c) Find the value of k.

(2)

(d) Hence find the value of B.

(2)

1. Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$\left(2-\frac{x}{4}\right)^{10}$$

giving each term in its simplest form.

(4)

5. (a)	(a) $(2-9x)^4 = 2^4 + {}^4C_12^3(-9x) + {}^4C_22^2(-9x)^2$, (b) $f(x) = ($ First term of 16 in their final series		B1
Way 1	At least one of $\binom{4}{C_1} \times \times x$ or $\binom{4}{C_2} \times \times x^2$		M1
	$=(16)-288x+1944x^2$	At least one of $-288x$ or $+1944x^2$	A1
	= (10) = 266 <i>x</i> + 1544 <i>x</i>	Both $-288x$ and $+1944x^2$	A1
			[4]
(a) Way 3	$\left\{ (2-9x)^4 = \right\} \ 2^4 \left(1 - \frac{9}{2}x \right)^4$	First term of 16 in final series	B1
	((0) 4(2)(0) ²)	At least one of	
	$= 2^{4} \left(1 + 4 \left(-\frac{9}{2}x \right) + \frac{4(3)}{2} \left(-\frac{9}{2}x \right)^{2} + \dots \right)$	$(4 \times \times x)$ or $\left(\frac{4(3)}{2} \times \times x^2\right)$	M1
		At least one of $-288x$ or $+1944x^2$	A1
	$= (16) - 288x + 1944x^2$	Both $-288x$ and $+1944x^2$	A1
			[4]
	Parts (b), (c) and (d) may be marked together		
(b)	A = "16"	Follow through their value from (a)	B1ft
			[1]
(c)	$\left\{ (1+kx)(2-9x)^4 \right\} = (1+kx)\left(16-288x+\left\{1944x^2+\ldots\right\}\right)$	May be seen in part (b) or (d) and can be implied by work in parts (c) or (d).	M1
	x terms: -288x + 16kx = -232x	paris (c) or (a).	
	giving, $16k = 56 \implies k = \frac{7}{2}$	$k = \frac{7}{2}$	A1
	$\frac{2}{2}$	2	
(d)	x^2 terms: $1944x^2 - 288kx^2$		[2]
(a)		See notes	M1
	So, $B = 1944 - 288 \left(\frac{7}{2}\right)$; = 1944 - 1008 = 936	936	A1
		930	
			[2]

1.	$\left(2-\frac{x}{4}\right)^{10}$	
Way 1	$2^{10} + \underbrace{\binom{10}{1}} 2^9 \left(-\frac{1}{4} \frac{x}{=} \right) + \underbrace{\binom{10}{2}} 2^8 \left(-\frac{1}{4} \frac{x}{=} \right)^2 + \dots$ For <u>either</u> the x term <u>or</u> the x^2 term including a correct <u>binomial coefficient</u> with a <u>correct power of x</u>	M1
	First term of 1024	B1
	Either $-1280x$ or $720x^2$ (Allow +-1280x here)	A1
	$= 1024 - 1280x + 720x^{2}$ Both $-1280x$ and $720x^{2}$ (Do not allow +-1280x here)	A1 [4]
Way 2	$\left(2 - \frac{x}{4}\right)^{10} = 2^k \left(1 - \underline{10} \times \frac{x}{8} + \frac{10 \times 9}{2} \left(-\frac{x}{8}\right)^2\right) = 0$	M1
	$1024(1 \pm)$	
	$= 1024 - 1280x + 720x^2$	<u>B1</u> A1 A1 [4]

1. The binomial series expansion of

$$(1+ax)^{\frac{2}{3}} \qquad |ax| < 1$$

up to and including the term in x^2 is

$$1 + \frac{1}{2}x + kx^2$$

where a and k are constants.

(a) Find the value of a.

(b) Find the realize of the similar recommendation in its simulant forms

- (b) Find the value of k, giving your answer in its simplest form. (2)
- (c) Hence find the numerical coefficient of x^2 in the series expansion of

$$(4 - 9x)(1 + ax)^{\frac{2}{3}} |ax| < 1 (2)$$

1. (a) Find the binomial series expansion of

$$\sqrt{4-9x}, |x|<\frac{4}{9}$$

in ascending powers of x, up to and including the term in x^2 Give each coefficient in its simplest form.

(5)

(b) Use the expansion from part (a), with a suitable value of x, to find an approximate value for $\sqrt{310}$

Show all your working and give your answer to 3 decimal places.

(3)

(2)

1.	$(1+ax)^{\frac{2}{3}} \approx 1 + \frac{1}{2}x + kx^2; f(x) = (4-9x)(1+ax)^{\frac{2}{3}}, ax < 1$					
	$\left\{ (1+ax)^{\frac{2}{3}} \approx 1 + \left(\frac{2}{3}\right)(ax) + \frac{\left(\frac{2}{3}\right)(-\frac{1}{3})}{2!}(ax)^2 + \dots = 1 + \frac{2}{3}ax - \frac{1}{9}a^2x^2 + \dots \right\}$					
(a)	$\frac{2}{3}a = \frac{1}{2}$			see notes	M1	
	$\frac{2}{3}a = \frac{1}{2}$ $a = \frac{3}{4}$ see notes $a = \frac{3}{4} \text{ or } 0.75$					
					((2)
(b)	$\frac{(\frac{2}{3})(-\frac{1}{3})}{2!}(a)^2$	Either $\frac{(\frac{2}{3})(-\frac{1}{3})}{2!}(ax)^2$ or	<u>~</u> :) ² or $\frac{(\frac{2}{3})(-\frac{1}{3})}{2!}(a)^2$ their a) ² or $-\frac{1}{9}a^2$	M1	
	$\left\{ k = \frac{(\frac{2}{3})(-\frac{1}{3})}{2!} \left(\frac{3}{4}\right)^2 \right\} \implies k = -\frac{1}{16}$		k =	$-\frac{1}{16}$ or -0.0625	A1	
					((2)
(c)	$\left\{ (4-9x)\left(1+\frac{1}{2}x-\frac{1}{16}x^2\right) \right\}$					
	$\{x^2:\}$ $-\frac{1}{4} - \frac{9}{2}$; $= -\frac{19}{4}$ or -4.75	Either 4(their k) $-\frac{9}{2}$ or 4(their k) $x^2 - \frac{9}{2}x^2$				
	4 2, 4 2			$-\frac{19}{4}$ or -4.75	A1	
					((2)

	I			
1. (a)	$\sqrt{(4-9x)} = (4-9x)^{\frac{1}{2}} = (4)^{\frac{1}{2}} \left(1 - \frac{9x}{4}\right)^{\frac{1}{2}} = 2\left(1 - \frac{9x}{4}\right)^{\frac{1}{2}}$	$\underline{(4)^{\frac{1}{2}}}$ or $\underline{2}$	<u>B1</u>	
	$= \left\{2\right\} \left[1 + \left(\frac{1}{2}\right)(kx) + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2!}(kx)^2 + \dots\right]$	see notes	M1 A1ft	
	$= \left\{2\right\} \left[1 + \left(\frac{1}{2}\right)\left(-\frac{9x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{9x}{4}\right)^{2} + \dots\right]$			
	$= 2 \left[1 - \frac{9}{8}x - \frac{81}{128}x^2 + \dots \right]$		see notes	
	$=2-\frac{9}{4}x;-\frac{81}{64}x^2+$	isw	A1; A1	
				[5]
(b)	$\sqrt{310} = 10\sqrt{3.1} = 10\sqrt{(4 - 9(0.1))}$, so $x = 0.1$		For $10\sqrt{3.1}$ (can be implied by later rking) and $x = 0.1$ (or uses $x = 0.1$) Note: $\sqrt{(100)(3.1)}$ by itself is B0	B1
	When $x = 0.1 \sqrt{(4-9x)} \approx 2 - \frac{9}{4}(0.1) - \frac{81}{64}(0.1)^2$	+	Substitutes their x , where $\left x\right < \frac{4}{9}$ into all three terms of their binomial expansion	M1
	= 2 - 0.225 - 0.01265625 = 1.76234375			
	So, $\sqrt{310} \approx 17.6234375 = \underline{17.623}$ (3 dp)		17.623 cao	A1 cao
	Note: the calculator value of $\sqrt{310}$ is 17 60681	686 W	which is 17 607 to 3 decimal places	[3]

2. $f(x) = (2 + kx)^{-3}$, |kx| < 2, where k is a positive constant

The binomial expansion of f(x), in ascending powers of x, up to and including the term in x^2 is

$$A + Bx + \frac{243}{16}x^2$$

where A and B are constants.

(a) Write down the value of A.

(1)

(b) Find the value of k.

(3)

(c) Find the value of B.

(2)

1. Use the binomial series to find the expansion of

$$\frac{1}{(2+5x)^3}, \qquad |x|<\frac{2}{5}$$

in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a fraction in its simplest form.

(6)

(a)	$\left\{A=\right\}\frac{1}{8}$	$\frac{1}{8}$ or 2 ⁻³ or 0.125, clearly identified as A or as their answer to part (a)	B1 cao
			[1]
		Uses the x^2 term of the binomial expansion to give	
		either $\frac{(-3)(-4)}{2!}$ or $\left(\frac{k}{2}\right)^2$ or $\left(\frac{kx}{2}\right)^2$ or $\frac{(-3)(-4)}{2}$ or 6	M1
(b)	$\left(\frac{1}{8}\right)\frac{(-3)(-4)}{2!}\left(\frac{k}{2}\right)^2$	either (their A) $\frac{(-3)(-4)}{2!} \left(\frac{k}{2}\right)^2$ or (their A) $\frac{(-3)(-4)}{2!} \left(\frac{kx}{2}\right)^2$,	
		where (their A) $\Box 1$,	M1 o.e.
		or $\frac{3}{16}k^2$ or $\frac{3}{16}k^2x^2$ or $(2^{-5})\frac{(-3)(-4)}{2!}(kx)^2$ or $(2^{-5})\frac{(-3)(-4)}{2!}(k)^2$	
	$\left\{ \text{So,} \left(\frac{1}{8} \right) \frac{(-3)(-4)}{2!} \left(\frac{k}{2} \right) \right\}$	$\int_{0}^{2} = \frac{243}{16} \Rightarrow \frac{3}{16}k^{2} = \frac{243}{16} \Rightarrow k^{2} = 81$	
	So, $k=9$	k = 9 cao	A1 cso
	No	ote: $k = \pm 9$ with no reference to $k = 9$ only is A0	
(c)		Uses the x term of the binomial expansion to give either	
	$\left[\left(\frac{1}{8} \right) \right] (-3) \left(\frac{k}{2} \right)$	(their A)(-3) $\left(\frac{k}{2}\right)$ or (their A)(-3) $\left(\frac{kx}{2}\right)$; where (their A) \Box 1,	M1
	(6) (2)	or $(2)^{-4}(-3)(k)$ or $(2)^{-4}(-3)(kx)$ or $-\frac{3k}{16}$	
	$\begin{cases} \text{So, } B = \left(\frac{1}{8}\right)(-3)\left(\frac{9}{2}\right) \end{cases}$	$\Rightarrow \frac{B = -\frac{27}{16}}{\frac{16}{16}} \qquad -\frac{27}{16} \text{ or } -1\frac{11}{16} \text{ or } -1.6875$	A1 cso
			[2]
			6

1. Way 1	$\left\{ \frac{1}{\left(2+5x\right)^3} = \right\} (2+5x)^{-3}$	Writes down $(2+5x)^{-3}$ or uses power of -3	M1
	$= (2)^{-3} \left(1 + \frac{5x}{2} \right)^{-3} = \frac{1}{8} \left(1 + \frac{5x}{2} \right)^{-3}$	$\frac{2^{-3}}{8}$ or $\frac{1}{8}$	<u>B1</u>
	$= \left\{ \frac{1}{8} \right\} \left[1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3 + \dots \right]$	see notes	M1 A1
	$= \left\{ \frac{1}{8} \right\} \left[1 + (-3) \left(\frac{5x}{2} \right) + \frac{(-3)(-4)}{2!} \left(\frac{5x}{2} \right)^2 + \frac{(-3)(-4)(-5)}{3!} \left(\frac{5x}{2} \right)^3 + \dots \right]$		
	$= \frac{1}{8} \left[1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$		
	$= \frac{1}{8} \left[1 - 7.5x + 37.5x^2 - 156.25x^3 + \dots \right]$		
	$= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$		A1; A1
	or $\frac{1}{8} - \frac{15}{16}x$; $+ 4\frac{11}{16}x^2 - 19\frac{17}{32}x^3 + \dots$		
			[6]

1. (a) Find the binomial expansion of

$$(4+5x)^{\frac{1}{2}}, |x| < \frac{4}{5}$$

in ascending powers of x, up to and including the term in x^2 . Give each coefficient in its simplest form.

(5)

(b) Find the exact value of $(4 + 5x)^{\frac{1}{2}}$ when $x = \frac{1}{10}$

Give your answer in the form $k\sqrt{2}$, where k is a constant to be determined.

(1)

(c) Substitute $x = \frac{1}{10}$ into your binomial expansion from part (a) and hence find an approximate value for $\sqrt{2}$

Give your answer in the form $\frac{p}{q}$ where p and q are integers.

(2)

1. (a)	$(4+5x)^{\frac{1}{2}} = \underline{(4)^{\frac{1}{2}}} \left(1 + \frac{5x}{4}\right)^{\frac{1}{2}} = \underline{2} \left(1 + \frac{5x}{4}\right)^{\frac{1}{2}} \text{ or } \underline{2}$	<u>B1</u>
	$= \left\{2\right\} \left[1 + \left(\frac{1}{2}\right)(kx) + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2!}(kx)^2 + \dots\right]$ see notes	M1 A1ft
	$= \left\{2\right\} \left[1 + \left(\frac{1}{2}\right) \left(\frac{5x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} \left(\frac{5x}{4}\right)^{2} + \dots\right]$	
	$= 2 \left[1 + \frac{5}{8}x - \frac{25}{128}x^2 + \dots \right]$ See notes below!	
	$= 2 + \frac{5}{4}x; -\frac{25}{64}x^2 + \dots $ isw	A1; A1
(b)	$\left\{ x = \frac{1}{10} \Longrightarrow (4 + 5(0.1))^{\frac{1}{2}} = \sqrt{4.5} = \sqrt{\frac{9}{2}} = \frac{3}{\sqrt{2}} = \frac{3}{\sqrt{2}} \sqrt{\frac{2}{2}} \right\}$	[5]
	$=\frac{3}{2}\sqrt{2}$ or $k=\frac{3}{2}$ or 1.5 o.e.	
(c)	$\frac{3}{2}\sqrt{2}$ or $1.5\sqrt{2}$ or $\frac{3}{\sqrt{2}} = 2 + \frac{5}{4}\left(\frac{1}{10}\right) - \frac{25}{64}\left(\frac{1}{10}\right)^2 + \dots \ \left\{= 2.121\right\}$ See notes	J1[. M1
	So, $\frac{3}{2}\sqrt{2} = \frac{543}{256}$ or $\frac{3}{\underline{\sqrt{2}}} = \frac{543}{256}$	
	yields, $\sqrt{2} = \frac{181}{128}$ or $\sqrt{2} = \frac{256}{181}$ $\frac{181}{128}$ or $\frac{362}{256}$ or $\frac{543}{384}$ or $\frac{256}{181}$ etc.	A1 oe