Alex is investigating changes in the selling price of houses. One particular house was sold on 1 January 1950 for £3000. This house was resold on 1 January 2010 for £240 000.

Alex proposes a model

$$P = Ak^t$$

for the selling price, $\pounds P$, of this house, where t is the time in years after 1 January 1950 and A and k are constants.

(a) (i) Write down the value of A.

[1 mark]

(ii) Show that, correct to six decimal places, k = 1.075767

[2 marks]

(iii) Use logarithms and this model to estimate the year during which the selling price of this house first reached £450 000.

[3 marks]

(b) For another house that was sold on 1 January 1960 for £5100, Alex proposes the model

$$Q = 5100 \times 1.0785^t$$

for the selling price, £Q, of this house, t years after 1 January 1960.

(i) Use this model to estimate the selling price of this house 10 years previously on 1 January 1950, giving your answer to the nearest £100.

[2 marks]

(ii) Use logarithms to find the year during which the two models predict that the selling price of these two houses will be the same.

[4 marks]

Q 7	Solution	Mark	Total	Comment
(a)(i)	A = 3000	B1	1	From $P = 3000$ when $t = 0$.
(ii)	$240\ 000 = 3\ 000\ k^{60}$ $k^{60} = 80 \qquad PI$	М1		OE: $\ln 240000 = \ln 3000 + 60 \ln k$
	$k = {}^{60}\sqrt{80}$			$\ln k = \frac{\ln 240000 - \ln 3000}{60} \text{ or better}$
	= 1.075767	A 1	2	See below
	To earn the A1 we must see either a correct exact answer for k or $\ln k$ (as shown) or any correct decimal answer to greater accuracy (1.075766873) followed by the printed 6 decimal place value.			
(iii)	$450\ 000 = 3\ 000\ k^t$			
	$k^t = 150$	M1		Setting up an equation for k^t
	$t \ln k = \ln 150$ OE	dM1		Correct method for a linear equation in t
	$t = 68.6 \dots$		2	or $t = log_k 150$ - PI by $t = 68.6$ /69.
	2018	A1	3	Accept 2019 but from correct working.
	As implied, the first two marks can be earned without a numerical value for k but are for correctly reaching a linear equation in t - e.g. as above or such as $\ln 450\ 000 = \ln 3\ 000 + t \ln k$ etc.			
(b)(i)	$Q = 5100 \times 1.0785^{-10}$	M1		Using $t = -10$ in given expression.
	= 2 400	A1	2	Must be this value but allow 2400.00
(ii)	Alternative 1 - using models as given			
	$5100 \times 1.0785^{t-10} = 3000 \times k^t$	M1		<i>k</i> needn't be numerical or could be wrong to earn first two marks.
	$\ln 5100 + (t - 10) \ln 1.0785$	dM1		OE: $\ln 1.7 + (t - 10) \ln 1.0875 =$
	$= \ln 3000 + t \ln k$	divir		$t \ln k$ Using rules of logs correctly
	$t = \frac{\ln 3000 - \ln 5100 + 10 \ln 1.0785}{\ln 1.0785 - \ln k} \text{ or } 88.7 \dots$	A1		$t = \frac{10 \ln 1.0785 - \ln 1.7}{\ln 1.0785 - \ln k}$ or 88.7
	(Year) 2038	A1	4	$t = \frac{1}{\ln 1.0785 - \ln k}$ Or 86.7 Accept 2039 from correct working.
	I	1	I	7 Accept 2037 Horn correct working.

In a conservation area, a disease is spreading amongst two species of wild animal, P and Q, which is reducing their numbers.

Previous experience has shown that the number of each of the species ${\cal P}$ and ${\cal Q}$ can be modelled by

$$p(t) = 4500e^{-\frac{1}{20}t}$$
 and $q(t) = 3000e^{-\frac{1}{40}t}$ respectively

where *t* is the time in weeks after the disease is first detected.

This outbreak of the disease was first detected on 1 May.

- (a) Use the two models to find:
 - (i) the number of species P on 1 May;

[1 mark]

(ii) the number of species Q after 36 weeks from 1 May, giving your answer to the nearest 10;

[1 mark]

(iii) after how many weeks the number of species P will first fall below 1500.

[2 marks]

(b) Use logarithms and the two models to calculate the value of t when the number of species Q will be four times that of species P. Give your answer to the nearest whole number.

[3 marks]

- (c) When t = T the number of species Q first exceeds that of species P by 300.
 - (i) Use this information and the two models to derive a quadratic equation in x where $x=\mathrm{e}^{-\frac{1}{40}T}$.

[2 marks]

(ii) Hence find the number of days after 1 May when this difference of 300 animals will first occur. Give your answer to the nearest day.

[3 marks]

Q5	Solution	Mark	Total	Comment
(a)(i)	4500	B1	1	
(a)(ii)	1220	B1	1	
(a)(iii)	$4500e^{-\frac{1}{20}t} < 1500$			
	$\frac{1}{20}t > \ln 3 \text{or } -\frac{1}{20}t < \ln \frac{1}{3} \text{or better}$	M1		Correctly converting from exponential to logarithmic form
	22	A1	2	Allow 21.97 NMS scores B2 for 22 or 21.97
(b)	$(Q = 4P \Rightarrow)$ $3000e^{-\frac{1}{40}t} = 4(4500)e^{-\frac{1}{20}t}$ OE	M1		Setting up a correct equation but M0 if logs not used later.
	$\frac{t}{40} = \ln 6$ or $-\frac{t}{40} = \ln \frac{1}{6}$ OE	A1		e.g. $\ln 3000 - \frac{t}{40} = \ln 18000 - \frac{t}{20}$
	72	A1	3	CAO
(c)(i)	$3000e^{-\frac{1}{40}T} - 4500e^{-\frac{1}{20}T} = 300$	M1		Setting up a correct equation – could include both x and T (or t).
	$\left(x = e^{-\frac{1}{40}T}\right) \Rightarrow 3000x - 4500x^2 = 300$ $15x^2 - 10x + 1 = 0$	A1	2	Correct quadratic in x (ACF) - apply ISW for wrong cancelling or rearranging.
(c)(ii)	$(x) = \frac{10 \pm \sqrt{40}}{30} $ (0.12 or 0.54)	dM1		
	T = 24.3(41)	A1		Allow 24
	= 170 (days)	A1	3	Accept October 18 th if 170 not seen.
			12	

4 The mass of radioactive atoms in a substance can be modelled by the equation

$$m = m_0 k^t$$

where m_0 grams is the initial mass, m grams is the mass after t days and k is a constant. The value of k differs from one substance to another.

(a) (i) A sample of radioactive iodine reduced in mass from 24 grams to 12 grams in 8 days.

Show that the value of the constant k for this substance is 0.917004, correct to six decimal places.

[1 mark]

(ii) A similar sample of radioactive iodine reduced in mass to 1 gram after 60 days.

Calculate the initial mass of this sample, giving your answer to the nearest gram.

[2 marks]

(b) The half-life of a radioactive substance is the time it takes for a mass of m_0 to reduce to a mass of $\frac{1}{2}m_0$.

A sample of radioactive vanadium reduced in mass from exactly $10~{\rm grams}$ to $8.106~{\rm grams}$ in $100~{\rm days}$.

Find the half-life of radioactive vanadium, giving your answer to the nearest day.

[4 marks]

Q4	Solution	Mark	Total	Comment
(a)(i)	$m = m_0 k^t$			
	Using $m = 12$, $m_0 = 24$ and $t = 8$			$12 = 24k^8$
	$k^8 = \frac{1}{2}$ or $k = (\sqrt[8]{0.5})$			OE e.g. $k = (\frac{1}{2})^{\frac{1}{8}}$
	= 0.917004	B1	1	Must see a correct exact expression for k or k^8 or k =0.91700404(32) to at least 8 d. p. AG be convinced
	Note that AG so to earn the mark they must sh	ow us a	correct	
	as $k = e^{\left(\frac{\ln 0.5}{8}\right)}$ or $e^{-0.086643}$ or $\left(\frac{1}{2}\right)^{\frac{1}{8}}$ or 0.91700404(32) as sufficient evidence but withhold the			
	mark if a clear error has been made – e.g. $k = \sqrt[\frac{1}{8}]{0.5}$.			
	Candidates who work with logs must reach an expression such as $\log k = \frac{\log 12 - \log 24}{8}$ first.			
(a)(ii)	$1 = m_0(0.917004)^{60}$	M1		or $m_0 = (0.917004)^{-60}$ PI by A1 later
	$m_0 = 181$	A1	2	Must be 181 no ISW
	NMS scores SC2 for 181 only but sight of greater accuracy (181.0198) implies M1 if 181 not seen.			
(b)	$m = m_0 k^t$			_
	$8.106 = 10 \times k^{100}$	M1		
	$k = \sqrt[100]{0.8106}$ OE	A1		OE: e.g. $k = e^{\ln(0.8106)}/_{100}$
	$\frac{1}{2}m_0 = m_0 k^t$			
	$k^t = \frac{1}{2}$			
	$t \log k = \log\left(\frac{1}{2}\right)$	M1		A linear equation in t from $k^t = \frac{1}{2}$
	$t = \frac{\log\left(\frac{1}{2}\right)}{\log k}$			$e.g. t = log_k(0.5)$
	= 330	A1	4	Must be 330 No ISW
	For guidance, for first A1, $k = 0.9979 \dots PI$ by later correct work.			

The first **M1** is for a correct interpretation of the information given so could equally be awarded for an expression involving logs of k such as $\ln 8.106 = \ln 10 + 100 \ln k$ then **A1** for a correct expression for $\ln k$ such as $\ln k = \frac{\ln 8.106 - \ln 10}{100}$ or, using base 10, $\log k = \frac{\log 8.106 - 1}{100}$.

Those who use the value of k from (a) could only score M0 A0 M1 A0.

NMS scores SC4 for 330 only but sight of greater accuracy (330.1006...) implies M1 A1 M1 if 330 not seen.

8. A study is being carried out on two colonies of ants.

The number of ants N_A in colony A, t years after the start of the study, is modelled by the equation

$$N_A = 3000 + 600e^{0.12t}$$
 $t \in \mathbb{R}, t \geqslant 0$

Using the model,

- (a) find the time taken, from the start of the study, for the number of ants in colony A to double. Give your answer, in years, to 2 decimal places.

 (5)
- (b) Show that $\frac{dN_A}{dt} = pN_A + q$, where p and q are constants to be determined. (3)

The number of ants N_{B} in colony B, t years after the start of the study, is modelled by the equation

$$N_{B} = 2900 + Ce^{kt}$$
 $t \in \mathbb{R}, t \geqslant 0$

where C and k are positive constants.

According to this model, there will be 3100 ants in colony *B* one year after the start of the study and 3400 ants in colony *B* two years after the start of the study.

- (c) (i) Show that $k = \ln\left(\frac{5}{2}\right)$
 - (ii) Find the value of C.

(4)

8 (a)	Substitute $N_A = 7200$ in $N_A = 3000 + 600e^{0.12t}$	B1	
	$\Rightarrow e^{0.12t} = 7$	M1 A1	
	$\Rightarrow t = \frac{\ln 7}{0.12} = 16.22 \text{ years}$	M1, A1	
	V.12		(5)
(b)	Differentiates to achieve $\frac{dN_A}{dt} = \beta e^{0.12t}$ $\left[\frac{dN_A}{dt} = 600 \times 0.12 e^{0.12t}\right]$	M1	
	Substitutes $e^{0.12t} = \frac{N_A - 3000}{600}$ into $\frac{dN_A}{dt} = \beta e^{0.12t}$		
	OR	dM1	
	Substitutes $600e^{0.12t} = N_A - 3000$ into $\frac{dN_A}{dt} = \alpha \times 600e^{0.12t}$		
	$\Rightarrow \frac{dN_A}{dt} = 0.12 (N_A - 3000) = 0.12N_A - 360 \text{ or } \frac{3}{25}N_A - 360$	Al	
			(3)
(c)(i)	$200 = Ce^{k}$ and $500 = Ce^{2k}$	M1	
	$e^{k} = \frac{500}{200} \Rightarrow k = \dots \text{ or } e^{-k} = \frac{200}{500} \Rightarrow k = \dots$	dM1	
	$k = \ln\left(\frac{5}{2}\right) * \cos \alpha$	A1*	
(ii)	80	B1	
			(4)

(12 marks)

3. The value of a car is modelled by the formula

$$V = 16000e^{-kt} + A, \qquad t \geqslant 0, t \in \mathbb{R}$$

where V is the value of the car in pounds, t is the age of the car in years, and k and A are positive constants.

Given that the value of the car is £17500 when new and £13500 two years later,

(a) find the value of A,

(1)

(b) show that
$$k = \ln\left(\frac{2}{\sqrt{3}}\right)$$

(c) Find the age of the car, in years, when the value of the car is £6000

Give your answer to 2 decimal places.

(4)

3(a)	A = 1500	B1
		(1)
a >	G 1	
(b)	Sub $t = 2, V = 13500 \Rightarrow 16000e^{-2k} = 12000$	M1
	$\Rightarrow e^{-2k} = \frac{3}{4} 0.75 \text{oe}$	A 1
		A1
	$\Rightarrow k = -\frac{1}{2}\ln\frac{3}{4}, = \ln\sqrt{\frac{4}{3}} = \ln\left(\frac{2}{\sqrt{3}}\right)$	13.61 4.14
	$\Rightarrow \kappa = -\frac{1}{2} \ln \frac{1}{4}, = \ln \sqrt{\frac{1}{3}} = \ln \left(\frac{1}{\sqrt{3}} \right)$	dM1, A1*
		(4)
		(4)
(a)	Sub $6000 = 16000e^{-\ln\left(\frac{2}{\sqrt{3}}\right)T} + 1500' \Rightarrow e^{-\ln\left(\frac{2}{\sqrt{3}}\right)T} = C$	
(c)		M1
	$\Rightarrow e^{-\ln\left(\frac{2}{\sqrt{3}}\right)^{T}} = \frac{45}{160} = 0.28125$	A 1
	\Rightarrow e $\frac{(\sqrt{3})}{160} = 0.28125$	A1
	(45)	
	$\ln\left \frac{43}{160}\right $	
	$\Rightarrow T = -\frac{(100)}{(2)} = 8.82$	M1 A1
	$\Rightarrow T = -\frac{\ln\left(\frac{45}{160}\right)}{\ln\left(\frac{2}{\sqrt{3}}\right)} = 8.82$	
	$(\sqrt{3})$	
		(4)

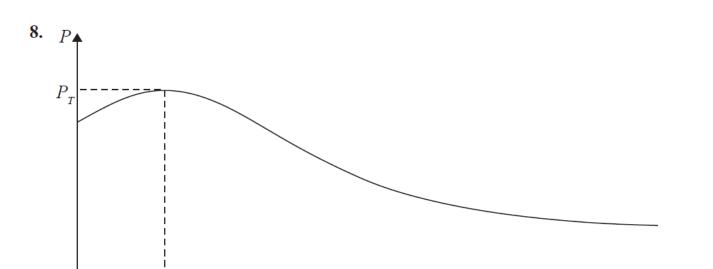


Figure 3

The number of rabbits on an island is modelled by the equation

$$P = \frac{100e^{-0.1t}}{1 + 3e^{-0.9t}} + 40, \qquad t \in \mathbb{R}, t \geqslant 0$$

where P is the number of rabbits, t years after they were introduced onto the island.

A sketch of the graph of *P* against *t* is shown in Figure 3.

(b) Find
$$\frac{dP}{dt}$$
 (3)

The number of rabbits initially increases, reaching a maximum value $P_{\scriptscriptstyle T}$ when t=T

- (c) Using your answer from part (b), calculate
 - (i) the value of T to 2 decimal places,
 - (ii) the value of P_T to the nearest integer.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

For t > T, the number of rabbits decreases, as shown in Figure 3, but never falls below k, where k is a positive constant.

(d) Use the model to state the maximum value of k.

(1)

(4)

8 (a)	$P_0 = \frac{100}{1+3} + 40 = 65$	B1	
		(1))
	$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{e}^{kt} = C\mathrm{e}^{kt}$	M1	
(b)	$\frac{dP}{dt} = \frac{\left(1 + 3e^{-0.9t}\right) \times -10e^{-0.1t} - 100e^{-0.1t} \times -2.7e^{-0.9t}}{\left(1 + 3e^{-0.9t}\right)^2}$	M1 A1	
		(3)	
(c)(i)	At maximum $-10e^{-0.1t} - 30e^{-0.1t} \times e^{-0.9t} + 270e^{-0.1t} \times e^{-0.9t} = 0$		
	$e^{-0.1t} \left(-10 + 240e^{-0.9t} \right) = 0$		
	$e^{-0.9t} = \frac{10}{240}$ oe $e^{0.9t} = 24$	M1	
	$-0.9t = \ln\left(\frac{1}{24}\right) \Rightarrow t = \frac{10}{9}\ln(24) = 3.53$	M1, A1	
(c) (ii)	Sub $t = 3.53 \Rightarrow P_{\scriptscriptstyle T} = 102$	A1	
		(4))
(d)	40	B1	

9. The amount of an antibiotic in the bloodstream, from a given dose, is modelled by the formula

$$x = De^{-0.2t}$$

where x is the amount of the antibiotic in the bloodstream in milligrams, D is the dose given in milligrams and t is the time in hours after the antibiotic has been given.

A first dose of 15 mg of the antibiotic is given.

(a) Use the model to find the amount of the antibiotic in the bloodstream 4 hours after the dose is given. Give your answer in mg to 3 decimal places.

(2)

A second dose of 15 mg is given 5 hours after the first dose has been given. Using the same model for the second dose,

(b) show that the **total** amount of the antibiotic in the bloodstream 2 hours after the second dose is given is 13.754 mg to 3 decimal places.

(2)

No more doses of the antibiotic are given. At time *T* hours after the second dose is given, the total amount of the antibiotic in the bloodstream is 7.5 mg.

(c) Show that $T = a \ln \left(b + \frac{b}{e} \right)$, where a and b are integers to be determined.

4. Water is being heated in an electric kettle. The temperature, θ °C, of the water t seconds after the kettle is switched on, is modelled by the equation

$$\theta = 120 - 100e^{-\lambda t}, \quad 0 \leqslant t \leqslant T$$

(a) State the value of θ when t = 0

(1)

(4)

Given that the temperature of the water in the kettle is 70° C when t = 40,

(b) find the exact value of λ , giving your answer in the form $\frac{\ln a}{b}$, where a and b are integers.

(4)

When t = T, the temperature of the water reaches $100 \,^{\circ}$ C and the kettle switches off.

(c) Calculate the value of *T* to the nearest whole number.

9(a) Subs
$$D = 15$$
 and $t = 4$ $x = 15e^{-0.2 \times 4} = 6.740 \ (mg)$ M1A1

(b) $15e^{-0.2 \times 7} + 15e^{-0.2 \times 2} = 13.754 \ (mg)$ M1A1*

(c) $15e^{-0.2 \times T} + 15e^{-0.2 \times (T+5)} = 7.5$ M1

 $15e^{-0.2 \times T} + 15e^{-0.2 \times T}e^{-1} = 7.5$ 15 $e^{-0.2 \times T} (1+e^{-1}) = 7.5 \Rightarrow e^{-0.2 \times T} = \frac{7.5}{15(1+e^{-1})}$ dM1

 $T = -5\ln\left(\frac{7.5}{15(1+e^{-1})}\right) = 5\ln\left(2 + \frac{2}{e}\right)$ A1, A1

(4) (8 marks)

4(a)
$$(\theta =)20$$
 (1)

(b) Sub $t = 40$, $\theta = 70 \Rightarrow 70 = 120 - 1000e^{-40\lambda}$

$$\Rightarrow e^{-40\lambda} = 0.5$$

$$\Rightarrow \lambda = \frac{\ln 2}{40}$$
M1A1

(c) $\theta = 100 \Rightarrow T = \frac{\ln 0.2}{-\text{their}'\lambda'}$

$$T = \text{awrt } 93$$
A1

(2)

DΙ