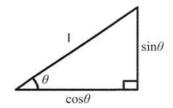
Pure Sector 2: Trigonometry 3

Aims:


- To understand and use trigonometric identities
- To use trigonometric identities to solve more complex equations
- To construct proofs involving trigonometric functions and identities

Trigonometric Identities

You need to learn the following trig identities:

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$

$$\cos^2 \theta + \sin^2 \theta \equiv 1$$

Example 1

Solve the equation $3 \sin x = 4 \cos x$ for $0 \le x \le 360^{\circ}$ giving your answer to three significant figures.

$$\frac{\sin x}{\omega x} = \frac{4}{3} \qquad (\omega x \neq 0)$$

$$\tan x = \frac{4}{3}$$

$$x = 53.13..., 180 + 53.13...$$

$$= 53.13..., 233.13...$$

$$= 53.1, 233$$

Example 2

Solve the equation $2\sin^2\theta = 3\cos\theta$ for $0 \le \theta \le 2\pi$ giving your answer to two decimal places.

$$2(1-\omega^2\theta) = 3\omega \theta$$

$$2 - 2\omega s^2\theta = 3\omega s \theta$$

$$2\omega s^2\theta + 3\omega s \theta - 2 = 0$$

$$(2\omega s \theta - 1)(\omega s \theta + 2) = 0$$

$$\omega \theta = \frac{1}{2} \quad \text{or} \quad \omega s \theta = -2$$

$$(\omega s \theta - 2) = \frac{1}{2} \quad \text{or} \quad \omega s \theta = -2$$

$$(\omega s \theta - 2) = \frac{1}{2} \quad \text{or} \quad \omega s \theta = -2$$

$$(\omega s \theta - 2) = \frac{1}{2} \quad \text{or} \quad \omega s \theta = -2$$

$$\theta = ws^{-1}(\frac{1}{2})$$

$$= \frac{rc}{3}, 2r - \frac{rc}{3}$$

$$= \frac{rc}{3}, 5rc$$

$$= \frac{1.05}{5.24}$$

Proving Trigonometric Identities

Example 3

Show that
$$\frac{1-\sin\theta}{\cos\theta} = \frac{1}{\cos\theta} - \tan\theta$$

$$Lhs = \frac{1 - \sin \theta}{\cos \theta}$$

$$= \frac{1}{\cos \theta} - \frac{\sin \theta}{\cos \theta}$$

$$= \frac{1}{\cos \theta} - \tan \theta$$

$$= Rhs$$

Example 4

Prove that $(\cos x - \tan x)^2 + (\sin x + 1)^2 = 2 + \tan^2 x$

Lths =
$$(\omega x - \tan x)^2 + (\sin x + 1)^2$$

= $(\omega x^2 x - 2\omega x \tan x + \tan^2 x + \sin^2 x + 2\sin x + 1$
= $(\omega x^2 x + \sin^2 x) - 2\omega x (\frac{\sin x}{\omega x}) + 2\sin x + 1 + \tan^2 x$
= $1 + 1 + \tan^2 x$
= $2 + \tan^2 x$
= $2 + \tan^2 x$
= $2 + \tan^2 x$

Exam Question

- (a) Solve the equation $\tan x = -3$ in the interval $0^{\circ} \le x \le 360^{\circ}$, giving your answers to the nearest degree. (3 marks)
- (b) (i) Given that

$$7\sin^2\theta + \sin\theta\cos\theta = 6$$

show that

$$\tan^2 \theta + \tan \theta - 6 = 0 (3 marks)$$

(ii) Hence solve the equation $7 \sin^2 \theta + \sin \theta \cos \theta = 6$ in the interval $0^{\circ} \le \theta \le 360^{\circ}$, giving your answers to the nearest degree. (4 marks)

a)
$$x = \tan^{-1}(-3)$$

 $= (-71.765...)$, $180 - 71.565...$, $360 - 71.565...$
 $= 108.4...$, $288.4...$
 $= 108, 288$
b)(i) $\frac{7 \sin^2 \theta}{\cos^2 \theta} + \frac{\sin \theta \cos \theta}{\cos^2 \theta} = \frac{6}{\cos^2 \theta}$ ($\cos \theta \neq 0$)
 $\frac{7 \tan^2 \theta}{\cos^2 \theta} + \tan \theta = \frac{6}{\cos^2 \theta}$
 $\frac{7 \tan^2 \theta}{\cos^2 \theta} + \tan \theta = \frac{6 \sin^2 \theta}{\cos^2 \theta}$
 $\frac{7 \tan^2 \theta}{\cos^2 \theta} + \tan \theta = \frac{6 \tan^2 \theta}{\cos^2 \theta} + 6$
 $\tan^2 \theta + \tan \theta = 6 \tan^2 \theta + 6$
 $\tan^2 \theta + \tan \theta - 6 = 0$
(ii) $(\tan \theta + 3)(\tan \theta - 2) = 0$
 $\tan \theta = -3$ or $\tan \theta = -2$
 $\theta = 108, 288$ $\theta = 63.43..., 243.43...$

0=63,108,243,288

Further Trigonometric Identities

We can use the identities you have just met to form new identities.

$$\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$$

If you divide each term in the identity $\sin^2 \theta + \cos^2 \theta = 1$ by $\cos^2 \theta$ you get:

$$\frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta}$$

Which simplifies to:

$$\tan^2\theta + 1 = \sec^2\theta$$

Similarly if you divide each term in the identity $\sin^2 \theta + \cos^2 \theta = 1$ by $\sin^2 \theta$ you get:

$$\frac{\sin^2 \theta}{\sin^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{1}{\sin^2 \theta}$$

Which simplifies to:

$$1 + \cot^2 \theta = \csc^2 \theta$$

These identities are used to solve trigonometric equations and to prove other identities. They are NOT in the formula booklet you must memorise them!

Example 5

Solve the equation $\sec^2 x = 4 + 2 \tan x$, giving all solutions for $0^{\circ} \le x \le 360^{\circ}$.

$$(1+\tan^2x) = 4+2\tan x$$

 $\tan^2x - 2\tan x - 3 = 0$
 $(\tan x - 3)(\tan x + 1) = 0$
 $\tan x = 3$ on $\tan x = -1$

x=72,135,252,315

Example 6

Solve the equation $\csc^2 x = 5 + 3 \cot x$, giving all solutions for $0 \le x \le 2\pi$ to 3sf.

$$(1+\omega t^2x) = 5+3\omega tx$$

 $\omega t^2x - 3\omega tx - 4 = 0$
 $(\omega tx - 4)(\omega tx + 1) = 0$

$$|\cot x = 4$$
 ox $\cot x = -1$
 $\tan x = \frac{1}{4}$ $\tan x = -1$
 $x = 0.245, 2.36, 3.39, 5.50$

Proving Trigonometric Identities

Example 7

Prove the identity $\sec^2 A - \csc^2 A = (\tan A + \cot A)(\tan A - \cot A)$

$$kns = (tan A + \omega t A)(tan A - \omega t A)$$

$$= tan^{2}A - \omega t^{2}A$$

$$= (x\omega^{2}A - 1) - (\omega x\omega^{2}A - 1)$$

$$= x\omega^{2}A - 1 - \omega x\omega^{2}A + 1$$

$$= x\omega^{2}A - \omega x\omega^{2}A$$

$$= \varepsilon H c$$

Example 8

Prove the identity $\tan^2 A - \cot^2 A = (\sec A - \csc A)(\sec A + \csc A)$

$$KMS = (x + x + x + x)(x + x + x + x)$$

$$= x + x^{2}A - x + x + x$$

$$= (t + x)^{2}A + x + x + x$$

$$= (t + x)^{2}A + x + x + x$$

$$= (t + x)^{2}A - x + x + x$$

$$= (t + x)^{2}A - x + x + x$$

$$= (t + x)^{2}A$$

Exam Question

5. Solve, for $0 \le \theta \le 180^{\circ}$,

$$2\cot^2 3\theta = 7\csc 3\theta - 5$$

Give your answers in degrees to 1 decimal place.

(10)

F. $2\omega t^{2}3\theta = 7\omega te 3\theta - 5$ $2(\omega te^{2}3\theta - 1) = 7\omega te 3\theta - 5$ $2\omega te^{2}3\theta - 2 = 7\omega te 3\theta - 5$ $2\omega te^{2}3\theta - 7\omega te 3\theta + 3 = 0$ $(2\omega te 3\theta - 1)(\omega te 3\theta - 3) = 0$

0 < 30 < 540

(NO NOOTS)

or use 30 = 3

Sin 30 = 1

30 = 19.471..., 160-528., 379.471., 520.528...

Q = 6.490., 53.509..., 126.490..., 173.509

= 6.5, 53.5, 126.5, 173.5