
Indices

Aims

- 1. Use the rules of indices with whole number indices
- 2. Understand and use negative indices
- 3. Understand and use fraction indices
- 4. Solve equations in index form

Example 1

Simplify the following expressions:

- a. $3^2 \times 3^3 = 3^5$ b. $4^7 \div 4^5 = 4^2$ c. $\frac{5^4}{5^2} = 5^2$ d. $(2^3)^5 = 2^{15}$
- e. $2x^4y^3 \times 4x \times (x^2y^3)^4 =$

f.
$$\frac{(3s^3t^4)^2 \times s^2t^5}{(s^2t^3)^4} =$$

- 2x⁴y³4x(x⁸y¹²)=8x¹³y¹⁵
- $\frac{(9s^{6}t^{8})s^{2}t^{5}}{s^{8}t^{12}} = \frac{9s^{8}t^{13}}{s^{8}t^{12}} = 9t$

Example 2

Express the following expressions in index form

a. $\frac{1}{x^3} = X^{-3}$ b. $\frac{4}{y^3} = 4Y^{-3}$ c. $3\sqrt{x} = 3X^{\frac{1}{2}}$ d. $\sqrt[3]{x} = X^{\frac{1}{3}}$ e. $\sqrt[4]{a^3} = a^{\frac{3}{4}}$ f. $\frac{x^4 - 17x^2 + 6}{x^2}$ $(x^4 - 17x^2 + 6)x^{-2}$ $= x^2 - 17 + 6x^{-2}$

Exam question

A curve is defined, for x > 0, by the equation y = f(x), where

$$\mathbf{f}(x) = \frac{x^8 - 1}{x^3}$$

(a) Express $\frac{x^8 - 1}{x^3}$ in the form $x^p - x^q$, where p and q are integers. (2 marks)

x⁵ - x⁻³

Solving equations using indices

Example 3

Solve the following equations for x:

a)
$$x^{\frac{1}{2}} = 6$$
 $(x^{\frac{1}{2}})^2 = 6^2$
 $x = 36$
c) $x^{\frac{2}{3}} = 16$ $(x^{\frac{2}{3}})^{\frac{3}{2}} = 16^{\frac{3}{2}}$
 $x = \pm 64$

 $(x^{\frac{1}{2}})(x^{\frac{2}{2}})=x^{\frac{3}{2}}$

$$6x^{\frac{1}{3}} = -1$$
b) $6x^{\frac{1}{3}} + 1 = 0$

$$(x^{\frac{1}{3}})^{3} = (-\frac{1}{6})^{3}$$

$$x = -\frac{1}{216}$$
d) $\frac{45}{2}x^{\frac{1}{2}} - \frac{5}{2}x^{\frac{3}{2}} = 0$

$$45x^{\frac{1}{2}} - 5x^{\frac{3}{2}} = 0$$

$$9x^{\frac{1}{2}} - x^{\frac{3}{2}} = 0$$

$$x^{\frac{1}{2}}(9 - x^{\frac{2}{2}}) = 0$$

$$x^{\frac{1}{2}} = 0 \quad x = 0, x = 9$$

)

Example 4

Solve the following equations for x:

a)
$$4^{x+1} = 8$$

 $(2^2)^{x+1} = 2^3$
 $2^{2(x+1)} = 2^3$
 $2(x+1) = 3$
 $2x+2=3$
 $x = \frac{1}{2}$
b) $3^{x+1} = 27^{x-3}$
 $3^{x+1} = (3^3)^{x-3}$
 $3^{x+1} = 3^{3(x-3)}$
 $x+1 = 3(x-3)$
 $x+1 = 3x-9$
 $10 = 2x$
 $x = 5$

1 (a) Simplify:

(i)
$$x^{\frac{3}{2}} \times x^{\frac{1}{2}}$$
; (1 mark)
(ii) $x^{\frac{3}{2}} \div x$; (1 mark)

(iii)
$$\left(\frac{3}{x^2}\right)^2$$
. (1 mark)

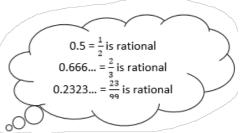
1(a)(i)	x ²	B1	1	
(ii)	$x^{\frac{1}{2}} = \sqrt{x}$	В1	1	Accept either form
(iii)	x ³	B1	1	

Exam question

(a)	(i)	Find the value of p for which $\sqrt{125} = 5^p$.	(2 marks)
	(ii)	Hence solve the equation $5^{2x} = \sqrt{125}$.	(1 mark)

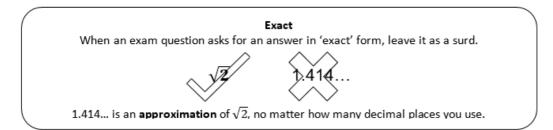
 $\sqrt{5^3} = 5^p$ $5^{\frac{3}{2}} = 5^p$ $P = \frac{3}{2}$

- 3 (a) Write down the values of p, q and r given that:
 - (i) $64 = 8^{p}$; (ii) $\frac{1}{64} = 8^{q}$; (iii) $\sqrt{8} = 8^{r}$. (3 marks)
 - (b) Find the value of x for which


$$\frac{8^x}{\sqrt{8}} = \frac{1}{64} \tag{2 marks}$$

3(a)(i)	{ <i>p</i> =} 2	B1		Condone '64=82
(ii)	$\{q=\}-2$	B1ft		Ft on '-p' if q not correct
(iii)	{ <i>r</i> =} 0.5	B1	3	Condone ' $\sqrt{8} = 8^{0.5}$ '
(b)	$\frac{8^{x}}{8^{0.5}} = 8^{-2} \implies 8^{x-0.5} = 8^{-2} \text{ OE}$ $\implies x - 0.5 = -2 \implies x = -1.5$	M1 A1ft	2	Using parts (a) $\underline{\&}$ valid index law to stage 8 ^c =8 ^d (PI) Ft on c's (q + r) if not correct
	x = 0.5 = -2 $x = -1.5$		-	(Accept correct answer without working)
	ALT: $log8^x = logk$, $xlog8 = logk$; $x = -1.5$			(M1 A1)
	Total		5	

Surds


Aims

- 1. To be able to simplify surds
- 2. To be able to put numbers in surd form
- 3. To be able to rationalise the denominators of fractions,

Definitions

- A number is said to be rational if it can be written as a fraction.
- All recurring and terminating decimals are rational.
- A number is said to be **irrational** if it cannot be written as a fraction.
- $\pi,\sqrt{2},e, \overline{5}$ are examples of irrational numbers.
- Numbers that involve the 'root' √ symbol are called 'surds'. This includes cube roots, 4th roots and higher.

Surd Rules

$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
$$\sqrt{a} \times \sqrt{a} = a$$

Similar rules do not apply to addition/subtraction!

$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$$
 and $\sqrt{a-b} \neq \sqrt{a} - \sqrt{b}$

When you are asked to simplify a surd, or write a number in surd form, you need to write the number as a product of two numbers, one of which is a square number.

Example 1

Write these numbers in surd form

Look for "square factors"

$$\sqrt{72} = \sqrt{36 \times 2} = 6\sqrt{2}$$

 $\sqrt{24} = \sqrt{4 \times 6} = 2\sqrt{6}$

Example 2

Simplify these numbers:

- a) $\sqrt{72} + 3\sqrt{2} = 6\sqrt{2} + 3\sqrt{2} = 9\sqrt{2}$
- b) $\sqrt{12} + \sqrt{75} = 2\sqrt{3} + 5\sqrt{3} = 7\sqrt{3}$

Example 3

Expand and simplify:

a)
$$\sqrt{5}(2 + \sqrt{15}) = 2\sqrt{5} + \sqrt{75} = 2\sqrt{5} + 5\sqrt{3}$$

b)
$$(3 - 2\sqrt{5})(4 + \sqrt{5}) = 12 + 3\sqrt{5} - 8\sqrt{5} - 2\sqrt{25}$$

= 12 - 5 $\sqrt{5}$ - 10 = 2 - 5 $\sqrt{5}$

Rationalising the denominator

Fractions with surds in can be easier to deal with if their denominator is rational. When we see a fraction with a surd on the bottom, we must 'Rationalise the denominator'.

Example 4

If it looks like this:	Do this:	We get:
$\frac{3}{\sqrt{3}}$	$\frac{3}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$	$\frac{3\sqrt{3}}{3} = \sqrt{3}$
$\frac{5}{2\sqrt{7}}$	$\frac{5}{2\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$	<u>5√7</u> 14
$\frac{3+\sqrt{8}}{\sqrt{2}}$	$\frac{3+\sqrt{8}}{\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}$	$\frac{3\sqrt{2}+\sqrt{16}}{2} = \frac{3\sqrt{2}+4}{2} = \frac{3\sqrt{2}}{2} + 2$

If it looks like this:	Do this:	We get:
$\frac{3}{7-\sqrt{3}}$	$\frac{3}{7-\sqrt{3}} \times \frac{7+\sqrt{3}}{7+\sqrt{3}}$	<u>21 + 3√3</u> 49-7√3+7√3-√9
		$=\frac{21+3\sqrt{3}}{49-3}=\frac{21+3\sqrt{3}}{46}$
$\frac{7+\sqrt{5}}{3+\sqrt{5}}$	$\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}$	<u>21 - 7√5 + 3√5 - 5</u> 9+3√5-3√5-√25
		$=\frac{16-4\sqrt{5}}{9-5}=\frac{16-4\sqrt{5}}{4}=4-\sqrt{5}$

If it looks like this:	Do this:	We get:
$\frac{2\sqrt{7}-1}{2\sqrt{7}+5}$	$\frac{2\sqrt{7} - 1}{2\sqrt{7} + 5} \times \frac{2\sqrt{7} - 5}{2\sqrt{7} - 5}$	<u>28 - 10√7 - 2√7 + 5</u> 28 - 25
	(2√7)(2√7) =4√49=28	= <u>33 - 12√7</u> = 11-4√7 3
$\frac{4\sqrt{5}-7\sqrt{2}}{2\sqrt{5}+\sqrt{2}}$	$\frac{4\sqrt{5} - 7\sqrt{2}}{2\sqrt{5} + \sqrt{2}} \times \frac{2\sqrt{5} - \sqrt{2}}{2\sqrt{5} - \sqrt{2}}$	<u>40 - 4√10 - 14√10 + 14</u> 20 - 2
	(2√5)(2√5) =4√25=20	= <u>54 - 18√10</u> = 3-√10

1 Express each of the following in the form $m + n\sqrt{3}$, where m and n are integers:

(a)
$$(\sqrt{3}+1)^2$$
; $1+3+2\sqrt{3}=4+2\sqrt{3}$ (2 marks)
(b) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$. $\times \frac{\sqrt{3}+1}{\sqrt{3}+1} = \frac{4+2\sqrt{3}}{3-1} = 2+\sqrt{3}$ (3 marks)
2(a) Simplify $(\sqrt{12}+2)(\sqrt{12}-2)$. 12-4=8 (2 marks)
(b) Express $\sqrt{12}$ in the form $m\sqrt{3}$, where *m* is an integer. $2\sqrt{3}$ (1 mark)
(c) Express $\frac{\sqrt{12}+2}{\sqrt{12}-2}$ in the form $a+b\sqrt{3}$, where *a* and *b* are integers. (4 marks)
 $\times \frac{\sqrt{12}+2}{\sqrt{12}+2} = \frac{16+4\sqrt{12}}{8} = 2+\sqrt{3}$
3(a) Express $(3+\sqrt{2})^2$ in the form $p+q\sqrt{2}$. 11+6 $\sqrt{2}$ (2 marks)
(b) Hence express $\frac{98}{(3+\sqrt{2})^2}$ in the form $m+n\sqrt{2}$, where *m* and *n* are integers. (3 marks)
 $\frac{98}{11+6\sqrt{2}} \times \frac{11-6\sqrt{2}}{11-6\sqrt{2}} = \frac{98(11-6\sqrt{2})}{121-72} = \frac{98(11-6\sqrt{2})}{49} = 22-12\sqrt{2}$

4	(a)	Simplify $(\sqrt{5}+2)(\sqrt{5}-2)$.	(2 marks)
	(b)	Express $\sqrt{8} + \sqrt{18}$ in the form $n\sqrt{2}$, where <i>n</i> is an integer.	(2 marks)

1(a)	$\left(\sqrt{5}\right)^2 + 2\sqrt{5} - 2\sqrt{5} - 4 = 1$	M1		Multiplying out or difference of two squares attempted
		A1	2	Full marks for correct answer /no working
(b)	$\sqrt{8} = 2\sqrt{2}$; $\sqrt{18} = 3\sqrt{2}$	M1		Either correct
	Answer = $5\sqrt{2}$	A1	2	Full marks for correct answer /no working

C2 Laws of Logs RallyCoach.docx Basic Logs and Exp matching.docx LogarithmsHexJig.pdf Simplifying Logarithmic Expressions.pdf True or False.pdf Target Board - Logs and Indices.docx Target Board - Logs and Indices Solutions.docx 01. Indices odd one out.docx Indices problem set.pdf C1_-_Indices_-_Quiz.pptx Surds Starter True or False.docx