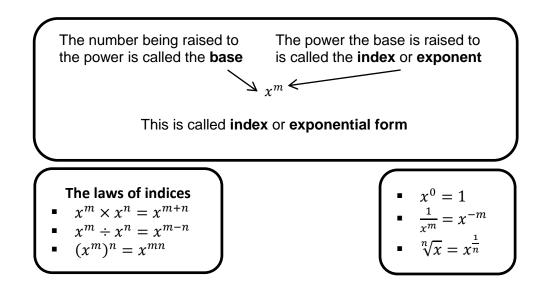
Pure Sector 1: Indices (and Surds)

Aims

- Use the rules of indices with whole number indices
- Understand and use negative indices
- Understand and use fraction indices
- Solve equations in index form



Example 1

Simplify the following expressions:

a) $3^2 \times 3^3 =$ b) $4^7 \div 4^5 =$

c)
$$\frac{5^4}{5^2} =$$
 d) $(2^3)^5 =$

e)
$$2x^4y^3 \times 4x \times (x^2y^3)^4 =$$
 f) $\frac{(3s^3t^4)^2 \times s^2t^5}{(s^2t^3)^4} =$

Example 2

Express the following expressions in index form:

a)
$$\frac{1}{x^3} =$$
 b) $\frac{4}{y^3} =$

c) $3\sqrt{x} =$ d) $\sqrt[3]{x} =$

e)
$$\sqrt[4]{a^3} =$$
 f) $\frac{x^4 - 17x^2 + 6}{x^2}$

Exam question

A curve is defined, for x > 0, by the equation y = f(x), where

$$\mathbf{f}(x) = \frac{x^8 - 1}{x^3}$$

(a) Express
$$\frac{x^8 - 1}{x^3}$$
 in the form $x^p - x^q$, where p and q are integers. (2 marks)

Solving equations using indices

Example 3 Solve the following equations for x:

a)
$$x^{\frac{1}{2}} = 6$$
 b) $6x^{\frac{1}{3}} + 1 = 0$

c)
$$x^{\frac{2}{3}} = 16$$
 d) $\frac{45}{2}x^{\frac{1}{2}} - \frac{5}{2}x^{\frac{3}{2}} = 0$

Example 4 Solve the following equations for x:

a)
$$4^{x+1} = 8$$
 b) $3^{x+1} = 27^{x-3}$

_	
2	
~	

Exam questions

1 (a) Simplify:

(i)
$$x^{\frac{3}{2}} \times x^{\frac{1}{2}}$$
; (1 mark)

(ii)
$$x^{\frac{3}{2}} \div x$$
; (1 mark)

(iii)
$$\left(\frac{3}{x^2}\right)^2$$
. (1 mark)

2 (a) (i) Find the value of p for which $\sqrt{125} = 5^p$. (2 marks)

(ii) Hence solve the equation
$$5^{2x} = \sqrt{125}$$
. (1 mark)

3 (a) Write down the values of p, q and r given that:

(i)
$$64 = 8^{p}$$
;
(ii) $\frac{1}{64} = 8^{q}$;
(iii) $\sqrt{8} = 8^{r}$.
(3 marks)

(b) Find the value of x for which

$$\frac{8^x}{\sqrt{8}} = \frac{1}{64}$$
 (2 marks)

Surds

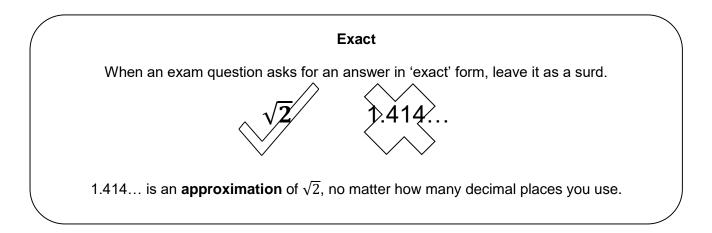
Aims

- To be able to simplify surds
- To be able to put numbers in surd form
- To be able to rationalise the denominators of fractions

$0.5 = \frac{1}{2}$ is rational $0.666... = \frac{2}{3}$ is rational

Definitions

- A number is said to be **rational** if it can be written as a fraction.
 - All recurring and terminating decimals are rational
- A number is said to be **irrational** if it cannot be written as a fraction.
 - π , $\sqrt{2}$, e, $\sqrt[3]{5}$ are examples of irrational numbers.
- Numbers that involve the 'root' √ symbol are called 'surds'. This includes cube roots, 4th roots and higher.



Surd Rules

$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
$$\sqrt{a} \times \sqrt{a} = a$$

When you are asked to simplify a surd, or write a number in surd form, you need to write the number as a product of two numbers, one of which is a square number.

Example 1

Write these numbers in surd form

 $\sqrt{72} =$

$$\sqrt{24} =$$

Example 2 Simplify these numbers: a) $\sqrt{72} + 3\sqrt{2} =$

b) $\sqrt{12} + \sqrt{75} =$

Example 3 Expand and simplify a) $\sqrt{5}(2 + \sqrt{15}) =$

b) $(3 - 2\sqrt{5})(4 + \sqrt{5})=$

Rationalising the denominator

Fractions with surds in can be easier to deal with if their denominator is rational. When we see a fraction with a surd on the bottom, we must 'Rationalise the denominator'.

Example 4

If it looks like this:	Do this	We get			
$\frac{3}{\sqrt{3}}$	$\frac{3}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$				
$\frac{5}{2\sqrt{7}}$	$\frac{5}{2\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$				
$\frac{3+\sqrt{8}}{\sqrt{2}}$	$\frac{3+\sqrt{8}}{\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}$				
We can do this, because we're only multiplying by one.					

If it looks like this:	Do this	We get
$\frac{3}{7-\sqrt{3}}$	$\frac{3}{7-\sqrt{3}} \times \frac{7+\sqrt{3}}{7+\sqrt{3}}$	
$\frac{7+\sqrt{5}}{3+\sqrt{5}}$	$\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}$	
$\frac{2\sqrt{7}-1}{2\sqrt{7}+5}$	$\frac{2\sqrt{7} - 1}{2\sqrt{7} + 5} \times \frac{2\sqrt{7} - 5}{2\sqrt{7} - 5}$	
$\frac{4\sqrt{5}-7\sqrt{2}}{2\sqrt{5}+\sqrt{2}}$	$\frac{4\sqrt{5} - 7\sqrt{2}}{2\sqrt{5} + \sqrt{2}} \times \frac{2\sqrt{5} - \sqrt{2}}{2\sqrt{5} - \sqrt{2}}$	

Exam questions

1 Express each of the following in the form $m + n\sqrt{3}$, where m and n are integers:

(a)	$(\sqrt{3}+1)^2;$		(2 marks)
(b)	$\frac{\sqrt{3}+1}{\sqrt{3}-1}.$	•	(3 marks)

2 _(a)	Simplify $(\sqrt{12} + 2)(\sqrt{12} - 2)$.	(2 marks)
(b)	Express $\sqrt{12}$ in the form $m\sqrt{3}$, where <i>m</i> is an integer.	(1 mark)
(a)	Express $\frac{\sqrt{12}+2}{12}$ in the form $a+b\sqrt{3}$, where a and b are integers.	(4 marks)

(c) Express
$$\frac{\sqrt{12+2}}{\sqrt{12}-2}$$
 in the form $a+b\sqrt{3}$, where a and b are integers. (4)

- **3**(a) Express $(3 + \sqrt{2})^2$ in the form $p + q\sqrt{2}$. (2 marks)
 - (b) Hence express $\frac{98}{(3+\sqrt{2})^2}$ in the form $m + n\sqrt{2}$, where *m* and *n* are integers. (3 marks)

- 4 (a) Simplify $(\sqrt{5}+2)(\sqrt{5}-2)$. (2 marks)
 - (b) Express $\sqrt{8} + \sqrt{18}$ in the form $n\sqrt{2}$, where *n* is an integer. (2 marks)