Pure Sector 1: Graph Sketching

Aims:

- understand and use language and symbols associated with set theory.
- find the domain and range of a function and be able to use correct language and notation to describe functions accurately.
- understand the graphs, symmetry and periodicity of the sine, cosine and tangent functions including transformations.
- sketch and use transformations of the functions a^x , e^x and $\ln x$.
- understand and use graphs of the functions $y = \frac{a}{x}$ and $y = \frac{a}{x^2}$ and as well as transformations.
- understand and be able to use the graph of y = |x| and combinations of transformations of this graph, points of intersection and solutions of equations and inequalities.

Set Notation

E	is an element of	
∉	is not an element of	
N	the set of natural numbers {1, 2, 3, }	
$\{x_1, x_2,\}$	the set with the elements $x_1, x_2,$	
{ <i>x</i> :}	the set of all x such that	
Z	the set of integers $\{0, \pm 1, \pm 2, \pm 3,\}$	
\mathbb{Z}^+	the set of positive integers {1, 2, 3, }	
\mathbb{Z}_0^+	the set of non-negative integers {0, 1, 2, 3, }	
\mathbb{R}	the set of real numbers	
Q	the set of rational numbers $\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{Z}^+\right\}$	

Range and Domain

The set of all possible inputs of a mapping or function is called the **domain** (*x* values).

The set of outputs for a particular set of inputs for a mapping or function is called the **range** (*y* values).

Example 1

The function *h* has domain $\{-2, -1, 0, 3, 7\}$ and is defined as $h(x) = (x - 3)^2 + 2$. Find the range of *h*.

If any outputs are repeated we only write the value once in the range.

Example 2

Using set notation state range of the following functions:

Function and Domain	Graph	Range
$f(x) = x^2$ $x \in \mathbb{R}$		
$f(x) = 4 - x^2$ $x \in \mathbb{R}$		
$f(x) = 4 - x^2$ $x \in \mathbb{R}, x > 3$		
$f(x) = \sqrt{2x - 1}$ $x \ge 0.5$		
$f(x) = \frac{x^2 - 2}{5}$ $x \in \mathbb{R}, x \le 0$		

Trigonometric Graphs

Example 4

Sketch each function and state its range.

a) $f(x) = 2 \sin x$

b) $f(x) = \cos(3x)$

c) $f(x) = \tan(x + 45)$

d) $f(x) = 3\cos x + 1$

e) $f(x) = \sin(x - 10) + 5$

Exponential Graphs

The constant *e* is the base of a natural logarithm written as $\ln x$ or $\log_e x$ (we study this in more detail later in Pure Sector 1). *e* is an irrational number and has the value 2.718 ...

Example 5

Sketch the graph of $f(x) = e^x$. State the domain and range.

Sketch the graph of f(x) = lnx. State the domain and range.

Example 7

Sketch each function and state its range.

a) $f(x) = e^{-x}, x \in \mathbb{R}$

b)
$$f(x) = e^{3x} + 2, x \in \mathbb{R}$$

c) $f(x) = \ln 3x, x > 0$

d) $f(x) = 3 - e^{2x}, x \in \mathbb{R}$

e) $f(x) = 3\ln(x-2), x > 2$

Reciprocal Graphs

An asymptote is a line which the graph approaches but never reaches.

Domain:

Range:

Asymptotes:

Example 8

On the same axes, sketch $y = \frac{1}{x}$ and $y = \frac{3}{x}$

Example 9

Sketch the graph of $y = \frac{1}{x^2}$

Sketch each function and state any asymptotes.

a)
$$f(x) = -\frac{b}{x}, x \in \mathbb{R}, x \neq 0$$

b)
$$f(x) = \frac{4}{x^2}, x \in \mathbb{R}, x \neq 0$$

c)
$$f(x) = \frac{2}{x+1}, x \in \mathbb{R}, x \neq -1$$

d)
$$f(x) = \frac{2}{x} + 1, x \in \mathbb{R}, x \neq 0$$

e)
$$f(x) = 3 - \frac{2}{x^2}, x \in \mathbb{R}, x \neq 0$$

Modulus

f(x) = |x|6 **†** y 5 4 S 3 2 -1 -5 5 -1 Range: 2

The modulus sign | |means you use the positive value of whatever is inside. Using your graphics calculator, this is abs ().

So:
$$|-4| =$$

|2.5| =

Domain:

Example 11

Sketch each function and state the range.

a) f(x) = |3x - 2|

b) f(x) = |5 - 2x|

c) f(x) = |2x| + 4

Example 12

Solve the equation |3x - 4| = 5

Solve the equation |x + 1| = |2x - 1|

Example 14

Solve each equation: a) |x-5| = 3

b) |2x - 7| = 4

c) |x-2| = |x+4|

d) |2x + 1| = |9 - 2x|

e) |3x - 4| = |2x + 3|

- a) Solve the equation |3x + 2| = |3 2x|
- b) Hence solve the inequality |3x + 2| > |3 2x|

Example 16

a) |x-3| < 8

b) $|2x - 11| \le 5$

c) $|x+4| \le |x+1|$

d) |x+2| > |2x-5|

e) |2x - 1| < |3x + 2|

Exam Questions

- 4 (a) Sketch the graph of y = |8 2x|. (2 marks)
 - (b) Solve the equation |8 2x| = 4. (2 marks)
 - (c) Solve the inequality |8 2x| > 4. (2 marks)

7 (a) Sketch the graph of y = |2x|. (1 mark)

- (b) On a separate diagram, sketch the graph of y = 4 |2x|, indicating the coordinates of the points where the graph crosses the coordinate axes. (3 marks)
- (c) Solve 4 |2x| = x. (3 marks)
- (d) Hence, or otherwise, solve the inequality 4 |2x| > x. (2 marks)