Pure Sector 2: Trigonometry 1
Aims:
* To be able to use the sine and cosine rule to find missing angles and lengths in triangles.
¢ Tobe able to find the area of triangles using trigonometry.
e To convert angles between degree and radian measure.
e To be able to find the length of an arc and the area of a sector.

To find missing angles or lengths in triangles that are not right angled we use the sine and cosine rules.
The triangle ABC below has sides of length a, b and c. The angle 4 is opposite a, angle B is opposite b and
angle C is opposite c. Make sure you label your diagram carefully!
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Remember:
e Acute angles are between 0° and 90°.
¢ Obtuse angles are between 90° and 180°.
e Reflex angles are between 180° and 360°.

Sine Rule
We can use the sine rule to find a missing angle or length when one side and its opposite angle are known.

a b _ ¢
sinA  sinB  sinC

Example 1

The diagram shows the triangle ABC. The length of AC is 13.2cm, and A

the sizes of angles ABC and BAC are 65° and 58° respectively. Show

that the length of BC = 12.4cm, correct to the nearest 0.1cm. 58° 13.2cm
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Example 2

The size of angle B is 72°, and the lengths AB and AC are 5.4m and 6.8m
respectively. Find the size of the angle ACB, give your answer to 3sf.
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We can use the cosine rule to find a missing angle if we are given all three sides or a missing length if we
are given two sides and the angle opposite the missing side. You need to remember this formula.

a? =b%+c2—-2bccosA
Example 3

The diagram show the triangle ABC. The lengths of AC and BC
are 4cm and 2.7cm respectively. The size of angle BCA is 40°.
Calculate the length of 4B, giving your answer to 2 significant
figures.
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Example 4

The triangle ABC, shown in the diagram, is such that AB = 6.5cm, AC =
5¢m, BC = 7cm and angle ABC = 6. Show that 8 = 43.3°, correct to the
nearest 0.1°.
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Area of a Triangle

1
Area of triangle = —ab sinC
c b 2

Example 5

The diagram show the triangle ABC. The lengths of AC and BC are

10cm and 4.2cm respectively. The size of angle BCA is 30°. Calculate
the area of the triangle ABC.
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Example 6

The triangle ABC is such that AC = 7cm, BC = 12cm and the angle

ACB = 6°. The area of the triangle is 32cm?. Show that the value of
6 = 49.6 correct to three significant figures. 1%em
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Exam Question

The triangle ABC . shown in the diagram, is such that AB = 6cm. BC = 15¢m.
angle BAC = 150° and angle ACB = 0.
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(a) Show that 6 = 11.5°, correct to the nearest 0.1°. (3 marks)
(b) Calculate the area of triangle ABC . giving your answer in ¢cm? to three significant
figures. (3 marks)
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Degrees and Radians

Angles can be measured in degrees or in radians where 360° = 2r rads. 1 radian can be written as 1 rads

or 1¢€.
Converting degrees to radians Converting radians to degrees
360° = 2x 21 = 360°
180°=nm T = 180°
JE = . 180
~ 180 s
180
MET o=
Example 7
Convert the following angles from degrees into radians:
a) 20° X (o B T =
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Convert the following angles from radians into degrees:
a) 3n ¥ a4 Qo
5 T = [0 y
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Arc Length

Check your
calculator is in the
correct mode!

A sector of a circle is the region bounded by two radii and an arc. The larger region is called the major

sector and the smaller region is called the minor sector.

The length [ of an arc of a circle is given by:
=18

where r is the radius and @ is the angle, in radians.

Example 9 (’——x\?

The diagram shows the sector of a circle of radius 5cm and angle 0.6¢. Find the

perimeter of the sector. S5em
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Example 10

The diagram shows a sector 0A4B of a circle with centre 0 and radius 10cm. The A TNB
perimeter of the sector 0AB is equal to the perimeter of a square. Find the area of A ]
the square.
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Area of a Sector
The area A of a sector of a circle is given by:
1
A= ETZG

where r is the radius and @ is the angle, in radians.
Example 11 A~ T8
The diagram shows a sector 0AB of a circle with centre 0 and radius 10cm. Find
the area of the sector. l()cm\\___ /10¢m
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Example 12

The diagram shows a sector of a circle of radius 6cm and angle 6 radians.
The area of the rectangle, length 6cm and width 3cm, is twice the area of 6cm 6cm
the sector. Show that 8 = 0.5
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Example 13 — Exam Style Question

The diagram shows a sector of OAB of a circle with centre O and radius r cm.
The angle AOB is 1.25 radians. The perimeter of the sector is 39 cm.

a) Show thatr =12

b) Calculate the area of the sector OAB.
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Exam Question — Edexcel Sample Assessment Materials
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Figure 1

The shape ABCDOA, as shown in Figure 1, consists of a sector COD of a circle centre O
Joined to a sector AOB of a different circle, also centre O.

Given that arc length CD = 3 cm, ZCOD = 0.4 radians and AOD is a straight line of
length 12 cm,

(a) find the length of OD,

(b) find the area of the shaded sector 4A0B.
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