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Abstract
Polarization is a property of light that describes the oscillation of the electric field vector. Polarized light can be detected 
by many invertebrate animals, and this visual channel is widely used in nature. Insects rely on light polarization for vari-
ous purposes, such as water detection, improving contrast, breaking camouflage, navigation, and signaling during mating. 
Dragonflies and damselflies (Odonata) are highly visual insects with polarization sensitivity for water detection and likely 
also navigation. Thus, odonates can serve as ideal models for investigating the ecology and evolution of polarized light 
perception. We provide an overview of the current state of knowledge concerning polarized light sensitivity in these insects. 
Specifically, we review recent findings related to the ecological, morphological, and physiological causes that enable these 
insects to perceive polarized light and discuss the optical properties responsible for the reflection of polarized light by their 
bodies and wings. Finally, we identify gaps in the current research and suggest future directions that can help to further 
advance our knowledge of polarization sensitivity in odonates.
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Introduction

Polarized light is abundant in nature. It occurs when light 
waves produced by the sun are reflected or scattered in the 
environment. Insects use polarized light as cues for a wide 
range of visual tasks, such as celestial navigation (Wehner 
and Müller 2006; Homberg et al. 2011; Mathejczyk and 
Wernet 2019), contrast enhancement (Sharkey et al. 2015; 
Marshall et al. 2019), water detection (Wildermuth 1998), 
host detection, and sexual signaling (Yadav and Shein-Idel-
son 2021). Polarization sensitivity can, however, interfere 
with color and motion detection systems, for example, by 
inducing false color artifacts (Kelber et al. 2001). Some 
species have, therefore, evolved adaptations that reduce 
sensitivity to polarized light, such as photoreceptor twist 
(Wehner and Bernard 1993). By contrast, some insects, such 
as butterflies, appear to have some degree of polarization 
sensitivity in all photoreceptor cells within the main retina 
(Kinoshita and Arikawa 2014).

Many navigating insects, including odonates, possess a 
specialized polarization-sensitive region of the eye called 
the dorsal rim area (DRA) (Meyer and Labhart 1993; 
Labhart and Meyer 1999). The skyward-facing DRA 
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functions to detect skylight polarization patterns that are 
formed by light scattering in the atmosphere. Ventrally 
oriented polarization-sensitive cells enable the detection 
of water- or ground-reflected polarization (Meinertzhagen 
et al. 1983; Schwind 1991) and polarization signals due to 
reflection from the cuticle of conspecifics (Fig. 1). Deeper 
investigation into the role of polarization detection plays in 
mediating insect behavior is needed, but it is likely to be 
particularly interesting within specific groups of insects, 
such as the odonates.

Dragonflies and damselflies are important insect taxa in 
vision research, as many aspects of their natural history are 
strongly influenced by their visual capabilities. Nearly all 
odonates live most of their life cycle in aquatic environments 
but become terrestrial as adults, where they are unmatched 
flyers and are primarily guided by vision (Corbet 1999). 
The transition from aquatic immature stages to terrestrial 
adults provides an opportunity to explore visual adaptations 

to different light environments within a single species and 
across odonate diversity.

As such, odonates provide an excellent model for explor-
ing the visual ecology and evolution of polarization vision 
and its associated adaptational mechanisms (Wildermuth 
1998; Kriska et al. 2006, 2009; Horváth et al. 2007; Bybee 
et al. 2012, 2022; Sharkey et al. 2015; Ensaldo-Cárdenas 
et al. 2021). Further, several groups of odonates have ter-
restrial or semi-terrestrial immature stages, which makes for 
additional interesting avenues for research (Corbet 1999). 
The role of polarized light as a source of information during 
habitat selection, communication, and navigation is not well 
understood in damselflies or dragonflies.

Modern Odonata represents the extant members of an 
ancient insect order and is currently hypothesized to be a 
sister (along with mayflies) to all winged insects (Misof 
et al. 2014). Thus, Odonata provides valuable models for 
ecological and evolutionary studies that can yield insights 

Fig. 1   Specialized ommatidia sensitive to polarization can be found 
in odonates’ dorsal rim area (DRA; green) and ventral eye (purple) 
regions (adapted from Lancer et al. 2020). Unfilled eye regions indi-
cate areas where evidence for the presence of polarization-sensitive 

cells is insufficient. When perched near water—rendezvous and ovi-
position sites for odonates—the skyward-facing DRA detects skylight 
polarization patterns, while the ventrally oriented polarization-sensi-
tive cells detect polarization reflected from water or the ground
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into the evolutionary processes that have led to the diverse 
morphological specializations and physiological mecha-
nisms related to polarization vision found across Insecta 
(Bybee et al. 2016; Córdoba-Aguilar et al. 2023).

The following sections provide a comprehensive overview 
of the biological significance of polarized light perception 
in Odonata, based on the available evidence we reviewed. 
We focus on their morphological specializations, physio-
logical mechanisms, polarization-mediated behaviors, and 
the optical properties underlying reflected polarized light. 
Specifically, we aim to shed light on (i) the current state of 
knowledge surrounding polarization-mediated habitat selec-
tion, celestial navigation, and intra- and interspecific com-
munication in odonates; (ii) the morphological specializa-
tions and physiological mechanisms by which these insects 
perceive polarized light; (iii) the optical properties behind 
reflected polarized light from odonate cuticle and/or wings; 
and (iv) identify gaps in the current knowledge and suggest 
future research directions. By advancing our understanding 
of the role of polarized light in odonate behavior, we hope to 
contribute to a broader understanding of animal perception 
and ecological adaptations.

What is polarized light?

Polarization is a property of light that describes the oscilla-
tion of the electric field vector (e-vector) that lies in a plane 
orthogonal to the direction of propagation (Goldstein 2017). 
The predominant angle of e-vector orientation describes the 
angle of polarization, and the degree to which this orienta-
tion occurs (from 0 unpolarized light to 1 completely linearly 
polarized light) describes the degree or percent polarization 
(DoP) (Konnen 1985). Polarized light is formed when unpo-
larized sunlight interacts with the environment, through scat-
tering, reflection, or refraction, in a way that the e-vectors of 
that light become oriented to one plane (DoP = 1); that light 
has become linearly polarized (Fig. 2). Linearly polarized 
light can be horizontally polarized, vertically polarized, or 
polarized at an angle between the two (e.g., the rainbow 
is tangentially polarized) (Konnen 1985; Goldstein 2017). 
In nature, light is commonly partially polarized (DoP > 0) 
(Marshall and Cronin 2011; Goldstein 2017). Polarized light 
may also exhibit ellipticity, or become circularly polarized, 
whereby the e-vector angle rotates with the propagation of 
the light (Goldstein 2017).

Where is polarized light found in nature?

Light polarization is a common phenomenon in nature with 
three primary sources: scattering from sub-wavelength 
atmospheric molecules, such as nitrogen and oxygen or 
water molecules (known as Rayleigh scattering), and reflec-
tion from dielectric surfaces like mud, bodies of water, or 

arthropod cuticle (Horváth 1995; Lerner 2014; Goldstein 
2017). Polarization may be found in skylight, leaves, soil, 
water, and other smooth surfaces (Waterman 1954; Horváth 
1995; Lerner 2014; Goldstein 2017), as well as unconven-
tional sources such as bark resin, crude oil, automotive clear-
coats, and gravestones, which may pose ecological traps for 
insects due to their polarotactic behavior (Watson 1992; 
Wildermuth 1992; Horváth et al. 1998, 2007, 2021; Stevani 
et al. 2000a, b; Bernáth et al. 2001; Burrial and Ocharan 
2003; Wildermuth and Horvéth 2005).

Polarized light from Rayleigh scattering in the sky forms 
predictable e-vector patterns that some animals use for navi-
gation. This pattern consists of concentric circles around the 
sun, with the highest polarization occurring 90° away from 
it, while light near the sun and the “antisun” (on the oppo-
site side of the sky) is unpolarized (Heinze 2014) (Fig. 3). 
Because the e-vector pattern is directly linked to the sun’s 
position and shifts as the sun moves across the sky, animals 
can determine solar location even when only a small patch 
of blue sky is visible, aiding in navigation and orientation 
(Wehner and Müller 2006; Heinze 2014).

Flying insects are constantly exposed to various sources 
of linearly polarized light, which can serve as important 
sources of information for navigation, communication, 
water seeking, and prey detection (Yadav and Shein-Idel-
son 2021; Johnsen 2012). Underwater, light polarization is 
influenced by several factors, including the angle of the sun, 
which affects the angle and degree of polarization (Cronin 
and Shashar 2001; Waterman 2005). As sunlight penetrates 
the water surface, it becomes partially polarized, and the 

Fig. 2   Light polarization in nature. Unpolarized sunlight becomes 
linearly polarized, either vertically or horizontally, through reflection 
from surfaces, refraction upon entering matter, or scattering by parti-
cles smaller than one-tenth of its wavelength. Due to the specialized 
mechanisms required for producing and detecting circularly polarized 
light, it will not be explored further here
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DoP is influenced by scattering from water molecules and 
larger particles, such as plankton and detritus (Horváth and 
Varjú 1997; Marshall and Cronin 2011; Horváth 2014). The 
polarization pattern underwater can change with the time of 
day, water clarity, and the presence of particulates, making 
it a dynamic environment for polarization-sensitive organ-
isms. Polarization sensitivity in odonate larvae is known to 
increase their contrast detection in the partially polarized 
underwater light environment they inhabit, enhancing their 
ability to detect prey and navigate effectively (Sharkey et al. 
2015).

Circularly polarized light, whether clockwise or coun-
terclockwise, is determined by the chirality of the reflective 
molecules. This intriguing phenomenon occurs in various 
organisms and natural surfaces (Neville and Caveney 1969; 
Wynberg et al. 1980; Hegedüs et al. 2006; Sharma et al. 

2009; Johnsen 2012; Vignolini et al. 2012). A particularly 
remarkable example is the mantis shrimp (Gonodactylaceus 
falcatus (Forskål)), which is unique in its ability to detect 
both clockwise and counterclockwise circularly polarized 
light as well as linearly polarized light, thanks to special-
ized optical mechanisms involving quarter wavelength 
retarders (Chiou et al. 2008; Gagnon et al. 2015). While 
circularly polarized light has been reported in some beetles 
and other organisms (Wynberg et al. 1980; Vukusic et al. 
2004; Sharma et al. 2009; Baar et al. 2014), the evidence 
for its detection and biological significance in these cases is 
scant (Brady and Cummings 2010; Blahó et al. 2012). Cir-
cularly polarized light can occur underwater due to internal 
reflection and scatter of linearly polarized light, suggesting 
potential navigational uses for aquatic animals (Cronin et al. 
2014).

Fig. 3   Illustrative diagram of polarized light patterns in the sky. The 
direction of the yellow lines depicts the e-vector direction of propaga-
tion, and their thickness indicates the degree of polarization. Maxi-
mum polarization occurs 90° from the sun, while light near the sun 

and antisun remains unpolarized. The zenith, representing the imagi-
nary point intercepted by a vertical axis extending from the observer’s 
head to the celestial sphere, is also indicated. Adapted from Heinze 
(2014)
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It remains unknown whether dragonflies and damselflies 
can detect or distinguish between different types of circularly 
polarized light. Given the specialized mechanisms required 
to perceive such light along with our limited understanding 
of these processes, we will not explore this topic in greater 
depth here. This area of research holds potential for future 
studies, which could uncover new insights into the evolu-
tionary and ecological roles of circularly polarized light in 
nature.

How do odonates detect polarized light?

Insects can perceive polarization due to the biochemical and 
biophysical properties of the retinal chromophore, a deriva-
tive of vitamin A essential for vision in all animals. The 
chromophore binds to an opsin protein, forming the visual 
pigment that initiates vision by absorbing photons. The 
probability of light absorption increases when the e-vector 
of light is parallel to the chromophore, making the process 
more efficient. Visual pigments are arranged in cylindrical 
microvilli within the rhabdom, and their preferential ori-
entation with the microvillar axis is understood to result in 
polarization sensitivity (Roberts et al. 2011; Johnsen 2012; 
Cronin et al. 2014). Therefore, light is maximally absorbed 
when photoreceptor microvilli are aligned with the angle 
of the incoming polarized light and reduced to a minimum 
when light is polarized at 90° to this angle. A multi-channel 
detector system has the potential to analyze the degree and 
angle of polarization via downstream neural processing. 
Insect polarization detectors feature photoreceptors with 
microvilli oriented in multiple orientations (e.g., orthogo-
nally) within or across ommatidial units.

Odonates are visually oriented insects with remarkable 
color (Futahashi et al. 2015; Suvorov et al. 2017) and polari-
zation sensitivity (Kriska et al. 2009; Sharkey et al. 2015). 
Their compound eyes, composed of up to 30,000 individual 
ommatidia in the adult eyes, allow them to detect sources of 
light polarization in their natural habitats. The first demon-
stration of polarization sensitivity in this taxon showed that 
retinula units change their electrical response according to 
the angle of light polarization (Horridge 1969).

Polarization-sensitive photoreceptors are found in the 
frontal and ventral regions of the eyes (Laughlin 1976a; 
Meinertzhagen et al. 1983; Brydegaard et al. 2018) (see 
also Labhart and Meyer 1999; Laughlin 1976b; Meyer and 
Labhart 1993; Snyder et al. 1973). For instance, Hemicor-
dulia tau Selys has UV and blue retinula cells in their ven-
tral retina with high sensitivity to light polarization (Laugh-
lin 1976b; Laughlin and McGinness 1978). UV-sensitive 
receptors have orthogonally oriented vertical and horizontal 
microvilli across different ommatidial units, likely serving 

as horizon and/or water detectors to aid in stability during 
flight and the detection of mating and/or oviposition sites.

Dragonflies, like many other navigating insects, have 
specialized photoreceptors in the dorsal rim area (DRA) of 
their compound eyes, likely serving as polarization detectors 
(Meyer and Labhart 1993). Ommatidia from DRA are char-
acterized by short rhabdoms, minimizing self-screening, and 
lack of a rhabdomeric twist. They consist of seven retinular 
cells (instead of the typical eight found in other eye regions) 
that extend through the full length of the ommatidia and 
exhibit rudimentary corneal lenses and reduced crystalline 
cones (Horridge 1969; Meyer and Labhart 1993; Labhart 
and Meyer 1999). Although it is likely that the DRA is used 
for odonate navigation, this is yet to be tested behaviorally.

As amphibiotic insects, damselflies and dragonflies spend 
much of their time in and around water, relying primarily on 
vision for navigation and prey detection (Corbet 1999). Their 
polarization sensitivity, which likely evolved early in their 
evolutionary history, enables them to perceive patterns of 
polarized light invisible to humans and other animals lack-
ing this ability (Meyer and Labhart 1993; Horváth and Varjú 
2004). This sensitivity may play a substantial role in behav-
iors such as mate recognition, predator avoidance, and dis-
persion (Meyer and Labhart 1993; Horváth and Varjú 2004; 
Csabai et al. 2006; Sharkey et al. 2015). Additionally, the 
polarization of light reflecting off water surfaces provides 
important navigational information, indicating the location 
and orientation of water bodies (Wildermuth 1992; Horváth 
and Varjú 2004; Ensaldo-Cárdenas et al. 2021). This ability 
gives damselflies and dragonflies a significant advantage in 
their aquatic and terrestrial environments.

Summary of evidence on the use 
of polarized light in odonate behavior

The ability of odonates to detect polarized light may allow 
them to navigate their environments, hunt for prey with 
incredible precision, and aid in intra- and interspecific com-
munication. Here, we summarize the ways odonates might 
use polarized light (Fig. 4).

Habitat selection

Most studies addressing the role of polarized light in odo-
nate natural history focus on habitat selection (Fig. 4(A)). 
For instance, adult odonates are attracted to water surfaces 
that reflect horizontally polarized light and can distinguish 
between vertically and horizontally polarized light to iden-
tify suitable habitats (Horváth 1995; Schwind 1995; Wilder-
muth 1998; Bernáth et al. 2002; Horváth and Varjú 2004). 
They are capable of distinguishing between ultraviolet and 
non-ultraviolet polarized reflecting water bodies. Some may 
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even prefer those that reflect UV (Ensaldo-Cárdenas et al. 
2021), aligning with the UV- and polarization-sensitive pho-
toreceptors that have been found in the ventral region of H. 
tau’s eyes (Laughlin 1976b; Laughlin and McGinness 1978). 
UV stimuli may aid odonates to identify rendezvous loca-
tions (Wildermuth 1998) and mate recognition (Guillermo-
Ferreira et al. 2014). Thus, a hypothesis may be that males 
and females use these information (e.g., UV-polarization) to 
find territories and mating and/or oviposition sites (Ensaldo-
Cárdenas et al. 2021).

Intra and interspecific communication

It is well known that odonates use visual signals for com-
munication. For instance, bright colors may be used dur-
ing male-male contests (Guillermo-Ferreira et al. 2015a, 
b, 2019), or to recognize (Guillermo-Ferreira et al. 2014) 
and to attract mates (Pena-Firme and Guillermo-Ferreira 
2020), or even hide from predators and prey alike (Cezário 
et al. 2021, 2022a, b). It is possible that polarized light may 
play a role in these intra- and interspecific communication 
channels, although further research is needed to test this 
hypothesis.

The body and wings of several adult odonates have 
the potential to alter the polarization of reflected light 

(Fig. 4(B)). The reflection of light polarization in Odonata is 
known from the colored hindwings of the Phoenix damselfly 
Pseudolestes mirabilis Kirby (Zygoptera: Pseudolestidae) 
(Nixon et al. 2017) and from the hyaline wings of the Blue 
Hawker Aeshna cyanea (Müller) (Anisoptera: Aeshnidae) 
(Hooper et al. 2006).

The wings of the Blue Hawker, like most other dragon-
flies, are transparent and covered with wax-derived pruin-
osity, but with no detectable birefringence (Newman and 
Wootton 1986; Gorb 1995). Hooper et al. (2006) reported 
“leaky” guided modes in the transparent wings of A. cyanea, 
which result in the reflectance of partially polarized light 
by as much as 30% at incidence angles around 45° and up 
to 60% at much higher angles. For instance, females may 
observe the orientation of male wings and their degree of 
polarization (Hooper et al. 2006; Brydegaard et al. 2018). 
The reflected polarized light from male wings or body may 
provide important signals of male reproductive potential, 
similar to what has been observed in Heliconius butterflies 
(Sweeney et al. 2003). As a result, structures that reflect 
polarized light may be subject to sexual selective pressures.

For P. mirabilis, Nixon et al. (2017) reported a remarkable 
case of structural coloration in their hindwings. The ventral 
surface of the hindwings has a bright-white patch caused by 
an epicuticular wax secretion arranged in flattened parallel 

Fig. 4   Proposed and hypothetical primary uses of polarized light by 
odonates. The insects may use light polarization in behavioral situa-
tions as follows. A To select suitable oviposition and/or rendezvous 
sites. B During agonistic flights to communicate their resource-hold-

ing potential or to enhance the contrast of their body colors. C To 
detect prey underwater (and hypothetically, against brightly contrast-
ing backgrounds, such as the blue sky during flight)
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fibers, which forms a two-dimensional scattering structure 
that reflects linear polarized light. The average reflectance of 
the white patch can reach up to 58% for polarized light when 
the e-vector axis is parallel to the wax fibers and 47% when 
the e-vector axis is perpendicular (Nixon et al. 2017). The 
copper–gold dorsal surface of P. mirabilis males also reflects 
linearly polarized light, though in less intensity than that of 
the white patch. Light polarization may be more widespread 
among Odonata, but additional focused research is needed to 
establish just how common, or rare, it may be.

Prey detection

Polarization sensitivity has been observed in the larvae of 
the emperor dragonfly, Anax imperator Leach in Brewster, as 
an adaptation for contrast enhancement (Sharkey et al. 2015) 
(Fig. 4(C)). This adaptation reduces the polarized scatter 
underwater, increasing the visibility of viewed objects. To 
date, no studies have investigated polarization sensitivity 
and prey detection in adult dragonflies, even though they 
have spectral adaptations to detect prey against the blue sky 
(Labhart and Nilsson 1995).

The fiddler crab, Uca stenodactylus Edwards & Lucas 
(How et al. 2015), and some cephalopods, such as cuttlefish 
and squids, also use polarization contrast for target detection 
in their natural environments. Blood-feeding tabanid flies are 
less attracted to white than to dark-colored horses, since they 
use polarized light reflected from the coat as a cue to locate 
a host (Horváth et al. 2010). This preference for black and 
brown fur is attributed to positive polarotaxis (Horváth et al. 
2010). These findings suggest that polarization sensitivity 
may be widespread in insects and an important adaptation 

for detecting targets in a variety of natural environments 
(Shashar et al. 1998, 2004; How et al. 2015; Venables et al. 
2022). Adult odonates have a complex system of prey detec-
tion and tracking against the sky (Olberg et al. 2000), which 
may also be aided by polarized sensitivity.

Polarized vision and environmental traps 
of dragonflies

Polarotactic reactions of dragonflies to plastic sheeting, car 
surfaces, and other smooth surfaces have been previously 
described (Watson 1992; Wildermuth 1992; Stevani et al. 
2000b, a; Bernáth et al. 2001; Burrial and Ocharan 2003; 
Wildermuth and Horvéth 2005; Horváth et al. 2007) (Fig. 5). 
Such polarized artificial surfaces attract reproductively 
active individuals, perhaps at high population densities. In 
northeastern Switzerland, Coenagrion puella (L.) (Coena-
grionidae) and Libellula quadrimaculata L. (Libellulidae) 
were observed in numbers away from water bodies in the 
strawberry fields covered by shiny black plastic sheets (Wil-
dermuth 2007) (Fig. 5A). The dragonflies likely mistook 
the plastic sheeting for a body of water since the surface 
of plastic sheeting likely produces polarized light similar 
to that reflected from water surfaces (Wildermuth 1992). 
Both sexes exhibited typical elements of the species-specific 
reproductive behavior around the sheeting, including ovi-
position attempts. Tandem pairs of Sympetrum vulgatum 
(L.) (Libellulidae) were observed ovipositing eggs onto the 
metallic-green bonnet of a car parked in the sun (Günther 
2003) (Fig. 5B). Abnormal egg-laying sites on polarized 
glass surfaces have also been observed in Libellula depressa 

Fig. 5   Polarotactic reactions of dragonflies to environmental traps. A Dragonflies are attracted to polarized light reflected by plastic sheeting, 
which can lead to failed reproductive attempts. B Similarly, polarized reflections from car surfaces may also act as environmental traps
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L. (Wyniger 1955) and Sympetrum striolatum (L.) (Paine 
1992). Sympetrum striolatum has also been observed ovi-
positing on the plastic windshield of the car (Paine 1992). 
Since dragonflies cannot distinguish the polarized light of 
plastic sheeting and car surfaces from natural water bodies, 
they expend unnecessary energy and genetic reproductive 
material (i.e., sperm and egg). Due to their erroneous habitat 
choices, one may consider such human-made surfaces along 
with some light sources as ecological traps (Wildermuth 
2007; Fraleigh et al. 2021). However, since there are few 
such observations from the literature, the negative effect of 
such surfaces on dragonfly populations in a human-modified 
landscape is unknown and probably negligible.

Research gaps

The study of visual signals in odonate communication has 
gained increasing attention in recent research (Suárez‐Tovar 
et al. 2022). Nevertheless, despite its potential importance, 
the role of polarization signals in intraspecific communica-
tion within Odonata remains largely unexplored, with lit-
tle empirical evidence to date. However, as seen in other 
insect taxa, such as the Asian swallowtail Papilio xuthus L. 
(Papilionidae), polarization contrast may be used to detect 
motion during foraging and mate-seeking (Stewart et al. 
2015, 2019). Considering the complex color-producing 
mechanisms used by odonates for intra- and interspecific 
communication (Guillermo-Ferreira et al. 2015a; Cezário 
et al. 2022a, b), polarization sensitivity may also play an 
important role in odonate behavior.

The complex life cycle of these animals, which involves 
both underwater and terrestrial phases, makes it possible, 
if not likely, that they use polarization sensitivity in differ-
ent aspects of their natural history. Further, because they 
are easily trackable with mark and recapture experiments 
in nature (Córdoba-Aguilar et al. 2023) and in the lab (for 
larvae), the possibility to test hypotheses related to polari-
zation sensitivity is possible. Odonates exhibit a range of 
complex behaviors that depend on their visual abilities and 
access to information from their environment, whether to 
find suitable oviposition sites or to display their body colors 
for mates and/or rivals to detect. Some species are known to 
undertake long-distance migrations across entire continents, 
similar to migratory songbirds, and even across large areas 
of open ocean at certain times of year (Wikelski et al. 2006; 
Anderson 2009). Successively low temperatures and wind 
currents play a major role in odonate navigation, but polari-
zation may also play a part. There is currently no evidence 
for polarization-based celestial orientation in odonates. 
Investigating this topic may yield new insights into their 
behavior and adaptations.

The underwater environment presents unique challenges 
for visual perception, such as the scattering of light in water, 
which can affect the perception of polarized light (Chiou 
et al. 2008). The role of polarization sensitivity in the ecol-
ogy of odonates and their larvae in aquatic environments is 
therefore an important area of research. In aquatic environ-
ments, dragonfly larval polarization sensitivity improves the 
contrast of the visual scene, assisting in the detection of 
prey and predators (Sharkey et al. 2015). Understanding the 
developmental changes in polarization sensitivity (between 
larvae and adults, or between the different instars of larvae) 
may shed light on the role of polarization sensitivity in dif-
ferent life stages and the potential trade-offs or constraints 
associated with it. The expression patterns of opsin genes 
vary between the different stages of the Odonata life cycle 
(Bybee et al. 2012; Futahashi et al. 2015). During larval 
development, several changes occur in their eyes, with the 
eyes of the adult showing drastic differences from the larva 
(Sherk 1977, 1978a, b). Some species completely replace 
the larval eye, while there are some that retain their larval 
tissue for use in the adult eye (Sherk 1978c). Overall, further 
research on the role of polarization sensitivity can offer a 
deeper understanding of odonate behavior and ecology in 
both aquatic and terrestrial habitats (Heinloth et al. 2018).

Currently, little information is available in the scientific 
literature regarding the neural circuits and integration pro-
cesses used by odonates to encode polarized light (Laughlin 
1976b). Investigations into neural coding of skylight polari-
zation information from the dorsal rim area have been con-
ducted in a few model species such as the locust Schistocerca 
gregaria Forsskål (Homberg et al. 2023) and the cricket 
Gryllus campestris L. (Homberg et al. 2011) and Drosophila 
melanogaster Meigen (Hardcastle et al. 2021). While other 
circuits have been described for flight control and small-
target detection (Olberg et al. 2000; Mischiati et al. 2015; 
Supple et al. 2020), the neural processing of polarization 
information has not been explored in dragonflies or damsel-
flies. Thus, further studies are needed to uncover the neu-
ral mechanisms used by odonates to process and integrate 
polarized light information. Furthermore, the downstream 
interaction and integration of spectral and polarization chan-
nels is yet unknown. Such studies could provide important 
insights into the evolution of neural mechanisms for polar-
ized light detection across different insect taxa.
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