
Technical Analysis of a Python Client for Secure Multicast
Communication with Local TCP Control

Giovanni Viva

May 3, 2025

Contents

1 Introduction 3

2 Analysis of Functionality 3
2.1 General Architecture . 3
2.2 Main Execution Flow . 4
2.3 Key Components and Responsibilities . 5
2.4 Interactions between Components . 6
2.5 Detailed Protocols and Mechanisms . 6
2.6 Libraries Used . 7

3 Primary Purpose of the Code 7

4 Author’s Educational and Communicative Intent 8

5 Usage Example 9

6 Conclusions 9
6.1 Strengths . 9
6.2 Weaknesses and Areas for Improvement . 10
6.3 Overall Assessment . 10

7 Reference File 10

2

1 Introduction

In the realm of distributed network communications, the need for secure, efficient, and flexible mechanisms
is paramount. Multicast communication offers an efficient paradigm for disseminating data to a group of
recipients, but it presents inherent challenges related to security and reliability over standard IP networks.
Hybrid architectures, combining different transport protocols (such as UDP for speed and TCP for control
or reliability), often emerge as pragmatic solutions.

This article aims to provide a detailed analysis of a Python script, identified by the filename
client_UDP_crypto_protocollo_TLV_multicast_relay_simm_csharp.py. This script implements
a network client that participates in encrypted UDP multicast communications, while also integrating
a local TCP-based control interface. The analysis will focus on its internal operation, the purposes it
pursues, the cryptographic and protocol techniques adopted, and the possible educational intentions of the
author. We will evaluate the code as a case study to understand the practical implementation of advanced
networking and security concepts in Python.

2 Analysis of Functionality

The analyzed Python client features a multi-threaded architecture designed to simultaneously handle
several responsibilities: UDP communication with a remote server (and potentially other clients via relay),
managing a local TCP control interface, and maintaining the connection via keep-alives.

2.1 General Architecture

The system relies on several threads operating concurrently, coordinated via queues and a signaling event
for termination:

• Main Thread: After initialization, it enters a loop where it waits for commands from the
command_queue. When it receives a command, it processes it (typically by sending it via UDP) and
waits for the next one. It also handles the detection of abnormal termination of other threads and
coordinates the overall shutdown.

• UDP Receive Thread (receive_udp_message_thread): Continuously listens on the UDP socket
for incoming packets from the multicast group. It parses the received data using the TLV protocol,
decrypts messages, and handles notifications. The output (decrypted messages, notifications, error
logs) is sent to the output_queue.

• UDP Keep-Alive Thread (keepalive_thread_function): Periodically sends a keep-alive mes-
sage (TLV type 9) to the multicast group to signal its presence to the server and keep any NAT
sessions or state active.

• TCP Control Thread (TCPControlServerThread): Instantiates a TCP server that listens on a
specified local port. It accepts a single connection from a control client (e.g., a GUI application, an-
other script). It receives textual commands from this client and places them into the command_queue
to be processed by the main thread. Concurrently, it reads messages from the output_queue (gen-
erated by other threads via log_message) and sends them to the connected TCP client, providing a
real-time stream of logs and output.

• Communication Queues:

3

– output_queue: A FIFO queue (queue.Queue) used by all threads (via the log_message

function) to send log messages or received data to the TCP control thread.

– command_queue: A FIFO queue used by the TCP control thread to pass received commands
to the main thread for sending via UDP.

• Shutdown Event (shutdown_event): A threading.Event object used to signal the need to
terminate operations in a coordinated and clean manner to all concurrent threads.

2.2 Main Execution Flow

The client’s execution follows these fundamental steps:

1. Argument Parsing: Uses argparse to read parameters from the command line: multicast group
address, multicast port, and the local TCP control port. This makes the client configurable without
modifying the source code.

2. UDP Socket Setup: Creates a UDP socket (socket.AF_INET, socket.SOCK_DGRAM). Sets the
IP_MULTICAST_TTL option to control the propagation of multicast packets. It does not perform an
explicit bind, allowing the operating system to choose an ephemeral port for sending and receiving
(typical for multicast clients that do not require a fixed port).

3. Symmetric Key Generation: Generates a unique symmetric key for this session using Fernet.

generate_key(). This key will be used to encrypt sent messages and decrypt received ones.

4. Handshake and Key Exchange (initial_connect_and_key_exchange): This is a crucial step
for establishing secure communication:

• The client sends a UDP packet to the multicast group containing a TLV of type
TLV_REQUEST_SERVER_PUBLIC_KEY (7).

• It waits (with a timeout) for a response from the server.

• If it receives a packet containing a TLV of type TLV_SERVER_PUBLIC_KEY_RESPONSE (5), it
extracts the server’s public key (PEM format) and loads it.

• It uses the server’s public key to asymmetrically encrypt (RSA-OAEP) its own Fernet sym-
metric key.

• It sends the encrypted Fernet key to the multicast group, encapsulated in a TLV of type
TLV_ENCRYPTED_SYMMETRIC_KEY (13).

• If any of these steps fail (timeout, network error, incorrect TLV type), the secure connection is
not established, and the client terminates.

5. Thread Startup: If the handshake is successful, the threads for UDP reception, keep-alive sending,
and the TCP control server are started.

6. Main Loop: The main thread enters a wait state on the command_queue. It handles received
commands (by sending them via UDP) and monitors the status of other threads and the shutdown
event.

7. Shutdown: When the shutdown event is detected (via TCP "exit" command, Ctrl+C, or an error
in a thread), the client attempts to send an encrypted disconnection message, signals termination to
all threads, waits for their completion (join with timeout), and closes resources (UDP socket).

4

2.3 Key Components and Responsibilities

• run_client(mcast_group, mcast_port, tcp_port): Main orchestrating function. Manages
the entire client lifecycle, from initialization to shutdown, passing necessary parameters to other
functions and threads.

• initial_connect_and_key_exchange(...): Implements the security bootstrapping logic, re-
questing the server’s public key and securely sending its own symmetric key. It is fundamental for
establishing the encrypted channel.

• send_encrypted_message(...): Responsible for preparing and sending application messages.
Encrypts the payload with the Fernet key, encapsulates it in a TLV of type
TLV_SYMMETRICALLY_ENCRYPTED_MESSAGE (14), handles fragmentation if the encrypted message
exceeds FRAGMENT_SIZE (encapsulating each fragment in a TLV of type TLV_FRAGMENT (1) with a
fragmentation header), and sends the UDP packets to the multicast group.

• receive_udp_message_thread(...): Heart of the reception process. Uses select.select for
non-blocking waiting for data on the UDP socket. When data arrives, it iterates through possible
TLV records within the packet. Specifically handles:

– TLV_SENDER_ID (10): Extracts the original sender’s IP/Port address (information added by the
relay server).

– TLV_SYMMETRICALLY_ENCRYPTED_MESSAGE (14): Decrypts the payload with the Fernet key
and logs the message (associating it with the sender, if known). Note: It does not implement
fragment reassembly logic; it assumes it directly receives type 14 messages, implying that
reassembly occurs on the server before relaying.

– TLV_NOTIFY_CONNECT (11) / TLV_NOTIFY_DISCONNECT (12): Logs connection/disconnection
notifications of other clients.

Logs parsing or decryption errors.

• keepalive_thread_function(...): Implements a periodic timer that invokes send_keepalive.

• send_keepalive(...): Creates and sends a simple UDP packet containing a TLV of type
TLV_KEEPALIVE (9).

• TCPControlServerThread: Class encapsulating the local TCP server logic. Manages connection
acceptance, command reception (passed to the command_queue), and output sending (taken from
the output_queue). Includes methods for clean handling of the client connection and stopping the
server itself.

• Utility Functions:

– create_tlv / parse_tlv: Implement serialization/deserialization of the TLV protocol (Type-
Length-Value) with type and length represented by 2 bytes (H!).

– encrypt_data_asymmetric / encrypt_data_symmetric / decrypt_data_symmetric: Wrap-
pers for cryptographic operations using the cryptography library. Use RSA-OAEP with
SHA256 for asymmetric and Fernet for symmetric.

– fragment_data: Simple function to split a byte block into chunks of a specified maximum
size.

5

– log_message: Centralized function for sending logs to the output_queue, ensuring all im-
portant messages can be captured by the TCP control interface. Includes a fallback to print

in case of queue error.

2.4 Interactions between Components

Inter-thread communication is primarily mediated by the two thread-safe queues (command_queue and
output_queue), which decouple producers from consumers. The shutdown_event provides a broadcast
mechanism to signal the requested termination to all concurrent threads. The main thread acts as a
supervisor, monitoring the activity of the other threads and initiating shutdown if necessary. The UDP
socket is shared among the main thread (for sending), the receive thread, and the keep-alive thread.
Concurrent access to the socket for sending by the main and keep-alive threads does not appear to be
protected by explicit locks, but send operations (sendto) are generally considered thread-safe at the
operating system level. Reception occurs in a dedicated thread.

2.5 Detailed Protocols and Mechanisms

• UDP Multicast: Used as the primary mechanism for group communication. The client sends
requests, encrypted keys, messages, and keep-alives to the multicast address. It listens on the same
address to receive responses from the server, relayed messages, and notifications.

• TCP Unicast (Local): Employed exclusively for the local control interface. The client acts as a TCP
server on 0.0.0.0 (all local interfaces) on the specified port, allowing an external application on
the same machine to connect to send commands and receive logs.

• TLV Protocol (Custom): A simple binary Type-Length-Value protocol defines the structure of
messages exchanged via UDP.

– Type (2 bytes, big-endian): Identifies the payload type. Relevant types for the client:

* TLV_FRAGMENT (1): Contains a fragment of a larger message.

* TLV_SERVER_PUBLIC_KEY_RESPONSE (5): Received from the server, contains its public
key.

* TLV_REQUEST_SERVER_PUBLIC_KEY (7): Sent by the client to request the server’s key.

* TLV_DISCONNECT_REQUEST (8): (Implied) Used to send "DISCONNECT".

* TLV_KEEPALIVE (9): Sent periodically.

* TLV_SENDER_ID (10): Received, indicates the original sender.

* TLV_NOTIFY_CONNECT (11) / TLV_NOTIFY_DISCONNECT (12): Received, status notifica-
tions.

* TLV_ENCRYPTED_SYMMETRIC_KEY (13): Sent, contains the client’s encrypted Fernet key.

* TLV_SYMMETRICALLY_ENCRYPTED_MESSAGE (14): Sent (before fragmentation) / Received
(after decryption and potential server-side reassembly).

– Length (2 bytes, big-endian): Specifies the length in bytes of the Value field.

– Value (variable length): Contains the actual payload.

• UDP Fragmentation: Handled only on sending. If an encrypted message (TLV 14) exceeds
FRAGMENT_SIZE, it is divided. Each part is placed in the Value field of a TLV of type TLV_FRAGMENT
(1). The Value of TLV 1 contains a fragmentation header (unique message ID, sequence number

of the fragment, total number of fragments) followed by the fragment payload. Reception does not
handle the reassembly of type 1 TLVs.

6

• Hybrid Encryption:

– Asymmetric (RSA-OAEP): Used only during the initial handshake to protect the client’s
symmetric key when sent to the server. The client encrypts with the server’s public key.

– Symmetric (Fernet): Used for encryption and authentication (implicit in Fernet) of all
application messages exchanged after the handshake. Each client generates its own Fernet
key. The server (presumably) decrypts incoming messages with the sender’s Fernet key and
re-encrypts for recipients using their respective Fernet keys.

• Keep-Alive: Active mechanism to keep the connection "alive," useful for traversing stateful
NATs/firewalls and allowing the server to detect inactive or abnormally disconnected clients.

2.6 Libraries Used

• socket: Low-level networking functionalities (UDP and TCP sockets).

• struct: For packing/unpacking binary data (TLV headers, fragment headers, ports in TLV
10/11/12).

• os: Used for os.urandom(4) to generate unique message IDs for fragmentation.

• threading: For creating and managing concurrent threads, and for using threading.Event.

• time: For time.sleep, time.time (implicit in select timeout), and time.strftime/time.localtime
for log timestamps.

• queue: Provides thread-safe Queue classes for inter-thread communication.

• select: Used for non-blocking I/O multiplexing in the UDP receive thread and the TCP server
(select.select).

• argparse: To handle arguments passed from the command line.

• cryptography: Fundamental library for all cryptographic operations:

– RSA key generation/loading (rsa, serialization).

– Asymmetric RSA encryption with OAEP padding (padding, hashes).

– Fernet symmetric key generation (Fernet).

– Fernet authenticated symmetric encryption/decryption.

3 Primary Purpose of the Code

The primary purpose of the script is to implement a secure client for a communication system based on
UDP multicast, with a local control interface via TCP. Specifically, the client aims to:

1. Participate in a multicast communication group: Send and receive messages within a group
defined by a multicast IP address and port.

2. Ensure Message Confidentiality and Integrity: Use symmetric encryption (Fernet) to protect the
content of messages exchanged via UDP and ensure their authenticity.

7

3. Establish a Secure Session: Implement an initial handshake based on asymmetric cryptography to
securely exchange the symmetric key with a central entity (the server).

4. Handle UDP Limitations: Implement fragmentation for sending messages that exceed the typical
UDP packet size.

5. Maintain Connection and Presence: Use keep-alive messages to signal its activity to the server.

6. Provide a Remote (Local) Control Interface: Expose a TCP server on a local port that allows
another process on the same machine to send commands (which will then be transmitted via UDP)
and receive real-time logs/output. This decouples the user interface or control logic from the
network client core.

The code seeks to solve the problem of creating a reliable and secure participant in a multicast
communication system, where end-to-middle-to-end (client-server-client) security is necessary and where
it is useful to be able to control the client programmatically from another local application.

4 Author’s Educational and Communicative Intent

Analyzing the structure, employed techniques, and the presence of comments (although not excessive in
the provided code, the structure itself is quite clear), several educational and communicative intentions on
the author’s part can be hypothesized:

1. Demonstrate Applied Hybrid Encryption: Show a common pattern where asymmetric cryptogra-
phy (slower but suitable for key exchange) is used to establish a symmetric session key (faster and
more efficient for data encryption).

2. Teach Network Programming with UDP Multicast: Provide a practical example of how to send
and receive multicast packets in Python, including setting socket options (IP_MULTICAST_TTL).

3. Illustrate Simple Protocol Design (TLV): Demonstrate how to define and implement a custom
binary protocol (TLV) to structure data sent over a connectionless transport like UDP.

4. Address UDP Challenges (Fragmentation): Show a technique for handling the sending of data
larger than the typical MTU by implementing application-level fragmentation.

5. Exemplify Robust Concurrent Programming: Use threading, queue, and threading.Event to
build a responsive application and correctly manage coordinated thread termination.

6. Present Hybrid Architectures (UDP/TCP): Show how to combine different protocols (UDP for
multicast data, TCP for local control) to meet different requirements within the same application.

7. Promote Configurability: The introduction of argparse indicates the intention to make the client
flexible and reusable in different scenarios without code modification.

8. Provide a Working Baseline: The code seems to aim to be a complete (though basic) solution to
the stated problem, usable as a starting point for more complex developments.

From a communicative perspective, the use of relatively descriptive variable and function names, the
logical separation of responsibilities between functions and threads, and the use of a centralized logging
function contribute to the code’s understandability. The addition of argparse significantly improves
usability compared to hardcoded constants.

8

5 Usage Example

A client with these characteristics can be employed in various scenarios:

1. Secure Group Chat System: Each participant runs an instance of the client. A central server (not
shown, but implied) manages public keys, receives encrypted multicast messages, decrypts them,
and re-encrypts/forwards them to other participants. The local TCP interface could be used by a
chat GUI to send messages and display received ones.

2. Distributed Notification and Alerting System: Clients register with a central server. Events or
alerts generated by a client (or the server) are sent securely via multicast to all other registered
clients (or subgroups). A monitoring GUI connects via TCP to the local client to display alerts.

3. Simple Multiplayer Games or Simulations: For low-latency state synchronization among play-
ers/simulation nodes. State update messages are sent via encrypted multicast. The game engine
communicates with the network client via the local TCP interface.

4. Lightweight Message Broker (Client-Side): The client acts as an endpoint for a multicast-based
publish/subscribe system, with added security. A local application publishes messages or subscribes
to topics via the TCP interface.

In all these cases, the client abstracts the complexity of secure network communication (multicast,
encryption, fragmentation) and provides a simple interface (the local TCP port) for the main application.

6 Conclusions

The Python code client_UDP_crypto_protocollo_TLV_multicast_relay_simm_csharp.py represents
a well-structured and functional implementation of a client for secure multicast communications with a
local control interface.

6.1 Strengths

• Security: Implements a robust hybrid encryption model (RSA-OAEP for key exchange, Fernet for
messages) ensuring confidentiality and authenticity of data exchanged via UDP.

• Concurrent Architecture: The use of separate threads for reception, keep-alive, and TCP control,
coordinated by queues and events, leads to a responsive and modular design.

• Protocol and Fragmentation Handling: Defines and uses a custom TLV protocol and handles
fragmentation of outgoing UDP messages.

• Configurability: The use of argparse makes the client easily adaptable to different network
environments.

• Control Interface: The local TCP server offers a flexible mechanism to integrate the client with
other applications (GUI, scripts, etc.).

• Basic Robustness: Includes keep-alive mechanisms and coordinated shutdown management.

9

6.2 Weaknesses and Areas for Improvement

• Lack of Reassembly on Reception: The client does not implement logic to reassemble received
fragments (TLV type 1). This implies a strong dependency on the server, which must reassemble
messages before forwarding them as type 14 TLVs, or it limits communication to messages that do
not require fragmentation.

• Limited Authentication: There is no explicit mechanism to authenticate the server during the
public key exchange (the client trusts the received key). Strong client-to-server authentication is
also missing, beyond the client needing the server’s public key to encrypt its Fernet key. Fernet
provides *message* authenticity, but not necessarily *sender* authenticity at the application level
beyond key possession.

• TCP Interface Security: The local TCP control port is exposed without any authentication or
encryption. Any process on the same machine can connect and send commands or read logs. In
multi-user or less trusted environments, this could be a risk.

• Detailed Error Handling: While exception handling exists, it could be made more granular in
some places, especially for specific network errors.

• Relay Server Complexity (Implied): The client relies on a relay server (not provided) that must
handle complex decryption/re-encryption logic (using the Fernet keys of all clients) and potentially
fragment reassembly.

6.3 Overall Assessment

Overall, the script is an excellent educational example and a solid technical foundation for a secure
multicast communication client. It successfully demonstrates the integration of UDP/TCP networking,
multithreading, advanced cryptography, and custom protocol design in Python. Although it has areas for
improvement, especially regarding fragment reassembly on reception and the security of the local control
interface, it provides a functional and well-conceived solution for the intended purpose. It is valuable code
for anyone wishing to delve deeper into these advanced network programming and security concepts.

7 Reference File

The source code analyzed in this article is contained in the file:

• client_UDP_crypto_protocollo_TLV_multicast_relay_simm_csharp.py

10

	Introduction
	Analysis of Functionality
	General Architecture
	Main Execution Flow
	Key Components and Responsibilities
	Interactions between Components
	Detailed Protocols and Mechanisms
	Libraries Used

	Primary Purpose of the Code
	Author's Educational and Communicative Intent
	Usage Example
	Conclusions
	Strengths
	Weaknesses and Areas for Improvement
	Overall Assessment

	Reference File

