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Abstract

This article presents a comprehensive technical examination of the Python script
client_UDP_crypto_protocollo.py. This client is designed for secure UDP-based com-
munication with a complementary server, featuring RSA asymmetric cryptography for
key exchange and message encryption, alongside a custom protocol for fragmenting large
outgoing encrypted messages. The analysis delves into the client’s architecture, its oper-
ational workflow, the cryptographic mechanisms employed, its role in the communication
protocol, the author’s potential didactic objectives, and illustrative use cases. The docu-
ment also critically evaluates the client’s strengths and identifies significant areas for im-
provement, particularly concerning its message reception capabilities.
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1 Introduction

Secure network communication is a cornerstone of modern software applications. While TCP
often provides a reliable and ordered stream, the User Datagram Protocol (UDP) is favored
in scenarios demanding low latency and reduced overhead, such as gaming, streaming, or IoT
telemetry. However, UDP inherently lacks security and reliability features. To address these
shortcomings, developers often implement custom protocols layered on top of UDP.
The Python script client_UDP_crypto_protocollo.py represents one half of such a custom
secure communication system. It is designed to interact with a corresponding UDP server
(presumably server_UDP_crypto_protocollo.py), establishing a secure channel through
asymmetric cryptography and managing the transmission of potentially large messages via a
custom fragmentation scheme for outgoing data.
This article aims to provide a meticulous analysis of client_UDP_crypto_protocollo.py.
We will dissect its internal architecture, the sequence of operations it performs, the crypto-
graphic techniques it utilizes, and the custom protocols it implements. Furthermore, we will
explore the primary purpose of this client, infer the didactic intentions of its author, and con-
sider potential application scenarios. A critical evaluation will highlight its capabilities and
limitations, offering a well-rounded technical perspective.

2 Analysis of Operation (How client_UDP_crypto_protocollo.py

works)

2.1 General Architecture

The client is encapsulated within a single Python class, UDPClient. Unlike its server counter-
part which might employ multithreading for concurrent request handling, this client operates
synchronously in its main logic flow. Network operations like sending and receiving are block-
ing calls, albeit with configurable timeouts.
The client is responsible for:

• Generating its own RSA key pair.

• Initiating a key exchange sequence with the server.

• Encrypting outgoing messages using the server’s public key.

• Fragmenting large encrypted outgoing messages according to a custom protocol.

• Receiving messages from the server and attempting to decrypt them using its private
key.

• Managing a UDP socket for all communications.

Logging is integrated for debugging and operational insight.

2



2.2 Initialization and Startup Flow

The client’s lifecycle begins with the instantiation of the UDPClient class and the subsequent
call to its start() method.
Instantiation (__init__)

1. Configuration parameters are set: server host/port, buffer size, socket timeout, and
max_fragment_size (defaulting to 100 bytes, intended for the payload of an encrypted
fragment).

2. An RSA 4096-bit key pair (private and public) is generated using
cryptography.hazmat.primitives.asymmetric.rsa.

3. The client’s public key is serialized into PEM format (self.public_key_pem) for trans-
mission.

4. A placeholder for the server’s public key (self.server_public_key) is initialized to
None.

5. An optional callback self.on_message can be set to handle received messages.

6. An attribute self.partial_message (a bytearray) is initialized but remains unused in
the provided code, hinting at a potential unimplemented feature for reassembling incom-
ing fragmented messages.

Starting the Client (start())

1. A UDP socket (socket.SOCK_DGRAM) is created and configured with the specified time-
out.

2. The client’s status is set to active.

3. Crucially, the client proactively sends its serialized public key (PEM format) to the
server. This is the first step in the key exchange.

4. It then immediately calls _request_server_public_key() to obtain the server’s public
key.

2.3 Key Components

The functionality of the client is primarily delivered through the methods of the UDPClient

class:

• UDPClient: The central class managing state, cryptographic keys, socket operations,
and the communication protocol logic.

• _request_server_public_key(): This method orchestrates the acquisition of the server’s
public key.

1. It sends a specific request payload (b"REQ_PUB_KEY\n") to the server.
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2. It then waits to receive a response, expecting the server’s public key in PEM for-
mat.

3. Upon successful reception and validation (checking for PEM markers), the key is
deserialized using serialization.load_pem_public_key() and stored in
self.server_public_key.

4. Handles socket timeouts and other exceptions during this process. If the server’s
key is not obtained, self.server_public_key remains None.

• _encrypt_message(message): A helper method responsible for encrypting a given mes-
sage (byte string) using the server’s stored public key.

– Encryption is performed using RSA with OAEP padding and SHA256 as the hash
algorithm, consistent with robust asymmetric encryption practices.

– If the server’s public key is not available (self.server_public_key is None), it
logs a warning and returns the message unencrypted.

• send(message): This is the core method for sending data to the server. It handles mes-
sage encoding, encryption, and fragmentation.

1. Converts string messages to utf-8 bytes.
2. **Special Handling:** Messages like the client’s own public key or the REQ_PUB_KEY

request are sent unencrypted.
3. **Encryption:** For regular messages, if the server’s public key is available, it calls

_encrypt_message().
– Plaintext Size Limit: A critical check if(len(message)>488): return

exists *before* encryption. This limits the size of the plaintext message that
can be directly encrypted by a single RSA operation. If the plaintext exceeds
488 bytes, the method silently returns, effectively dropping the message. This
implies that larger logical messages must be pre-split into chunks smaller than
488 bytes by the application layer before being passed to send().

4. **Fragmentation (of Encrypted Data):** If the resulting encrypted_message ex-
ceeds self.max_fragment_size:

– A 4-byte unique message ID (msg_id) is generated using os.urandom(4).
– The encrypted_message is divided into fragments, each with a payload size

up to self.max_fragment_size.
– Each fragment is prepended with a 6-byte header: Message ID (4 bytes,

big-endian) | Fragment Number (1 byte, 1-based) | Total Fragments

(1 byte).
– Each packet (header + fragment_payload) is sent individually via self.socket.sendto().
– A small delay (time.sleep(0.01)) is introduced between sending fragments.

5. If the encrypted message does not require fragmentation, or if the message was
sent unencrypted (e.g., key exchange, or server key unavailable), the entire message_to_send

is sent in a single UDP datagram.
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• receive(): This method is responsible for receiving and processing incoming messages
from the server.

1. It performs a blocking receive operation on the socket (self.socket.recvfrom()).

2. Decryption Attempt: It attempts to decrypt the received data using the client’s
own private key (self.private_key) with RSA-OAEP-SHA256. This assumes the
server encrypted the message using the client’s public key (which the client sent at
startup).

3. If decryption fails (e.g., ValueError), it assumes the message might not have been
encrypted for this client or is corrupted.

4. If an on_message callback is registered, it’s invoked with the (potentially decrypted
and decoded) message and sender’s address.

5. The method returns the message, decoded using ’latin-1’.

6. Limitation: This method processes each received UDP datagram individually.
It does not implement any logic to reassemble fragmented messages sent by the
server. If the server sends a fragmented response, receive() would treat each
fragment as a separate message and decryption would likely fail.

• close(): Handles the clean shutdown of the client by closing the UDP socket and set-
ting its active status to False.

• _setup_logger() and _handle_error(): Utility methods for logging configuration and
centralized error message logging, respectively.

2.4 Interactions with Server

The client initiates and follows a specific sequence of interactions with the server:

1. Initial Key Exchange (Client-Initiated):

• Client to Server: Sends its PEM-encoded public key.

• Client to Server: Sends b"REQ_PUB_KEY\n" to request the server’s public key.

• Server to Client: (Expected) Responds with its PEM-encoded public key. The
client stores this.

2. Sending Messages:

• Client prepares a plaintext message.

• If the plaintext exceeds 488 bytes, it must be handled by application logic (e.g.,
split into smaller plaintexts as seen in the test function).

• Client encrypts the (appropriately sized) plaintext message using the server’s pub-
lic key.

• If the resulting ciphertext is larger than max_fragment_size, the client fragments
it, adds headers, and sends the fragments. Otherwise, sends the ciphertext as a
single datagram.
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3. Receiving Messages (e.g., ACKs from Server):

• Client receives a datagram from the server.

• Client attempts to decrypt it using its own private key.

• The current implementation can only successfully process non-fragmented responses
from the server.

2.5 Protocols and Mechanisms

• UDP: The underlying transport protocol, providing connectionless datagram delivery.

• RSA Asymmetric Cryptography:

– Keys: 4096-bit RSA.

– Key Exchange: Client sends its public key; requests and receives server’s public
key.

– Message Encryption: Client encrypts messages for the server using the server’s
public key. Server is expected to encrypt messages for the client using the client’s
public key.

– Padding: OAEP (Optimal Asymmetric Encryption Padding) with MGF1.

– Hash Algorithm: SHA256 for OAEP and MGF1.

• Custom Key Exchange Protocol:

1. Client sends its public key (PEM) unsolicited upon connection.

2. Client sends a b"REQ_PUB_KEY\n" marker to explicitly request the server’s public
key.

• Custom Outgoing Fragmentation Protocol: Applied only to encrypted messages
sent by the client if they exceed self.max_fragment_size.

– Header (6 bytes):

∗ Message ID (4 bytes, big-endian): Unique identifier for the complete en-
crypted message, generated via os.urandom(4).

∗ Fragment Number (1 byte): 1-based sequential number of the fragment.
∗ Total Fragment Count (1 byte): Total number of fragments for this mes-

sage.

– Payload: A chunk of the encrypted message.

• Incoming Fragmentation Handling: Critically Missing. The client does not im-
plement logic to reassemble fragmented messages received from the server.
The self.partial_message attribute suggests this might have been an intended fea-
ture.

• Socket Timeout: Configurable timeout for socket operations to prevent indefinite
blocking.
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• Plaintext Pre-processing (Application Level): The example test_udp_server

function uses split_string_into_chunks to divide large plaintext messages into smaller
chunks (default 400 bytes). Each chunk is then passed to client.send(), where it’s in-
dividually encrypted and potentially fragmented if the *ciphertext* is too large. The
488-byte plaintext limit in send() reinforces this need for application-level pre-splitting
of large logical messages.

2.6 Librerie Utilizzate

• socket: For low-level UDP network communication.

• time: Used for time.sleep() during fragmented message sending.

• logging, sys: For configuring and using the logging framework.

• os: Used for os.urandom() to generate unique message IDs for fragmentation.

• cryptography: The core library for all cryptographic operations.

– hazmat.primitives.asymmetric.rsa: For RSA key generation.

– hazmat.primitives.asymmetric.padding: For OAEP padding.

– hazmat.primitives.hashes: For SHA256 hash algorithm.

– hazmat.primitives.serialization: For serializing public keys to PEM format
(public_bytes) and deserializing PEM-encoded keys (load_pem_public_key).

– hazmat.backends.default_backend: To select the default cryptographic backend.

3 Primary Purpose of the Code

The primary purpose of client_UDP_crypto_protocollo.py is to enable a client application
to communicate securely over UDP with a compatible server. It aims to achieve this by:

1. Establishing Secure Key Exchange: Proactively exchanging RSA public keys with
the server to enable encrypted communication.

2. Ensuring Confidentiality of Outgoing Data: Encrypting messages sent to the
server using the server’s public key.

3. Handling Large Outgoing Messages: Implementing a fragmentation mechanism for
encrypted messages that exceed a defined UDP payload size, allowing logical messages
larger than typical MTU-derived limits (after encryption overhead) to be transmitted.

4. Receiving and Decrypting Server Responses: Processing incoming messages from
the server, assuming they are encrypted with the client’s public key.

The code endeavors to solve common challenges in UDP communication:

• Lack of Inherent Security: By layering RSA encryption.
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• UDP Message Size Limitations: By providing client-side fragmentation for outgoing
data.

It is designed to be a counterpart to a server that understands its key exchange, encryption,
and (the client’s outgoing) fragmentation protocol.

4 Author’s Didactic and Communicative Intent

The script client_UDP_crypto_protocollo.py appears to serve several didactic and commu-
nicative purposes:

• Illustrating Client-Side Asymmetric Cryptography: Demonstrates RSA key pair
generation, public key serialization (PEM), and the use of public/private keys for en-
cryption and decryption in a client context. The choice of RSA-4096 with OAEP/SHA256
highlights contemporary security practices.

• Demonstrating a Key Exchange Protocol: Shows a simple, client-initiated key
exchange mechanism, a fundamental aspect of establishing secure channels.

• Teaching UDP Fragmentation Logic: Provides a clear example of how to fragment
data (specifically, encrypted data) for UDP transmission, including header design (ID,
sequence, total) and reassembly considerations (though reassembly is missing for incom-
ing data).

• Practical Use of the cryptography Library: Serves as a hands-on example of lever-
aging Python’s cryptography library for common asymmetric cryptographic tasks.

• Highlighting Plaintext Size Limits in RSA: The 488-byte plaintext limit check
within send() implicitly teaches about the block size limitations of RSA encryption,
necessitating application-level strategies (like pre-chunking) for larger data.

• Code Structure and Clarity: The code is generally well-structured within a single
class, with descriptive method and variable names. Comments, especially those indicat-
ing parameter recommendations (e.g., max_fragment_size = 490), add to its compre-
hensibility.

The author likely intended to create a functional client that showcases these concepts, provid-
ing a learning tool for developers interested in secure UDP communications. The presence of
the unused self.partial_message suggests an ambition for full duplex fragmentation han-
dling that was not completed.

5 Usage Example

This UDP client could be adapted for various applications requiring secure, low-latency com-
munication where the server is designed to be compatible:
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1. Secure Telemetry/IoT Data Submission: Client devices (sensors, actuators) send-
ing encrypted data packets to a central server. The fragmentation allows for more de-
tailed telemetry payloads.

2. Client for Secure Command and Control Systems: Sending encrypted commands
to a remote server and receiving (small, non-fragmented) acknowledgments or status
updates.

3. Lightweight Secure Messaging/Chat Client: For scenarios where TCP overhead
is undesirable, and messages are typically short to medium length. The client would
handle encryption and could send longer messages using its fragmentation, but would
rely on the server sending short, non-fragmented replies.

4. Game Client Components: For transmitting certain types of game state or player
actions securely over UDP, where encryption protects against tampering and fragmenta-
tion handles larger data bursts.

In these scenarios, the client’s ability to encrypt and fragment outgoing data would be ben-
eficial. However, its current inability to reassemble fragmented incoming messages from the
server severely limits its utility for fully bidirectional communication involving large server
responses.

6 Conclusions

The client_UDP_crypto_protocollo.py script successfully demonstrates the implementa-
tion of a UDP client capable of secure key exchange, RSA-based message encryption, and
fragmentation of large outgoing encrypted messages. It serves as a valuable educational tool
for understanding these concepts.
Strengths:

• Strong Asymmetric Encryption: Implements RSA-4096 with OAEP/SHA256 for
robust confidentiality of data sent to the server.

• Client-Initiated Key Exchange: Features a clear, proactive mechanism for exchang-
ing public keys.

• Outgoing Fragmentation: The custom fragmentation protocol for large encrypted
outgoing messages is well-defined and functional, allowing the client to send data ex-
ceeding typical UDP datagram practical limits.

• Clarity and Modularity: The code is organized within a single class with relatively
clear methods, and leverages the cryptography library effectively.

• Awareness of RSA Plaintext Limits: The code (and test function) implicitly and
explicitly addresses the need to handle RSA’s plaintext size limitations.

Weaknesses and Areas for Improvement/Extension:
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• CRITICAL: No Incoming Fragmentation Reassembly: The most significant lim-
itation is the client’s inability to receive and reassemble fragmented messages sent by
the server. The receive() method processes datagrams individually, rendering it in-
compatible with a server that fragments large responses. The unused self.partial_message

attribute strongly suggests this was an incomplete feature.

• Performance of Asymmetric Cryptography: Encrypting every message (or pre-
split plaintext chunk) with RSA is computationally expensive. For applications with
frequent or large message exchanges, a hybrid encryption scheme (RSA to exchange a
symmetric key, then AES for data) would be far more efficient.

• Limited Reliability for Outgoing Fragments: The client sends fragments without
any acknowledgment or retransmission mechanism for individual fragments. UDP’s un-
reliability means fragments can be lost, leading to incomplete messages at the server.

• Silent Failure on Large Plaintext: The if(len(message)>488): return check
in send() causes messages exceeding this plaintext limit to be silently dropped. This
should at least log an error or raise an exception.

• Hardcoded Plaintext Limit: The 488-byte limit is specific to RSA-4096 and SHA-
256 with OAEP. A more robust solution would calculate this limit based on key proper-
ties or rely on the cryptography library to signal oversized plaintext.

• Symmetric Test Function Logic: The test_udp_server function calls client.send(chunk)

multiple times for a single logical message but then calls client.receive() only once.
If the server ACKs each encrypted chunk, the client will only process the first ACK.

• No Message Integrity/Authentication for Received Messages: While decryp-
tion with the client’s private key implies the server used the client’s public key, there’s
no explicit cryptographic integrity check (like HMAC or digital signature) on messages
received from the server.

Overall Assessment: client_UDP_crypto_protocollo.py is a commendable effort in demon-
strating secure UDP client functionalities, particularly its handling of outgoing message en-
cryption and fragmentation. As an educational piece for these specific aspects, it is quite ef-
fective. However, its current inability to reassemble incoming fragmented messages makes it
an incomplete partner for a server that fully utilizes fragmentation for bidirectional large mes-
sage exchange. The identified weaknesses, especially the lack of incoming fragment reassem-
bly and the performance implications of pure RSA, would need to be addressed for robust,
production-ready deployment. The groundwork laid is solid, and with further development, it
could evolve into a more comprehensive and practical secure UDP communication client.

7 Reference Files

• client_UDP_crypto_protocollo.py
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