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Modern incarnations of the Aristotelian concepts of
Continuum and Topos
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ABSTRACT

The general aim of this paper is i) to argue for the feasibility and fruit-
fulness of a balance between the phenomenological method seeking intuitive
evidence and the axiomatic-deductive method and ii) the importance of mu-
tual understanding between philosophy and mathematics and of cultivating
a historical self-awareness of their common source in Greek philosophy. To
this end we show how Aristotle’s theory of sunekhês, apeiron and topos as well
as their related notions can be given a rigorous interpretation in terms of
modern topology and geometry as well as category theory. This is facilitated
by the fact that in Aristotle himself we already find a good balance between
intuition and formal logic. We also show how these powerful Aristotelian
intuitions and concepts are found incarnated in diverse domains of modern
mathematics.
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40 CLARENCE LEWIS PROTIN

1. INTRODUCTION

As Kant points out his Critique of Pure Reason, there are two main sources
of human knowledge: intuition and concepts. In modern terms, we can
seek to found knowledge by means of ultimate evidences (Husserl’s Wesen-
schau) or according to the axiomatic-deductive ideal pioneered by Leibniz
and Frege. Although sometimes presented as conflicting tendencies (i.e. the
intuitionist or constructivist vs. formalist strife in the foundations of math-
ematics) there is nothing inherently incompatible in these two approaches.
Even Husserl allowed an important role for an axiomatic-deductive treat-
ment of certain aspects of his project of a Pure Logic (cf. his theory of ’man-
ifolds’). An example of the complementarity between these two modes of
knowledge is what pertains to space and time (or more generally the contin-
uum) and their associated topological notions. In this paper we investigate
some aspects of Aristotle’s treatment of the continuum, its allied notion of
infinity (apeiron) as well as his theory of the topos. We show that in Aristo-
tle’s theory there is a complementarity between intuition and the axiomatic-
deductive method and that a better understanding of the full significance of
Aristotle’s theory is obtained (following the pioneering work of René Thom)
by employing notions of modern topology and category theory. We also
take a tour of some recent developments in topology and category theory
and show how these developments can be seen as a return to, or rediscovery,
of Aristotelian theory. More specifically, we argue that these developments
represent an elaborate development of the intuitions and concepts present in
an embryonic state in the Aristotelian theory. This elaboration is particularly
strong on the axiomatic-deductive side. The desirability of a corresponding
development from the intuitive phenomenological angle is patent, together
with a greater self-awareness of a historical and philosophical continuity with
the Aristotelian tradition. We are lead to conclude that philosophy and
mathematics should be cognizant of each other and should not loose sight
of their connection to a common historical origin.

This paper is organized as follows. In section 2 we present the outline
of Aristotle’s theory of sunekhês, apeiron and topos as well as their related no-
tions. In section 3 we discuss how the concept sunekhêsmight be held to have
a powerful role to play in Aristotle’s philosophy beyond a mere characteri-
zation of quantity. In section 4 we give formulations of the key Aristotelian
notions in terms of classical topology and sheaf theory. In section 5 we review
some examples of how Aristotelian notions incarnate in modern mathemat-
ics. In section 6 we lay the groundwork for a more adequate formalization of



i
i

“int24crop” — 2024/11/11 — 11:24 — page 41 — #41 i
i

i
i

i
i

MODERN INCARNATIONS OF THE ARISTOTELIAN CONCEPTS OF CONTINUUM AND TOPOS 41

sunekhês in terms of locales and topos theory and point out the significance of
the former for Aristotle in general. The final section ends with some conclu-
sions about philosophical methodology, the relationship between philosophy
and mathematics and the importance of historical awareness. An appendix
is included in which are gathered some basic definitions from topology and
category theory used throughout the text.

2. SUNEKHÊS, APEIRON AND TOPOS

Aristotle’s Physics deals with the fundamental principles of nature ( phu-
sis). Among these are change, magnitude 1, place and time. Aristotle argues
that these are all continuous quantities or continua. We will later argue, fol-
lowing René Thom, that the importance of continuity for Aristotle exceeds
the quantitative aspects of physical being and extends to other ontological
categories as well.

What does Aristotle mean by a continuum or sunekhês? His analysis of
this concept relies on the allied concepts of point, limit (peras which can also
be translated by boundary or extremity), infinity (apeiron), division, contact
and contiguity.

A striking feature of sunekhês is that it does not consist of points (it is not
an aggregate or set of points) nor can it result from the joining together of
points (231a21-b10) 2. This is surely one of the strongest known examples
of a purely intuitively motivated theory. In fact all the related concepts are
equally intuitively evinced and form a tightly connected whole.

For Aristotle peras is intuitively the limit, boundary or extremity of an
object. Thus if a point has as limit it can only be the point itself. This also
follows from the Euclidean definition of a point as that which has no parts,
provided of course that we define ’part’ as ’proper part’.

The passage (210a15-25) discussing the meanings of something being
in something else for the purpose of establishing the definition of topos can
also be read as a proto-mereological discussion concerned with the general
notion of parthood spanning different ontological categories. Reflexivity of
the parthood notion is explicitly excluded, thus pointing to a restriction to
proper parthood.

1. We will later discuss the significance of Aristotle’s distinction in (209b8) between di-
asteme (extension) and megethos (magnitude).

2. Unless stated otherwise, all references are to the Physics and we follow the text of [18]
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42 CLARENCE LEWIS PROTIN

In (227a6-16) we get the following characterization of sunekhês: the lim-
its of its parts are united. Being united is a stronger notion than mere con-
tiguity which depends in turn on the notion of place, topos. Contiguous
objects have limits ’in the same place’. This corresponds to ’contact’.

Since we cannot distinguish between the limits of a point and the point
itself, the coming together (union) of two points will result in complete coa-
lescence and thus a continuum could never be constituted from points.

Aristotle gives us in fact two fundamental complementary characteriza-
tions of sunekhês: (i) that whose parts have united limits (and hence cannot
consists of points) and (ii) that which is infinitely divisible. The core concept
of infinity apeiron is intimately bound up with that of sunekhês. The char-
acterization (i) may be termed ’connectivity’, a Latin-derived term to which
it is etymologically cognate. Aristotle conceives a kind of correspondence
or dependence between the different continua involved in change. For in-
stance change itself, magnitude and time. This correspondence is expressed
as: a division of one continuum must correspond to a division of the others.
This principle is widespread in the proofs in Book VI of the Physics. One of
the most interesting proofs (237b23-238a20) is that there is no finite move-
ments in an infinite time (i.e. unbounded infinite time). We will return to
this proof later.

Aristotle distinguishes between an infinity which ’goes beyond any finite
magnitude’ (206b20) and a bounded infinity defined inductively by succes-
sively adding segments of half the previous length (this expresses the conver-
gence of the geometric series). In illuminating passages (206b3-12, 207a7-
25, 209b8) we see that such a bounded infinity is that which has a limit, not
in itself but in something external to itself. It is something incomplete or
incompleted, aoristos(209b9), imperfect or not yet perfect or whole (207a7-
15). It can be an expression both of a completable or incompletable process.
It can express potentiality dunamis and generated being oude menei(...)alla
gignetai, it does not rest(...)but is in the process of becoming, and is likened
to time (207b15).

There are in fact three basic kinds of apeiron discussed in the Physics.
The boundless infinity exemplified by adding segments of the same length
to each other and two kinds of bounded infinity exemplified as follows: one
involving adding segments to each other in a fixed smaller proportion (as in
the convergent geometric series) and the other (which we call a ’vanishing
infinity’ ) obtained by successively dividing a given segment according to a
fixed ratio. In Book VI Aristotle deploys such a vanishing infinity in proving
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that there is no first instant in which a change first occurred (236a7-26). All
these infinities do not exist in act, but potentially, they exist as a processes,
in particular as a discrete temporal processes.

An interesting aspect is that a bounded infinity can be used to define
an object. Bounded infinities have, as we saw, a limit, not in themselves
but exterior to themselves. Thus a limit can be defined by a infinite process.
Let us consider Aristotle’s definition of topos in this light. It is: to peras
tou periekhontos somatos kath’ho sunaptei to periekhomeno(212a5-6), the limit
of the enveloping body according to where it touches what it envelopes. In the
final refinement of the definition the envelop is further required to be the
first immobile envelop (cf. the example of a boat in a river, where the river
itself is the topos of the boat). This strongly suggests that we can consider
a bounded infinity consisting of all successively smaller enveloping bodies
containing a given body. The limit of such a bounded infinity (restricted to
immobile envelops) will be precisely the topos of the body.

A body and its topos may or not be contiguous. Nor does the definition
of topos employ the concept of contiguity. Thus there is no circularity in
Aristotle’s definition of contiguity as having limits in the same place (which
corresponds to the fundamental notion of ’contact’, the closest two objects
can come together without loosing the individuality of theirs limits).

A careful reading of Aristotle’s Physics shows that sunehês, apeiron and
topos and their allied concepts are not only intuitive and phenomenologically
evident but the definitions given and properties proven are all conformity
with (or at least the prototype of) the ideal of axiomatic-deductive clarity
and rigour.

3. ARISTOTLE’S PHILOSOPHY OF CONTINUITY

Before moving on to discussing how the previously notions can be inter-
preted in terms of modern topology and category theory we find it advan-
tageous to first go through briefly how continuity and its circle of intuitive
notions play a larger role in Aristotle’s philosophy than just a fundamental
aspects of the category of quantity. We refer to reader to seminal works of
René Thom[22] for further discussion and justification of this position.

There can be little doubt that Aristotle was aware that the category of
quality encompasses genera which can be continuously parametrized. Within
these ’continuous’ qualities some admit opposites (for instance wet-dry and
hot-cold) and some do not. A single body’s state can be decomposed into a
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sequence of independent qualities, some admitting opposites, some not. In
modern terms some qualities are represented by scalar quantities (positive real
numbers) and some by vector quantities (the real numbers including nega-
tive reals - which in modern terms correspond to ’charge’, or more generally
vector spaces) 3. Thus the four elements are characterized phenomenologi-
cally by four different regions in the two-dimensional vector space consisting
of the product of the wet-dry and hot-cold genera each represented by a real
line. Not only does the role of continuity transcend the domain of strict
quantity but it has been suggested that much of modern physics was already
implicitly present in Aristotle (cf. Thom’s concluding remark in [24]).

A bolder and more controversial thesis of Thom relates continuity to
hupokeimenon (substance, which does not belong to the category of quantity
but in which, according to Aristotle, quantity subsists) as well to the whole
intelligible realm of genera and species.

The continuity of the hupokeimenonmight be given the following justifi-
cation via the consideration of the logical significance of limit (peras) as a kind
of interface, that which allows an entity to relate to other entities or to the
surrounding environment or be capable of receiving diverse predicates whilst
remaining itself. These considerations have roots in Plato’s Parmenides. In
the first hypothesis of the ’dialectical’ section, the One is considered in its
absolute simplicity. It could not manifest (or exist) for then it would have
to be in a certain place. But being in a place it would be enveloped by that
place, that is, its extremities would touch, be in contact, with the surround-
ing environment. Plato then continues to argue (in Parm. 138A-B) that
since extremities are parts of the entity and the One is by definition an entity
without parts, the One could not be in a place and hence could not ’exist’.
According to Scolnikov [19][p95-100] this problem is resolved in the second
hypothesis wherein the Existing One is considered as a complex unity, a com-
posite (sunolon) which allows participation (or predication) whilst preserving
its underlying unity. Scolnikov [19][p100] makes the interesting observa-
tion that this complex is in concrete instances always finitely determined or
divided (diareton), although it can potentially be divided infinitely - diareisis
presupposes the possibility of making distinctions within a form and requires,
in principle, that division can go on indefinitely (infinitely). But potentially
endless divisibility is a chief property of the Aristotelian sunekhes:(200b19-

3. in Aristotle’s proof that the world cannot be spatially infinite a postulate is employed
that can be read as requiring the total canceling out of positive and negative charges.
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20) to eis apeiron diaireton sunêkhes on - the continuum is what is infinitely
divisible.

Natural beings consist of both matter and form, and for Aristotle form
seems much like a continuum which is ’stratified’ according to different lo-
cally homogeneous qualities. This is at the heart of Aristotelian biological
division between homeomeres and anomeomeres.

As Thom argues in [22], scattered throughout the Physics andMetaphysics
are passages suggesting Aristotle made a strong analogy (more, perhaps, than
a significant metaphor) between the relationship of form and matter and
the relationship of limit and (bounded) infinity. This was also extended to
the analogy with the relationship between act and potentiality and even the
relationship between a genus and its differences giving rise to species. As
stated in the Metaphyiscs: genos hos hulê, genus is like matter.

4. MODERN MATHEMATICAL INTERPRETATION OF ARISTOTLE’ THEORY

We can either use modern mathematical concepts as a hermeneutic tool
for Aristotelian philosophy or we can use aspects of Aristotelian philosophy
to interpret certain concepts and results of modern mathematics (indepen-
dently of whether the found correspondences are historically necessitated or
represented independent convergence or rediscovery after an explicit rup-
ture).

There is also the problem of what we precisely mean by ’modern’. In
our view a convergence with Aristotle if already present in classical ’mod-
ern’ mathematics of the turn of the 20th century, only reaches its full force
and significance with more contemporary developments, specially in category
theory.

The purpose of this section is to show how modern topology and cate-
gory theory can be used as a hermeneutical tool to study Aristotle’s theory of
sunêkhes, apeiron, topos and related notions.

In Aristotle’s Physics we find a balance and complementarity between in-
tuitionism and axiomatic-deductive methodology 4. Modern mathematics
on the other hand is characterized by a strong focus on axiomatic-deductive
methods (often involving an explicit rejection of anything epistemologically
resembling Husserl’s phenomenological method attributing an important
role to intuitive evidence). Opposing schools took an equally strong view

4. Thom himself as was only interested in Aristotle the proto-phenomenologist, dismiss-
ing completely the formal axiomatic-deductive Aristotle [22].
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with regards to the rejection of the epistemic role of formal logic and ax-
iomatic-deductive methods. This is even true of Husserl (specially in his later
phase) but never excluding an important and legitimate (albeit restricted)
role for such methods. Be that as it may there can be no doubt that intu-
ition plays a powerful role in the thought-processes of the ordinary ’working
mathematician’. And it is both the formal definitions and intuitive con-
tent of some aspects of modern mathematics that we wish to deploy as a
hermeneutical tool in this section.

Although the idea of space not being constituted by points is an old
one, as are attempts to elaborate a formal axiomatic-deductive theory of such
theories, it has never been traditionally the framework of mainstream math-
ematics and theoretical physics. Its fullest and most sophisticated develop-
ment took place within category theory, in particular through the work of
Alexander Grothendieck and William Lawvere. But in order to motivate our
use and discussion of some advanced category theoretic notions in relation
to Aristotle, we find it convenient to start with basic notions from classical
general topology 5, which is still based on the idea of space as a collection of
points.

From here on we assume the reader to be familiar with the definition
of a topology on a set (in particular the standard topology on the real line
or Euclidean plane) and with the definition of open set, closed set, interior,
closure, boundary, connectivity and continuous function.

At first glance the two characterizations i) and ii) in Aristotle’s definition
of sunekhês applied to a topological space seems to correspond to: (i) con-
nectivity and (ii) to a certain decomposability property 6. The example of
the coarse (or chaotic) topology shows that the two conditions are arguably
independent.

Before going into detail let us examine apeiron. From the analysis in
the last sections we see that apeiron is a complex and multi-faceted notion
which spans several modern topological concepts. We posit the following
two complementary characterizations of apeiron:

1. Any set A which does not contain at least one point in its closure A
(for instance an open or semi-open interval).

5. For a good introduction to general topology see for instance [7]
6. this characterization is clearly related to a Hausdorff condition. In the one dimensional

case this means that we can potentially divide any line, in particular the line connecting two
points and so obtain disjoint segments one containing each point.
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2. A net n which is either strictly increasing or strictly decreasing, that
is either for all x Æ y with x ”= y, for x, y belonging to a directed
set D, implies n(x) ( n(y) or for all x Æ y with x ”= y implies
n(y) ( n(x).

In 2) we do not require that n(x) be an open set. We observe that an apeiron
of the first type can be obtained by taking the union

t
dœD n(d) (a partic-

ular case of limit) of a suitable net n. For instance Aristotle’s construction
corresponding to the convergent geometric series yields a semi-open interval.
A point can likewise be seen as the limit of a net of strictly decreasing sets all
containing that point. We will call such an apeiron a vanishing infinity.

As mentioned previously, Aristotles makes a distinction in (209b8) be-
tween diasteme (extension) and megethos (magnitude). In modern terms the
diasteme would be the interior (hence an open subset) of the megethos con-
sidered as a closed interval (cf. [14][p.207 Note 5] ).

It follows naturally that the concept of peras corresponds to the boundary
of set as in 1) (for instance, the boundary of an open set) or the limit (in
the modern sense) of a net as in 2). But of course some restrictions would
have to be made in the general setting to guarantee that we are working
with intuitively justifiable ’tame’ sets in 1) and 2) so as to rule out such
’pathological’ objects as the Cantor set.

In the ordinary topology on the real line or Euclidean space a general
open set can be quite a complex object. But the fact of the matter is that
all such open sets can be seen as generated from (i.e. in the sense of a basis
of a topology) more basic elementary open sets, for instance open intervals
or balls. Such basic open sets have very Aristotelian characteristics. They
function like local homogeneous patches that generate (by infinite unions) all
the open sets of the topological space. They express the concept of the local
spatial quality around a given point in which size is irrelevant (cf. Hegel’s
concept of indifferent quantity in [5]). Metaphorically a (basic) open set
corresponds to matter (hule) and potentiality (dunamis).

Giving a basis for a topology is the same as giving at each point a vanish-
ing infinity (i.e. a net whose limit is that point). The homogeneous nature
(any local open part has the same quality as the whole) of the continuum is
due to it being generated by the same archetypal vanishing infinity. Also a
topology cannot be generated by a finite net nor identified with any fixed
vanishing infinities for each point, because many different nets whose limit
is that point give rise to the same topology. A basis around a point is a medi-
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ator which allows a point to be ’in’ a continuum (something which it cannot
do in itself).

A closed interval or magnitude megethos can be decomposed into its in-
terior diasteme and its boundary peras. A point is a closed set and any point
inside a magnitude divides it potentially into two separate magnitudes, it be-
ing the common limit of the interiors of these two magnitudes. On the other
hand two magnitudes become a single magnitude by fusion and identifica-
tion of limit-points. Thus the closed point as a limit mediates both division
and junction. More generally the genesis of an entity can be seen as a separa-
tion from a matter by means of a cut along its boundary, thus defining and
giving form to the entity.

In the treatment of motion in Book VI there are many (semi-)open sets
or in general apeiron objects defined: for instance the interval of time in
which change takes place is open while the magnitude of completed change
is always closed (and bounded).

In Euclidean space sets homeomorphic to three-dimensional balls ex-
press the extension of real, actually existing beings. Whilst for instance sur-
faces have a dependent, incomplete existence. In general this suggests that
substances correspond to closed sets with non-empty interior (and bounded,
thus compact, if we accept with Aristotle the finitude of the universe). Thus
this is the example of the most ontologically robust sunekhês to which we
could add closed intervals of time or closed intervals of spatial locomotion.
We may wish to indentify this with megethos; however Aristotle apparently
does consider an unbounded megethos in Book VI (the time starting from
a given moment). The interior of the above kind of subekhês expresses the
matter and is a type 1) apeiron. The boundary is its limit and its form.

The important task that remains is formulating conditions i) and ii) in
the setting of general topology (we will in fact do this later for a more general
concept of topology without points which is more faithful to Aristotle’s own
theory).

Compactness is significant in relationship to Aristotle’s proof that there
can be no infinite motion in a finite time (237b23-238a11-20) or finite mo-
tion in an infinite time. Wementioned how Aristotle lacked the modern con-
cept of function; rather he worked with two-way correspondences between
various quantities such as motion, magnitude and time. These were special
kinds of correspondence in that divisions of one quantity corresponded to di-
visions of the other. Thus if we divide an interval of time we get a division of
the corresponding motion and corresponding magnitude traversed, the parts
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corresponding respectively. Also if we divide a motion we get corresponding
divisions in the magnitudes traversed and times taken, the parts correspond-
ing respectively. It would be interesting to investigate how this relates to the
modern definition of a continuous function. Perhaps such correspondences
can be captured by homeomorphisms or pairs of continuous functions (or,
as discussed subsequently, in a general categorical setting as adjunction pairs
on sites). Anyhow, if we consider, as is natural, that such correspondences
are mediated by continuous functions then Aristotle’s conclusions are valid.
The image of a compact set must be compact. Thus there can be no infinite
motion in a finite time nor finite motion in an infinite time (because the
image via a homeomorphism of [0, Œ) cannot be a closed interval). Aris-
totle’s proofs use a kind of ’covering’ which recalls the modern definition of
compactness in terms of open coverings.

We point out that the modern definition of continuous function can in
certain circumstances be given a definition in terms of the more sunekhês-
like property of connectivity. The image under a continuous function of
connected set is connected. A particular case of this property is Bolzano’s
intermediate value theorem (taught in elementary calculus courses) which
expresses natura non datur saltus, that a continuous function has no jumps
or holes, cannot skip intermediate values (or that the graph is a connected
curve in the plane). Indeed the continuity of a function can be defined more
intuitively in terms of the arcwise connectedness of its graph.

But for Aristotle the world is not completely governed by what Leibniz
and we today would call continuous processes. A passage (228a26-30) attests
how Aristotle recognizes that globally change is not continuous, only locally
continuous, a concatenation of contiguous continuous changes.

Within the framework of classical point-set topology let us see how the
concept of topos could be formulated. For Aristotle the notion of topos in-
volves real qualified entities in nature, not geometric forms. As Léon Robin
wrote in[17][p.142]: a topos is ’always qualified’. It is not hard to see that
if we define the topos of a ’nice’ set B in space to be the limit of the net of
(basic) open sets 7 U containing it (that is, the boundary of the intersection
of all such open sets) then we get simply the boundary of B itself, since the
intersection of all such sets is just the closure of B. But this contradicts the
necessary separability of container and contained, the difference between the
form and topos of an entity.

7. or closed or more general sets.
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But if we consider the set B endowed with a continuous field of qual-
ities then Aristotle’s definition can be given a precise definition in modern
terms. We assume that there is a space of qualities � and that the entity
corresponding to a closed set B lies within a larger environment given by,
let us say, Euclidean space E with the usual topology. For every open set
O of E there are functions s : O æ �, the set of such functions being de-
noted by �(O). These represent the possible qualities of the region O. This
is a particular instance of the concept of sheaf on a topological space 8 The
question is now: what are the qualities on B and how do they relate to the
sheaf of possible qualities on E ? The sheaf is only defined on open sets of
E not on B which is not open. We can give B the induced topology but it
is still not immediately clear how to define a s : V æ � on one of the open
sets V µ B of the induced topology. In particular how can we define the
set of possible phenomenological functions s : B æ � on B itself ? There
is no other way than to consider �(U) for each open set U containing B.
We consider the apeiron of the net of nested open sets U and their qualities
�(U) and take the limit (in the modern sheaf-theoretic sense) of the �(U).
This is well-defined and captures perfectly the idea of the space of qualities
of B relative to its immediate environment in which the relationship to the
environment is mediated precisely by the topos of B in E specified to the
sheaf �. Thus we can give at last an interpretation to (211b10) we have en
tauto gar ta eskhata tou periekhontos kai tou periekhomenou, the limits of the
container and contained coincide (211b12-14), but without fusing and being
identical.

While we saw that while just considering apeiron of the open sets con-
taining U is vacuous, once we consider a sheaf of qualities it becomes highly
significant and non-trivial. A similar construction can be carried out for
any V of the induced topology of B. In sheaf theory this corresponds to a
general construction called the inverse image sheaf which is well behaved for
sufficiently ’tame’ kinds of set B. This construction is also a generalization of
the infinitesimal calculus. The derivative of a function at given point cannot
be calculated from the value of the function at that point alone. A certain
neighbourhood of values is required. In fact if we consider B to be just a
point p in E then the previous construction yields what is called the stalk of
� at p, the qualities around an indefinitely small neighbourhood of p. The
Aristotean concept of (vanishing) apeiron in this interpretation justifies the

8. see the appendix for the definition of the modern mathematical concept of sheaf. An
introduction to Sheaf Theory can be found in [9, 3].
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’flowing’ (cf. Newtons’ fluxiones) nature of the infinitesimal. Of course if we
just consider open sets containing p then the limit is p itself. Cf. (209a7-13)
where the point is stated to be identifical to its topos. Waterfield [32][p.253]
also comments on a connection to the first hypothesis of the Parmenides.

5. SOME MATHEMATICS REFLECTING ARISTOTELIAN INTUITIONS
AND CONCEPTS

In this section we take the opposite approach. We examine some modern
mathematical concepts and point out how they can be given an Aristotelian
interpretation or clearly reflect Aristotelian concepts even when it is almost
certain that there was no direct or conscious influence.

The Aristotelian topos is found in algebraic geometry in the guise of
the formal completion of a subvariety Y in a variety X . In [4][p. 190]
Hartshorne writes:

The formal completion of Y in X (...) is an object which carries information
about all the infinitesimal neighbourhoods Yn of Y at once. Thus it is thicker
than any Yn, but is contained inside any actual open neighborhood of Y in X .

Elementary algebraic topology also offers us many striking embodiments of
the Aristotelic topos, situations in which we are interested in the behaviour
in the neighbourhood of a boundary. This is the main intuition behind the
concept of relative homology of a pair (X, A) and the excision theorem.
According to [31][p.44] : ’In particular a chain in X is a cycle modulo A if its
boundary is contained in A. This reflects the structure of X ≠A and the way
that it is attached to A. In a sense, changes in the interior of A, away from
its boundary with X ≠ A, should not alter these homology groups’. A very
useful property of CW-complexes is that they are locally strong deformation
retracts around the ’place’ in which the cells are attached.

In continuum mechanics Cauchy’s stress principle is related to the ’act’
of an infinitesimal homeomeric volume of the substance on its immediate
environment through the defining region of the act, the surface: the surface
force. The infinitesimal volume will always be dynamic and have a surface;
Cauchy’s principle states that we can take the limit of the force/area ratio of
the force acting on a given small area of the surface determined by a normal
direction because the moments will vanish at the limit. Considering each
direction we obtain a (symmetric) tensor, the stress tensor, at each infinites-
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imal point. Cauchy’s principle is an example of the dynamical nature of the
infinitesimal.

One of René Thom’s most important papers in topology[20] concerns
stratified sets and morphisms. The theory involved - which deals with a
generalisation of smooth manifolds and algebraic and semi-algebraic spaces -
dates back to the work of Hassler Whitney (1907-1989) on singularity theory
. It can also be seen as a development of the topological intuition present in
the Aristotelic concept of topos. The topos is found in the way in which in a
stratification a given stratum X is related to the adjacent strata Y which are
contained in its closure X̄ . This induces a decomposition of the boundary
of X into such adjacent strata which can be seen as forming the topos of X .
These strata Y in general have a very complex topological relationship to X .
Whitney’s conditions (A) and (B) are imposed in order to maintain a tame,
intuitive, non-pathological situation, ruling out what can happen with spirals
or the crossings of theWhitney umbrella. TheseWhitney stratifications came
closer to the intuitive notions of topos due to the smooth way in which the
adjacent strata envelop and contain X . Many more mathematical examples
that could be adduced regarding the importance of the behaviour on the
’boundary of object such as for example the Dirichlet problem in partial
differential equations in which a function on a given region is completely
determined by its values on the boundary of that region.

The concept of a constructible sheaf [6][p.320] involves a stratification
of the underlyng space into locally homogenous qualities in a way the cap-
tures admirably the Aristotelian concept of anomeomere. Roughly speaking a
locally constant sheaf describes qualities which are locally the same (homo-
genenous) but globally may conceal non-trivial information. For instance
the earth appears flat locally but globally is endowed with spherical curva-
ture. A constructible sheaf is a sheaf where its underlying topological space
admits a stratification such that the restriction of the sheaf to each stratum is
a locally constant sheaf. For instance the different kinds of cells or tissues in
a living organism are organized according to geometric shapes each having
similar local genetic properties (they are homeomeres). See [22] for a detailed
discussion.

Finally the theory of molecular toposes discussed in the next section is a
striking example of a manifestation of sunekhês: a theory of space based on
open sets rather than points and whose properties are like Aristotle’s charac-
terization of sunekhês defined in terms of connectivity and decomposition.
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6. CATEGORY THEORY AND SUNEKHÊS

The Aristotelian theory of sunekhês posits that continuous quantity is not
an aggregate or set of points. Thus the best modern mathematical interpre-
tation, unlike the one given in the previous sections, must be built on similar
suppositions. As we mentioned before, it is within category theory that such
a theory has been carried out with the most sophistication as well as relevance
to other areas of logic, mathematics and science. There are also independent
philosophical reasons why such a theory of continuous quantity should be
preferred. Open sets are given to us directly and immediately via intuition,
whiles points are constructed. And if we posit points or sets of points are be-
ing fundamentaç, then open sets, any topology in fact, is something arbitrary
and constructed, something we impose on reality.

In this section we focus on the theory of locales and topos theory. These
approaches are relational. In locale theory open sets are now themselves prim-
itive entities rather than the elements of the set X on which the usual notion
of topology is defined. What counts now is the relationship between these
open set primitives. In locale theory ’point’ is a derived notion. There are
locales which are non-trivial but hardly have any ’points’. There are others
which are said to ’have enough points’ which can be proven to be equivalent
to the class of so-called ’sober’ topological spaces. Thus locale theory does
not involve a necessary rejection of points. Also we can naturally conceive of
a theory which posits both open sets and points as primitive notions.

A locale is a complete distributive lattice (which hence has a top element
1 and bottom element 0) and is a way of defining topology without points
(see chapter II of [13] for an introduction). We might attempt to capture a
point-free description of the Aristotelian sunekhês to be consistent properties
i) and ii) exemplified in the standard topology of Euclidean space by the
following axioms:

¬÷u, v.(1 = u ‚ v)& (u · v = 0) Global Connectivity

1 =
fl

{z : ¬÷u, v.(z = u ‚ v),&(u · v = 0)} Local Connectivity

’u÷w, v.((w·v = 0)&’z.Con(z)&w‚v Æ z æ u Æ z) Decomposability

where Con(z) © ¬÷u, v.z = u ‚ v&u · v = 0. We call a locale sat-
isfying the axioms above an Aristotelian locale. Local connectivity means that
we can cover any open set with connected open sets and Global connectivity
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means that the whole space is connected. These axioms were obtained from
considering Aristotle’s properties i) and ii). Property i) of course does not
mean that any two parts have to have common limits (for just take two dis-
joint subintervals) rather that if they are contiguous (or share the same topos)
then they share their limit. In view of ii) this means that given a decomposi-
tion as guaranteed by the Decomposability axiom and in which w and v are
connected it cannot be the case that in fact z = w ‚ v. Interestingly this
can be seen as a kind of ’completeness’ condition anticipating Cauchy and
Dedekind.

Let us move on to topos theory and see if we can use it to give a defi-
nition of sunekhês based on the above considerations for locales. Sheaves are
usually defined in terms of the (opposite) category of open sets of a given
topology. But we can define sheaves directly on locales or even on general
categories. Grothendieck’s philosophy[1] is that the category of sheaves on
a space gives a more fundamental description of a space than its topology.
A Grothendieck topology is precisely a way of defining a ’topology’ on an
arbitrary category without the need of an underlying set of points. The key
concept is that of a ’cover’ which can be traced to the ancient Greek notion
of a quantity measuring another quantity and which plays a role in many
proofs in Aristotle’s Physics. We thus can define sheaves on categories en-
dowed with a Grothendieck topology (called sites). Sheaves on a site in turn
form a category called a Grothendieck topos. A still more general concept of
Topos, called an Elementary Topos (characterized by a small and elegant set
of axioms) was discovered independently by William Lawvere in his research
into the foundations of mathematics and intuitionistic set theory. Toposes
can be used as a semantics for formal logics in which we wish to consider
a more general set of truth-values ⌦ endowed with an algebraic structure.
The case of the set {true, false} with the standard logical operations is
the simplest Boolean algebra. Grothendieck topos semantics allow us to a
have temporal or spatially localized version of truth and to give meaning to
sentences such as ’The cat is black and white’ and to interpret a relativized
version of the principle of non-contradiction which incidentally is the one
stated in Aristotle’s Metaphysics. But we are not proposing that Aristotle’s
logic or metalogic are intuitionistic logic 9 only that intuitionistic logic or
metalogic can be considered as locally valid for certain regional ontologies
pertaining to Aristotelian physics.

9. this is certainly contradicted by the logic of the Analytics. See for instance [16] for a
formalization of Aristotle’s syllogistic.
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The poset of subobjects Sub(A) of an object A in a category can have
diverse properties depending on the type of category. In the case of a topos
they are Heyting algebras. Sub(A) is a kind of generalised space.

We wish to define an Aristotelian topos as a topos satisfying the analogues
of the axioms for Aristotelian locales. In[2] we are offered a definition of
molecular (also called locally connected) topos. This means that every object
E can be written as a categorical sum E = ⌃iMi where Mi is a molecule
(or connected object) meaning that Mi cannot be written as a categorical
sum of two proper subobjects. This is the precise analogue of our Local
Connectivity Axiom. There is also an analogue of the Global Connectivity
Axiom. Interestingly in [10] we find that we can characterize connected
objects in a topos T in terms of their associated hom-functor homT (A, ≠)
preserving finite coproducts (this appears to have been first discovered by
Grothendieck in [1]). And it turns out that the topos of sheaves over a
topological space X is locally connected if and only if X is locally connected
in the classical sense.

Thus it would be desirable to extend the to toposes the remaining Di-
visibility Axiom for Aristotelian locales in order to obtain a candidate for a
topos theoretic formulation of sunekhês.

There is a relationship between intuitionistic logic and general topology
which is suggestive for a topological reading of Aristotle. We stress again
that this is not meant to imply that either Aristotle’s logic or metalogic are
intuitionistic. Heyting algebras, the key algebraic component of the logical
structure of a topos, have illuminating connections to classical topology and
the concept of boundary. If we are on the boundary of something, are we
’inside’ or ’outside’ that object ? A natural answer is : neither. Thus the
’outside’ of an objectmust exclude the boundary. This ’outside’ is thus distinct
from the set-theoretic complement which gives the set of subsets of a given
set X the structure of a Boolean algebra. But let us consider a topology
· on X instead of all subsets. Then the complement Oc of an open set
is in general not an open set. The correct definition of ’outside’ of O is
that of the topological interior of the complement (Oc)¶. In a similar way
we can define operations which turn · into a Heyting algebra in which ‚

corresponds to union and · to (finite) intersection, € to X itself and ‹ to
ÿ. The failure of the law of the excluded middle in general, which reads in
this case O fi (Oc)¶

”= X , is seen as a direct consequence of the exclusion of
the boundary from both O and (Oc)¶.
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In section 3 we discussed the central role of sunekhês in Aristotle’s general
philosophy. Topos theory is an alternative to set theory which also allows us
to construct alternative models of mathematics which satisfy or violate cer-
tain axioms such as the Axiom of Choice or the Continuum Hypothesis. To
obtain a topos theoretic formulation of Aristotelian concepts it is relevant to
try to find a topos in which, when considered as a semantics for its own inter-
nal language, all functions are continuous or at least locally continuous. The
construction of the reals via Dedekind cuts on the rational numbers can be
generalised to the topos of sheaves over a topological space X . The real num-
ber object in this topos corresponds surprisingly to the sheaf of continuous
functions over X . The objects are merely sheaves over X (there is no con-
tinuity or real numbers involved in general). The real numbers are defined
via a topos generalization of Dedekind cuts. And yet the sheaf of continuous
functions to the reals emerges. Somehow the generalized definition of real
number object and the sheaf condition on a topological space combine to
produce continuity. If this topos is considered as a model for mathematics
it can be proven that all functions are continuous[9][p.324], that is elements
of RR satisfy the internal version of the continuity condition. It would be
however more faithful to Aristotle if all functions were instead merely locally
continuous and, of course, if the topos were not based on sheaves over a clas-
sical topological space. Thus we propose that this construction be studied for
the general case of a Dedekind-type real number object in a topos of sheaves
over a locale or site.

We saw that the analogue of ’continuous function’ for Aristotle is a kind
of decomposition-preserving correspondence between various quantities in-
volved in motion: motion itself, magnitude traversed, time, etc. This is
also a prototype of a definition of continuous function that does not in-
volve sets of points. In topos theory the concept of continuous function is
subsumed by that of geometric morphism. One definition of a geometric mor-
phism is: a functor between two toposes that preserves finite limits and has
a right adjoint. Thus a geometric morphism is a pair of functors each going
in the opposite direction (not unlike Aristotle’s correspondences just men-
tioned). It is a purely topos theoretic concept which does not involve any
topological space or set of points. However a continuous map f : X æ Y
between Hausdorff topological spaces gives rise to a geometric morphism
between the corresponding toposes of sheaves and all geometric morphisms
arise that way[12]. Furthermore this situation can be generalized from maps
of topological spaces to functors between sites which preserve covers. This
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seems a good approach to formalizing the decomposition-preserving corre-
spondences of the Physics.

7. CONCLUSION

We have seen that the Aristotelian concepts of sunekhês and topos and
their circle of related notions express very powerful and deep-rooted intu-
itions. We showed that they are not only capable of being studied in a rigor-
ous axiomatic-deductive way, using modern mathematics, but their power is
attested in the way they emerge spontaneously in various domains of modern
geometry and topology.

Our goal has been to illustrate the possible harmony and mutual enrich-
ment between the phenomenologist’s preoccupation with intuitive evidence
(in this case geometric and topological intuition) and the formal rigour of
the axiomatic-deductive method. We propose that these two methods al-
ready found a good balance in Aristotle. It is certainly no coincidence that
powerful and persistent Aristotelian topological intuitions also have received
some of the most perfect and sophisticated axiomatic-deductive treatments
to date.

Aristotle’s positing that the infinite in unknowable (for instance in his
refutation of Anaxagoras in Book I of the Physics) and at the same time only
existing potentially is significant. As a process and at an incomplete stage
the infinite is intuitively evident and knowable. So too is the limit (if it
exists) of the infinite. It is only as a completed totality that it is unknowable.
In classical set-theoretic extensionalist mathematics we reach in fact similar
conclusions, for instance, that there is an uncountable set of indefinable real
numbers which we cannot ever know individually or distinguish within such
a set. Aristotle’s position is rather one of epistemic optimism with regard to
the progress of the power of reason grounded both in intuitive evidence and
logic.

Another closely related goal has been to show the fruitfulness that re-
sults from the shared knowledge of philosopher and mathematician and the
importance of developing a philosophical and historical self-understanding
with regards to the richness of their common source in classical Greek phi-
losophy. Until the days of Husserl it was normal for a philosopher to have
some knowledge of mathematics and physics and to not only reflect upon
the foundational questions of mathematics and physics but to see these ques-
tions as important for epistemology, ontology and the philosophy of mind
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as they are for the philosophy of nature. The subsequent divorce of science
and mathematics from philosophy has had the tragic consequence that the
independent technical development of the latter has often led to it missing
out on a mutually enriching interplay with the philosophical thought of the
past.

Thus we propose that further progress in both philosophy and math-
ematics will involve the simultaneous development of the phenomenologi-
cal (in particular as applied to geometric and topological intuition) and the
axiomatic-deductive methods as well as engagement in the interplay which
spontaneously emerges between both.

APPENDIX

We give here some definitions of a few important concepts in modern
topology and category theory.

Let X be a set. Then a topology over X is a collection · of subsets of X
such that X and the empty set belong to · , the union of any collection of
sets in · belongs to · and the finite intersection of sets in · is still in · . The
elements of · are called open sets. A closed is the complement of an open set.
A basis for a topology · is a collection B of subsets of X such that every open
set can be expressed as a union of sets in B. A basis for the standard topology
of the real line is given by the open intervals (a, b). Given a point x œ X
a neighbourhood of x is an open set containing x. Given a subset Y of X
the interior of Y is the set of all points that have a neighbourhood contained
in Y . The closure of Y is the intersection of all open sets containing Y . It
is always a closed set. The correspondence which associates to each subset
Y its closure is an example of a closure operator. For instance, the closure of
the open interval (a, b) is the closed interval [a, b]. The boundary of a set
is the set of all points x that satisfy the condition: any neighbourhood of
x will contain points both in Y and not in Y . There is a general concept
of compactness but in the case of the ordinary topology on the real line (or
Euclidean space Rn) it corresponds to being both closed and bounded (all
points at a finite distance from the origin).

A directed set D is a partially ordered set such that if d1, d2 œ d then
there is a d3 such that d1 Æ d3 and d2 Æ d3. A net on a space X is a map
n : D æ PX for a directed set D. Here PX is the set of parts of X . The
standard definition of net involves taking elements of D into open sets of
some topology · on X . For the definition of limit of a net see [7].
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A category can be thought of as a collection of objects and for any two ob-
jects (possibly equal) a (possibly empty) collection of arrows (or morphisms).
Each arrow has a source and a target. If the target of an arrow f is equal to
the source of an arrow g then we can compose them to form a new arrow
g ¶ f which will have the source of f and the target of g. Given an object
A there is a unit arrow uA which goes from A back to A. The formal defi-
nition of category requires an associative condition on composition and that
the unit arrows function as units for composition, for instance f ¶ uA = f
when f has source A.

Given two categories C and D a functor is a correspondence between ob-
jects of C and objects of D and arrows of C and arrows of D which preserves
composition and unit arrows. Examples of categories are the category Set
of sets whose objects are sets and morphisms are maps between sets and the
category O(X) of open sets of a topology on X whose objects are the open
sets for any two open sets U and V there is either a single morphism if U is
contained and V or no morphism at all if otherwise. In the category Set we
can form the cartesian product X ◊ Y of two sets X and Y as well as the dis-
joint union X Û Y . The properties of these constructions can be generalised
to obtain the concepts of product and coproduct for any category (and more
generally the concepts of limit and colimit). A Topos can be understood as a
category which possesses generalizations of many fundamental properties of
Set.

Given a category C we can form the opposite category Cop which is ob-
tained by inverting the direction of all the arrows. A presheaf is simply
a functor F from Cop to Set. Given an object A of C the elements of
F (A) are called sections. If U µ V then this arrow corresponds to an ar-
row F (V ) æ F (U) (note that source and target are switched because we
are considering the opposite category) called the restriction map. Presheaves
can be made into a category with a suitable definition of morphism (natu-
ral transformations between functors). If C is the category of open sets of a
topology on a space X then a sheaf over X is a presheaf on C which satisfies
the gluing condition. This says that if we express an open set U as a union
(cover) of open sets Ui and we consider sections si on each Ui such that
they agree on all the intersections Ui fl Uj then there is unique section on
U such that the sections si are given by the restrictions corresponding to the
inclusions Ui µ U .

An example of a sheaf is the correspondence which associates to each
open set U of a topological space X the set of continuous functions defined
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over X . An example of a presheaf which is not a sheaf is given by constant
functions on open sets. Considering two disjoint open sets it is easy to see
why the gluing condition fails. The concept of Grothendieck topology is a
generalization of the concepts involved in this property to an arbitrary cat-
egory. The idea of covering U by the open sets Ui becomes the concept of
sieve.
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