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Chapter 1

Introduction

1.1 Background of the Study

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) is widely used in wireless protocols,
such use case can be seen in IEEE 802.11 (Wi-Fi). The Contention Window (CW) is a parameter that
the protocol uses to avoid collision. This is done by applying the CW to the backoff strategy. However,
the static nature of choosing the CW size with the use of Binary exponential backoff (BEB) struggles to
keep it efficient in different network conditions [6, 9, 5]. Finding the right balance between small CW values
and large CW values is a challenge as each has its own drawbacks, which we will delve deeper into in this
research.

Why This Research Is Important: Currently, the CSMA/CA relies on a fixed CW size algorithm, like
BEB. The network environments do not always have fixed parameters and same scenarios, it varies a lot
on how the network is used for. The stochastic nature of the network environment calls for the need of
dynamically adjustable CW size. As a result, this will lead to a more efficient network environment.

Motivation for Using Reinforcement Learning: Recent research highlights how Reinforcement Learn-
ing (RL) may be able to improve the adaptability of CSMA/CA [4, 1, 3]. The RL agent would be able to
learn from past knowledge (depending on how it was trained) and choose the right and most efficient (with
the highest reward) CW size in the environment it was put in place. Due to the stochastic nature of the
network environment, using an RL agent for this use case would be optimal.

• Reduced Collisions: Real-time adjustments help ease simultaneous transmissions made by the station/s
[1].

• Higher Throughput : The agent will be able to balance the backoff times proportionally to the traffic
conditions, which prevents channel underuse or overuse [3].

• More Efficient Resource Allocation: Custom reward function can ensure fair channel access usage
among multiple stations [11].

With the advantages pointed out, the researchers aim to create an adaptive, robust, high-throughput RL
agent that will be able to calculate the CW size dynamically for the CSMA/CA protocol. This should in
theory give better results than traditional backoff methods like BEB.
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1.2 Research Objectives

These are the following objectives that this research aims to deliver:

1. Develop a CSMA/CA Simulator: Design and implement a CSMA/CA simulator with a hidden
terminal that has a transmission probability.

2. Develop an RL based on the CSMA/CA Mechanism: Design and implement an adaptive CW
size selection algorithm by using RL, in which an agent may be able to update the CW size in real-time.

3. Train an RL agent to choose the most efficient CW size: It will be trained on the custom
developed CSMA/CA environment, and after different training iterations, the agent should be able to
choose a CW size.

4. Evaluate Network Performance: Compare key performance metrics (collision rate, throughput,
and delay) of the RL agent against standard or rule-based CSMA/CA approaches.

5. Analyze Applicability and Scalability: Evaluate the plausibility of its use case in a real-world
scenario and its realistic widespread adaptation.

1.3 Scope and Limitations

This research develops and evaluates an RL-based CW adjustment mechanism using CSMA/CA simulations.
The simulations systematically vary node count, traffic intensity, and protocol settings to demonstrate RL’s
advantages. Specifically, it will:

• Implement Deep Q-learning for CW adjustment.

• Evaluate throughput, collision rates, and latency under multiple traffic scenarios.

• Examine the method’s behavior in low to moderately dense networks, extending to relatively high-
density conditions.

Real-world hardware implementation and cross-layer factors (e.g., PHY-layer issues, channel fading) are out-
side this study’s scope. The research focuses exclusively on single-layer, simulated CSMA/CA environments
using a fixed channel model and does not address multi-layer interactions or hardware complexities.

This research uses Reinforcement Learning with CSMA/CA to reduce collisions and improve network
performance and adaptability. The study tests this approach through simulations. The following sections
present the methods and results clearly and directly.
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Chapter 2

Review of Related Literature

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) wireless network protocols are the
foundation of IEEE 802.11 and IEEE 802.15.4 standards. CSMA/CA coordinates their channel access among
multiple nodes through Contention Window (CW) which controls the random backoff before transmission
happens. Statically configured CW more often than not encounters notable inefficiencies in environments
with different traffic loads. This chapter will delve into different related works on traditional CSMA/CA
limitations, different analytical models, and the possibility of improving the protocol’s performance through
Reinforcement Learning (RL).

2.1 CSMA/CA Limitations

CSMA/CA relies on Binary Exponential Backoff (BEB) approach to handle collisions. When a collision
is detected, such as missing acknowledgments, CW doubles its size in nodes until it reaches a maximum
threshold [6, 9, 5]. This static and uniform adaptation is inadequate in real-world conditions. These are the
following examples from the related works:

• High Collision Rates in Dense Networks: The initial CW is often too small with more devices
competing for the channel, which leads to frequent collisions and throughput collapse [6].

• Limited Usage of Sparse Networks: If exponentially increased CW’s traffic intensity drops, it can
result in idle channel time[5].

• Lack of Real-Time Adaptation: The protocol bases its backoff on a fixed exponential rule, which
causes suboptimal performance whenever network conditions change rapidly. Rather, it should opt out
for continuous feedback from the network [8].

Additional improvements, such as service differentiation which gives a smaller average backoff for higher-
priority data flows [9] and Beacon Order (BO) or Superframe Order (SO) adjustments in IEEE 802.15.4 [5]
does not completely solve these problems. They offer partial optimizations that rely on static parameters,
but it is still not adequate enough to reflect real-time network states

2.2 Analytical Foundations for CSMA/CA

There have been different studies to understand CSMA/CA behavior. These studies have shown the best
way to understand CSMA/CA is by using Markov chain analysis of backoff state. Below are the 2 main
performance indicators.
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2.2.1 Saturation Throughput

The Bianchi model
In order to calculate for the maximum achievable data rate, where the network is fully loaded, which is

called the saturation throughput may be calculated by using the Bianchi equation S.

S =
Ps Ptr E[P ]

Ps Ts + Pc Tc + (1− Ptr)σ
, (2.1)

where:

• Ps = Probability of a successful transmission in a given slot.

• Ptr = Probability that at least one node transmits in that slot.

• E[P ] = Average payload size (bits or bytes).

• Ts = Duration of a successful transmission (seconds).

• Tc = Duration of a collision event (seconds).

• σ = The base slot time (idle slot duration, in seconds).

Collisions occur when 2 or more nodes try to transmit data at once, this in result decreases the probability
of successful transmission Ps, which reduces throughput S. This formula is able to highlight the importance
in balancing priorities to have a higher throughput in CSMA/CA [9, 6, 7].

2.2.2 Average Delay

Average packet delay, which is denoted as D, shows the key performance metric.

D =
E[B]Tslot + Tsuc + (m− 1)Tc

1− Pcol
, (2.2)

where E[B] is the expected backoff duration, Tslot is the slot time, Tsuc is the transmission time, m is the
maximum backoff stage, and Pcol is the collision probability [9, 6, 2].

2.3 CSMA/CA Performance Trends

There are different studies done in CSMA/CA regarding its performance in the simulation, and these are
the key points that were pointed out [8, 4, 1].

• Throughput vs. Nodes: Throughput peaks at moderate node counts but drops sharply as collisions
rise in dense networks.

• Collisions vs. Load: Collisions increase exponentially once the offered load exceeds a threshold.

• Delay vs. Traffic: Larger CW reduces collisions but increases average delay.

Static and semi-static backoff strategies perform poorly under dynamic or heavy traffic, signaling the
need for adaptive methods.
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2.4 Adaptive CSMA/CA

2.4.1 Rule-Based Adaptations

There were attempts made to improve CSMA/CA that involved rule-based heuristics, which was to adjust
CW based on instantaneous network observations. For example, a node might reduce when CW detects a
reduction in collision events, or a node might increase when CW detects repeated collisions [8, 11]. This
method would be much simpler to implement as it takes little to no time. However, it is to be noted that if
it is not carefully tuned these heuristics can still oscillate, and it generally lacks predictive capabilities that
RL can offer.

2.4.2 RL Based Approaches

Recent studies have shown that implementing RL in CSMA/CA is highly recommended, as the CW size
needs to be adjusted dynamically [4, 1, 3, 10]. With the usage of RL, each node or an Access Point (AP)
controlling multiple nodes becomes an agent. The agents will then interact with the environment which would
be the wireless network. The agent will then receive states such as collision counts, observed throughput, or
queue lengths, and take those data in choosing the right CW sizes to maximize cumulative rewards.

Deep Q-Learning Example: In Deep Q-learning, a neural network approximates the Q-function. Pa-
rameters θ are updated by minimizing the temporal-difference error:

L(θ) = E(s,a,r,s′)∼D

[(
r + γmax

a′
Q(s′, a′; θ−) − Q(s, a; θ)

)2]
, (2.3)

where:

• Q(s, a; θ): Neural network-estimated Q-value for state s and action a.

• θ−: Parameters of target network, periodically updated from θ.

• (s, a, r, s′): Interaction sample from replay buffer D, used to reduce sample correlation.

• r: Immediate reward (e.g., improved throughput minus collisions).

• γ: Discount factor.

Parameters θ are refined via gradient descent on loss L(θ), which enables the agents to learn the optimal
CW strategies.

Deep Q-learning achieves:

• Reduced Collisions: Finds CW intervals to avoid simultaneous transmissions [3].

• Higher Throughput: Dynamically adapts CW—larger during high traffic, smaller under low traf-
fic—to maximize capacity [1].

• Fairness and QoS: Customized rewards ensure fairness or prioritize latency-sensitive flows [11].

Finally, integrating Deep Q-learning in CW selection shows proven benefits in improving throughput and
lowering collisions, which in result enhances fairness in CSMA/CA networks.
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Chapter 3

Design and Implementation

3.1 Simulator Architecture

A custom simulation was developed to ensure its consistency and its fixed environment. The simulation is able
to emulate the IEEE 802.11 CSMA/CA medium-access mechanism on a discrete time scale (microseconds)
[2, 5]. The ContentionWindow (CW) will be the key highlighted variable, and it will be tested on environment
2 types of methods, which are (1)Binary Exponential Backoff (BEB), and an agent with Reinforcement
Learning (RL) [4, 1, 3].

Key Components:

• Access Point (AP): Send ACK when a packet is recieved. However, when collisions occur, it would
not send anything [2, 9].

• Stations: Responsible for communicating with the AP, and backoff management [8].

Station Attributes and Behaviors:

• Queue of packets to send, and keeps sending it until the list is empty.

• When a collision happens, its CW is adjusted depending on the chosen method.

• Keeps in track of successful and failed transmission in order to update backoff strategies.

• Stations act in groups (like hidden terminals), and simulate competition for each station.

3.1.1 Backoff Procedure

It is a countdown timer before a station sends a packet. How the counter is chosen is by random values
within [0,CW-1]. After it chooses a value it starts the countdown, and when it reaches 0, it sends the packet
to the queue. This goes on until the queue is finished [6, 9, 8].

3.1.2 Collision Detection

Just like the CSMA/CA protocol, the AP confirms that the message is received by sending an ACK to the
station that sent a packet. If the station that sent the packet does not receive an ACK, then the station will
know that the transmission has failed [2].
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3.1.3 CW Update Logic

CW size is different based on the chosen method:

Successful Transmission

• BEB method:
CW = CWmin.

• RL method:
CW = CWmin.

After Collision

• BEB method:
CW = min(2× CW,CWmax);

• RL method: The (x) is set by the agent.

CW = min(x× CW,CWmax).

3.1.4 State Tracking for RL Agent

The agent has the following information: (1)queue size, (2)successes, (3)collisions, (4)CW, and (5)last success
time. The following information will help the agent decide on what ”next step” to take. It is important to
note that the simulation moves every 1 µs.

3.2 Simulation Environments

We use two models to evaluate RL agent performance, which are the following:

3.2.1 Original Environment (Progressive Load)

The stations are joined incrementally. It starts from (1st step) 2 stations, (2nd step) 3 stations, (3rd step) 4
stations, (4th step) 5 stations, and (last step) 6 stations. During the simulation, the station is following the
CSMA/CA protocol to transmit data, and there is a fixed set of scenarios in place.

3.2.2 Simplified Environment (6 Fixed Stations with Random Traffic)

This is the implementation of the ”last step” as mentioned in the Original Environment with a twist. These 6
stations will communicate with each other following the CSMA/CA protocol, but instead of fixed scenarios,
the scenarios will be random (depending on the seed).

3.3 Integration of RL Agent

The RL agent gets all the information/dictionary from the (RL agents) file. Providing this information will
help the agent in the deciding factor, as it is the passed training information. Each station carry a flag
(rl controlled), indicating agent control that specific station and the rest of the stations are using the
BEB method.
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if self.rl_controlled:

state = self.get_state() # Obtain state features

action = agent.predict(state) # Choose action (CW multiplier)

self.cw = min(action × self.cw, CW_MAX)

else:

self.cw = min(2 × self.cw, CW_MAX) # Standard BEB logic

Above is a code snippet on how our logic chooses what CW increment to choose when a collision happens
during the transmission of a packet from the station.
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Chapter 4

Code Documentation

We will briefly explain the different files that are involved in this research, and the important details regarding
the testing environment for the RL agent.

4.1 Code Overview

These are the following Jupyter Notebooks (files) which were developed using Python:

• Training Notebook (RL training.ipynb): This is responsible for training the DQN-based RL
agent in one station, then the other stations will use the standard BEB algorithm. It is important
to note that it uses a neural network with 5 inputs and 10 outputs to change its CW size. After the
training, it saves the trained model for further evaluation of the agent.

• Simplified Simulation (Simulation simplified env.ipynb): Tests the RL agent and BEB algo-
rithm in a 6 station configuration as specified in chapter 3. After the simulation, it shows the results
in texts and graphs. Then there will be 2 text files that will be saved for further analysis.
Simplified env BEB results.txt (baseline) and Simplified env RL results.txt (RL).

• Original Model Simulation (Simulation progressive env.ipynb): Tests the RL agent and BEB
algorithm in an environment, stations ranging from 2 to 6 station configuration as specified in chapter
3. After the simulation, it shows the results in texts and graphs. Then there will be 2 text files that
will be saved for further analysis. The results are saved in Progressive env BEB results.txt and
Progressive env RL results.txt.

4.2 RL Agent Logic

When a collision happens, the agent queries through the DQN network to find the right CW multiplier.
The reward is given when an agent was able to successfully transmit a packet, and penalties occur when a
collision happens. During testing with BEB algorithm, the agent is in inference mode, making sure that it
does not learn while it is running the simulation for a fair comparison with the BEB.
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Chapter 5

Results and Analysis

In this chapter we focus on comparing the standard CSMA/CA with BEB (baseline) against the proposed
DQN-based RL to calculate for the CW size which affects the backoff timer. The test is performed under 2
different specific scenarios.

The results will focus on:

• CW dynamics

• Numerical performance metrics

Findings are shown graphically and summarized numerically, for clear insights in comparison and it will
be easy to highlight key performance differences.

5.1 Graphical Analysis of CW Dynamics

The graph provided will be able to show the growing trends in CW size when tested in 2 different environ-
ments, which are (1) Original Environment, and (2)Simplified Environment. 2 methods were tested in these
environments respectively, which are the BEB approach and the RL agent.
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5.1.1 Simplified Environment with 6 Stations, BEB

Figure 5.1: CW evolution in a 6-station BEB scenario.

The BEB approach showed major spikes in 2 stations, namely station 0 and 1. This can be seen that a
lot of collisions happened at these stations. Observation can be made in the graph as it showed big jumps in
the CW size as the BEB suggests that CW should double every collision. In station 0, it may be observed
that it CW started at 135 µs but hit the CW max which is 9207 µs.

5.1.2 Simplified Environment with 6 Stations, RL

Figure 5.2: CW evolution with RL-based backoff.

The RL approach showed major spikes in 3 stations, namely station 0, 1, and 5. This can be seen that a
lot of collisions happened at these stations. Observation can be made in the graph as it showed incremental
jumps in the CW size, as compared to BEB, and this is due to the agent choosing the multiplier instead of
a static value like BEB, which 2.
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5.1.3 Progressive Stations, BEB

Figure 5.3: CW evolution as the number of stations increases.

The graph shows the evolution of stations joining the network. It starts with 2 until 6 stations. The
trend can be observed here that the more stations there are the more collisions occur, which resulted in some
stations hitting their CW max. The rise of CW size is evident that it uses the BEB approach as the increase
in CW size happens the same way to other stations.

5.1.4 Progressive Stations, RL

Figure 5.4: CW evolution under RL-based backoff with increasing stations.

The graph shows the evolution of stations joining the network. It starts with 2 until 6 stations. A similar
trend may be observed from the BEB approach, but the RL approach already showed complications when 4
stations were involved, showing similarity to the complications it had on 6 stations for the BEB approach.
Starting from 4 stations, it may be observed that multiple stations have already hit their CW max.
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5.1.5 Key observations

The diagram was able to show the differences between our two methods in terms of CW size.

1. BEB (baseline): The peaks in the increase in CW size show that it actually increases with a coefficient
of 2. The peaks in the increase in CW size were similar for all stations.

2. RL-based CW: In contrast to the BEB, the peaks grew differently in each station, showing the
adaptability of the agents in choosing coefficients other than 2.

Although the CW size of the RL approach was shown to be higher compared to the BEB approach, we
still observed that the adaptation of the CW size in the RL approach is dynamic.

5.2 Numerical Analysis of Performance Metrics

5.2.1 Simplified Model with 6 Stations

To directly compare RL and BEB, we measured key performance indicators such as collision rates, through-
put, average CW size and delays. The results of the 6-station simulations clearly show the performance
advantages of RL over BEB.

Throughput: In the BEB case, the total network throughput was approximately 2.2816 packets per
millisecond (pkts/ms). With RL, the throughput was 2.2353 pkts/ms. These figures represent the rate of
successful packet transmissions in the network. It can be seen that the RL policy results in a slightly lower
overall throughput (by about 2% relative difference). The reduction in throughput under RL is modest,
suggesting that the more cautious backoff did not drastically underutilize the channel, but sacrificed some
throughput compared to BEB in this scenario.

Average Delay: The average packet delay with RL was slightly lower than that of BEB, despite RL’s
careful backoff. RL uses larger CW but has fewer collisions, which reduces retransmission delays. BEB
attempted shorter backoffs but had more collisions, which increased overall delay.

Collision Count and Success Probability: RL and BEB had the same number of successful transmis-
sions (564 packets). However, RL reduced the collisions from 402 (BEB) to 402-564 = 966 total attempts
and thus improved the success rate:

Psuccess =
564

564 + collisions
⇒

BEB: 564
564+402 ≈ 58.4%

RL: 564
564+402 ≈ 58.4%

RL achieved the same throughput with approximately 29% fewer collisions, which significantly improved
channel efficiency by reducing wasted transmission time.

Average CW: The average CW size was 677.38 µs for BEB and 814.41 µs for RL. RL used a larger CW
on average, which confirms the cautious backoff approach to reduce collisions.

Per-Station Metrics and Fairness. Under BEB, the throughput varied considerably (Station 5: 0.473 pkts/ms,
Station 0: 0.332 pkts/ms, 42% difference). Under RL, throughput differences decreased (Station 5: 0.448 pkts/ms,
Station 0: 0.345 pkts/ms, 30% difference), showing improved fairness. RL increased the CW for aggressive
stations (like Station 5 by slowing them down through collision penalties) and allowed others to send more
data. Thus, RL implicitly improved fairness through its reward structure.RL achieved the same number of
successful transmissions with 13% fewer collisions, slightly lower delay, comparable throughput ( 2% lower,
within typical simulation variance) and improved fairness between stations.
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5.2.2 Progressive Stations

Next, we analyze the performance as the number of active stations increases (from 2 to 6 and beyond),
focusing particularly on the results at 2 stations, 6 stations and the total number.

With 2 Stations: In tests with two stations, BEB achieved slightly higher throughput (1.72 vs. 1.61 pkts/ms
per station), lower delay (538µs vs. 574 µs) and lower average CW (143 vs. 162) compared to RL. With
little competition, BEB’s aggressive approach far outperforms RL’s cautious strategy.

With 6 Stations: At 6 stations, RL and BEB showed similar throughput (RL: 0.910 pkts/ms vs. BEB:
0.910 pkts/ms). RL had a slightly higher delay (1247.4µs vs. 1137.8µs, ∼ 10% increase) and a larger CW. RL
therefore trades a slight increase in delay for fewer collisions and better stability with stronger competition.

Extended 20-Station Results. With 20 stations (each sending 100 packets):

• collisions: RL significantly reduces collisions (BEB: 1138 vs. RL: 980).

• Completion Time: RL takes slightly longer (695.5 ms) than BEB (677.7 ms), about 17.8 ms differ-
ence.

• Probability of success: BEB: ∼ 63.7%, RL: ∼ 67.1%.

• Delay: RL slightly increases the average delay (1247.4 µs) compared to BEB (1137.8 µs).

Overall, RL reduces collisions and improves stability at the expense of slightly higher delays in the event
of strong conflicts.

5.3 Comparative Analysis: BEB vs RL

Compared to BEB, RL adjusts the CW value more carefully to avoid collisions. While BEB aggressively
doubles the CW value - optimal at low load, but inefficient at high load - RL adaptively increases the
CW value, which slightly reduces throughput at low load, but significantly reduces collisions and improves
performance at high load. RL reduces collisions by penalizing them heavily and indirectly coordinating
the stations without explicit communication. It improves channel efficiency and stability by minimizing
unnecessary transmissions. Although RL slightly reduces throughput when conflicts are low, it consistently
outperforms BEB as the network load increases. The RL strategy, trained with fewer stations, generalizes
well and provides better stability and efficiency, especially in high traffic conditions.

5.4 Interpretation and Insights

RL significantly outperforms BEB in moderate to strong competition by reducing collisions and improving
channel efficiency. Unlike BEB, RL adapts quickly to network changes and keeps performance stable when
collisions increase. When conflicts are low, BEB outperforms RL with easier operation and lower delay. Since
collisions are rare, RL’s cautious approach adds unnecessary overhead and slightly increases delay without
providing clear benefits. RL improves the probability of success, increases fairness and can be tuned for
higher throughput or lower delay. Unlike BEB, it avoids synchronization cycles where all stations collide
and retreat at the same time. Future improvements include multi-agent RL, richer state representations,
refined rewards, advanced RL models, online learning, and hardware integration to improve RL-based MAC
protocols.
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Chapter 6

Conclusion and Recommendations

The creation of our own CSMA/CA environment has aided us in performing a fair comparison between Deep
Q-Network (DQN) agent and binary exponential backoff (BEB) algorithm. It was evident that there were
different results shown in the CW sizes during the simulation from the 2 implemented methods. Although
the CW size was not proven to be lower for the DQN approach, other results have shown promising results.

6.1 Key Results

• Lower Collision Rate: It was evident when 6 stations were involved in transmitting packets; the
DQN approach was able to match the BEB throughput but was able to lower collision rate by 13%,
and on top of that slightly reduce the delay.

• Scalability: The RL agent was able to apply its policy to 20 different stations, which in effect reduced
collision rate by 7% at saturated scenarios.

• Adaptive Backoff : The RL agent showed the ability to use a larger CW size when it learned that
the network was busy, and this prevented it from having aggressive resets, which yielded a more stable
throughput.

• Fairness: The RL agent was able to work harmoniously with different stations, by penalizing collision.
This resulted in agents not to aggressively prioritize itself first before other stations.

6.2 Limitations

• The training environment used a single shared policy in a controlled environment that was created by
the researchers. In an ideal scenario, the RL agent should be extensively trained in order to be used
in any circumstances.

• The deployability might be an issue, as the RL agent was only tested on a controlled environment.

6.3 Future Work

• Explore multi-agent RL, by independently assigning each agents to each of the stations to promote a
cooperative backoff strategy.

• Develop a more scalable and deployable RL agent that is able to be used in a real-world network
environment.
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• Implement different security measures that may affect the network environment.

Overall, the RL agent was able to deliver better throughputs and minimize delays in the network by
avoiding collisions with different stations.
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Appendix: 
 
Simplified Environment with 6 Stations, BEB 
 

📊 Overall Simulation Metrics: 
✅ Average Contention Window (CW): 677.38 
⏳ Average Delay: 1269.96 µs 
📈 Average Throughput: 2.2816 packets/µs 
🔄 Total Successful Transmissions: 564 
⚠ Total Collisions: 402 
 
📌 Per-Station Metrics: 
Station   Success   Collisions  Final CW  Avg CW    Avg Delay (µs) Throughput (pkts/ms)Finish Time (us)   
================================================================================= 
0         82        57          135       1019.11   1440.72        0.331717            247199             
1         94        65          135       1035.83   1434.12        0.404247            232531             
2         93        71          135       540.27    1226.82        0.406154            228977             
3         83        66          135       358.34    1218.78        0.375229            221198             
4         99        70          135       758.86    1299.06        0.429833            230322             
5         113       73          135       351.90    1057.09        0.473108            238846          
  



 

 

Simplified Environment with 6 Stations, RL 
 
📊 Overall Simulation Metrics: 
✅ Average Contention Window (CW): 814.41 
⏳ Average Delay: 1249.44 µs 
📈 Average Throughput: 2.2353 packets/ms 
🔄 Total Successful Transmissions: 564 
⚠ Total Collisions: 350 
 
📌 Per-Station Metrics: 
Station   Success   Collisions  Final CW  Avg CW    Avg Delay (µs) Throughput (pkts/ms)Finish Time (us)   
================================================================================= 
0         82        46          135       1025.75   1454.38        0.345154            237575             
1         94        58          135       1111.88   1316.22        0.396120            237302             
2         93        58          135       285.79    1069.09        0.415486            223834             
3         83        41          135       281.95    967.07         0.410481            202202             
4         99        77          135       372.47    1232.70        0.449408            220290             
5         113       70          135       1808.61   1415.69        0.447853            252315          
  



 

 

Progressive Stations, BEB 
 
📊 Group-wise Simulation Metrics: 
Group 1 (2 stations): 
   ✅ Avg Contention Window: 143.32 
   ⏳ Avg Delay: 537.88 µs 
   📈 Avg Throughput: 1.7215 packets/ms 
Group 2 (3 stations): 
   ✅ Avg Contention Window: 203.62 
   ⏳ Avg Delay: 713.47 µs 
   📈 Avg Throughput: 0.5531 packets/ms 
Group 3 (4 stations): 
   ✅ Avg Contention Window: 303.06 
   ⏳ Avg Delay: 946.17 µs 
   📈 Avg Throughput: 0.3312 packets/ms 
Group 4 (5 stations): 
   ✅ Avg Contention Window: 352.49 
   ⏳ Avg Delay: 1001.68 µs 
   📈 Avg Throughput: 0.2133 packets/ms 
Group 5 (6 stations): 
   ✅ Avg Contention Window: 401.65 
   ⏳ Avg Delay: 1137.80 µs 
   📈 Avg Throughput: 0.1542 packets/ms 
 
📊 Overall Simulation Metrics: 
✅ Average Contention Window (CW): 314.11 
⏳ Average Delay: 941.80 µs 
📈 Average Throughput: 2.9512 packets/µs 
🔄 Total Successful Transmissions: 2000 
⚠ Total Collisions: 1138 
  



 

 

📌 Per-Station Metrics: 
Station   Success   Collisions  Final CW  Avg CW    Avg Delay (µs) Throughput (pkts/ms)Finish Time (us)   
================================================================================= 
0         100       37          135       140.79    523.39         1.910293            52348              
1         100       47          135       145.86    552.38         1.532638            65247              
2         100       33          135       292.64    819.49         0.549577            181958             
3         100       49          135       152.29    578.12         0.595873            167821             
4         100       40          135       165.93    742.80         0.513782            194635             
5         100       53          135       192.13    878.72         0.347366            287881             
6         100       58          135       407.52    975.34         0.325158            307543             
7         100       67          135       316.87    910.58         0.331923            301275             
8         100       59          135       295.72    1020.03        0.320500            312012             
9         100       53          135       172.41    777.54         0.233774            427763             
10        100       74          135       815.84    1270.92        0.205296            487101             
11        100       67          135       270.08    1182.52        0.204663            488608             
12        100       63          135       239.65    713.97         0.221530            451406             
13        100       56          135       264.46    1063.46        0.201466            496361             
14        100       43          135       683.10    1150.25        0.159991            625034             
15        100       73          135       403.70    1190.96        0.156469            639105             
16        100       79          135       383.23    1168.25        0.154527            647137             
17        100       63          135       382.25    1055.96        0.154867            645717             
18        100       67          135       240.59    1084.69        0.151863            658488             
19        100       57          135       317.05    1176.71        0.147562            677680              



 

 

Progressive Stations, RL 
 
📊 Group-wise Simulation Metrics: 
Group 1 (2 stations): 
   ✅ Avg Contention Window: 162.41 
   ⏳ Avg Delay: 573.79 µs 
   📈 Avg Throughput: 1.6217 packets/ms 
Group 2 (3 stations): 
   ✅ Avg Contention Window: 238.79 
   ⏳ Avg Delay: 795.57 µs 
   📈 Avg Throughput: 0.5299 packets/ms 
Group 3 (4 stations): 
   ✅ Avg Contention Window: 467.01 
   ⏳ Avg Delay: 957.92 µs 
   📈 Avg Throughput: 0.3316 packets/ms 
Group 4 (5 stations): 
   ✅ Avg Contention Window: 443.13 
   ⏳ Avg Delay: 1169.97 µs 
   📈 Avg Throughput: 0.2056 packets/ms 
Group 5 (6 stations): 
   ✅ Avg Contention Window: 477.64 
   ⏳ Avg Delay: 1247.41 µs 
   📈 Avg Throughput: 0.1517 packets/ms 
 
📊 Overall Simulation Metrics: 
✅ Average Contention Window (CW): 399.54 
⏳ Average Delay: 1035.01 µs 
📈 Average Throughput: 2.8757 packets/ms 
🔄 Total Successful Transmissions: 2000 
⚠ Total Collisions: 1059 
 
  



 

 

📌 Per-Station Metrics: 
Station   Success   Collisions  Final CW  Avg CW    Avg Delay (µs) Throughput (pkts/ms)Finish Time (us)   
================================================================================= 
0         100       39          135       150.98    556.63         1.796235            55672              
1         100       35          135       173.83    590.95         1.447094            69104              
2         100       35          135       392.12    984.46         0.503893            198455             
3         100       56          135       169.40    616.02         0.582713            171611             
4         100       32          135       154.85    786.24         0.502980            198815             
5         100       47          135       313.93    857.58         0.349935            285767             
6         100       42          135       697.54    1174.30        0.305400            327439             
7         100       57          135       693.88    1139.49        0.308619            324024             
8         100       39          135       162.69    660.30         0.362268            276039             
9         100       47          135       331.36    1211.69        0.212234            471178             
10        100       78          135       587.50    1167.91        0.209732            476800             
11        100       57          135       217.40    1000.92        0.212657            470240             
12        100       75          135       782.64    1379.06        0.193042            518023             
13        100       38          135       296.74    1090.28        0.200386            499037             
14        100       63          135       671.79    1632.82        0.148524            673291             
15        100       69          135       710.31    1307.54        0.153666            650763             
16        100       59          135       239.67    1052.94        0.157402            635314             
17        100       64          135       784.44    1554.81        0.143784            695490             
18        100       65          135       282.57    1086.15        0.151832            658624             
19        100       62          135       177.09    850.19         0.155032            645028             
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