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Edge-Reinforced Random Walk (Coppersmith and
Diaconis, 1986)

▶ G = (V ,E ) non-oriented locally finite graph

▶ ae > 0, e ∈ E , initial weights

• Edge-Reinforced Random Walk (ERRW) (Xn) on V : X0 = i0
and, if Xn = i , then

P(Xn+1 = j |Xk , k ⩽ n) = 1{j∼i}
Z{i ,j}(n)∑

k∼Xn
Z{ik}(n)

where

Z{i ,j}(n) = ai ,j +
n∑

k=1

1{Xk−1,Xk}={i ,j}.

▶ ae small: strong reinforcement

▶ ae large: small reinforcement
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The ERRW

A simulation due to Andrew Swan.



The Mixing Measure of ERRW

A simulation due to Andrew Swan.
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The notion of exchangeability (de Finetti)

Definition
Let (Xi )i⩾1 random process taking values in {0, 1}. Then X is
called exchangeable if, for all n ∈ N and σ ∈ Sn,

L
(
(Xσ(i))1⩽i⩽n

)
= L ((Xi )1⩽i⩽n) .

Theorem (de Finetti)

If (Xi )i⩾1 is exchangeable, then there exists a random variable
α ∈ [0, 1] such that

1

n

n∑
i=1

Xi −→n→∞ α.

Conditionally on α, (Xi )i⩾1 is an i.i.d. sequence of Bernoulli
random variables with success probability α, which we call Pα.
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Partial exchangeability (Diaconis and Freedman, 1980) (I)

Definition
Let (Yn)n⩾0 a random process on a graph G = (V ,E ), E oriented
(resp. non-oriented) edges. It is called partially exchangeable
(resp. reversibly partially exchangeable) if, for any nearest-neighbor
path γ = (γ0, . . . , γn) on V ,

P[(Y0, . . . ,Yn) = (γ0, . . . , γn)]

only depends on its starting point and on the number of crossings
of directed (resp. undirected) edges by γ.



Partial exchangeability (Diaconis and Freedman, 1980) (II)

Theorem (Diaconis and Freedman, 1980)

Assume (Yn)n⩾0 a.s. recurrent (i.e. Yn = Y0 infinitely often) and
partially exchangeable (resp. reversibly partially exchangeable, and
each edge is traversed is traversed in both directions a.s.).
Then it is a mixture of Markov chains (resp. reversible Markov
chains), i.e.

L(Y ) =

∫
Pω(.) dµ(ω).

Here Pω denotes the Markov Chain with transition probability
ω(i , j) from i to j. If Pω is reversible, then there exists
x = (xe) ∈ (0,∞)E such that

ω(i , j) = ωx(i , j) =
xij
xi
, xi =

∑
j∼i

xij . Let Px = Pωx
.
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Edge-Reinforced random walk (ERRW): partial
exchangeability

Let Pa,i0 law of ERRW with initial weights a = (ae)e∈E and
starting from i0.

Lemma
The ERRW is reversibly partially exchangeable: more precisely,

Pi0,a(X0 = i0, . . . ,Xn = in = j0) =
γ(j0, α)

γ(i0, a)
,

where ne (resp. vi ) is the number of crossings (resp. visits) of edge
e (resp. site i) by the path (i0, . . . , in), α = (ae + ne)e∈E , and

γ(i0, a) =

∏
e∈E Γ(ae)∏

i∈V Γ
(
1
2(ai + 1− δi0(i))

)
2

1
2
(ai−δi0 (i))

.
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Edge-Reinforced random walk (ERRW): partial
exchangeability

Proof.
Note that Pi0,a(X0 = i0, . . . ,Xn = in = j0) equals∏

e∈E (ae , ne)∏
i∈V 2vi−δj0 (i)

(
ai+1−δi0 (i)

2 , vi − δj0(i)
) ,

and that
ni :=

∑
j∼i

nij = 2vi − δi0(i)− δj0(i)

so that

vi − δj0(i) =
(ai + ni )− δj0(i)

2
− ai − δi0(i)

2
.
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Edge-Reinforced random walk (ERRW): statistical view

▶ Let L(i0, a) be the mixing measure of x under Pi0,a.

▶ Given reversible Markov Chain Px with transition probability
xij/xi from i to j , with unknown random vector x , how can we
estimate x?

▶ Bayesian approach: assume prior on x is L(i0, a) and run
Markov Chain Px , then law is the one of ERRW Pi0,a by
theorem above.

▶ Hence, the posterior distribution after n first steps is given by
L(Z (n),Xn).

▶ Thus prior and posterior are conjuguate priors.

▶ (Diaconis and Rolles, 2006) Z (n) is a minimal sufficient
statistic for the model, also provide method of simulation of
the posterior.
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Edge Reinforced Random Walks (ERRW): how to find the
limit measure?

Bayesian statistics again: assume L(i0, a) has integrable smooth
density φi0,α w.r.t dα =

∏
e∈E\{e0} dαe , e0 ∈ E , on the simplex

L1 = {
∑

αe = 1, αe > 0}.

Bayes’ formula:

Pi0,a(x ∈ [y , y + dy ]|X0 = i0, . . . ,Xn = in = j0) = Pj0,α(x ∈ [y , y + dy ])

= Pi0,a(x ∈ [y , y + dy ])
Px(X0 = i0, . . . ,Xn = in = j0)

Pi0,a(X0 = i0, . . . ,Xn = in = j0)

=
φi0,a(y) dy

Pi0,a(X0 = i0, . . . ,Xn = in = j0)

∏
e∈E ynee∏

i∈V y
vi−δj0 (i)

i

.

Therefore

φj0,y (y) = φi0,a(y)

∏
e∈E ynee∏

i∈V y
vi−δj0 (i)

i

γ(i0, a)

γ(j0, α)
.
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Edge Reinforced Random Walks (ERRW): Limit measure
(Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

Theorem
▶ (Ze(n)/n)n∈N converges a.s. to a random vector x = (xe)e∈E

▶ Conditionally on x, ERRW is a reversible Markov chain Px

with jump probability xij/xi from i to j, xi =
∑

k∼i xik .

▶ x has the following density w.r.t to measure
∏

e∈E\{e0} dye on
the simplex {∀e ∈ E , ye > 0

∑
e∈E ye = 1}

Cγ(i0, a)
−1√yi0

∏
e∈E yae−1

e∏
i∈V y

1
2
ai

i

√
D(y).
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Edge Reinforced Random Walks (ERRW): Limit measure
(Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

Recall that

γ(i0, a) =

∏
e∈E Γ(ae)∏

i∈V Γ
(
1
2(ai + 1− δi0(i))

)
2

1
2
(ai−δi0 (i))

,

and

C =
23/2−|V |
√
π|V |−1

, D(y) =
∑
T∈T

∏
e∈T

ye ,

where T is the set of (non-oriented) spanning trees of G .



Early results on recurrence of Edge-Reinforced random
walk (’86-’09)

▶ Pemantle ’88: recurrence/transience phase transition on trees:

▶ Root the tree at i0 for simplicity.
▶ Between two visits to each vertex, once an edge is crossed the

walk comes back through it.
▶ Hence, independently at each vertex, Pólya urn with initial

number of balls ((aij + δ{j father of i0})/2)j∼i .
▶ Hence the environment is independent Dirichlet at each vertex

i : Random Walk in (independent) Random Environment
(RWRE)

▶ Merkl Rolles ’09: recurrence on a 2d graph (but not Z2)



Yaglom reversible Markov chains

▶ Markov Chain on discrete locally finite directed graph
G = (V ,E ), with involution ⋆ on V s.t.

(i , j) ∈ E ⇒ (j⋆, i⋆) ∈ E

▶ Transition probability p(i , j): i → j

▶ MC Yaglom reversible iff ∃ proba measure π on V s.t.

π(i , j) := π(i)p(i , j) = π(j⋆)p(j⋆, i⋆) = π(j⋆, i⋆) ∀i , j ∈ V , i ∼ j ,

π(i) = π(i⋆) ∀i ∈ V .

▶ =⇒ π invariant measure for MC.

Initial motivation: continuous time and space setting
⋆ : (x , ẋ) 7→ (x ,−ẋ).
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Example of Yaglom reversibility: Reversible k-dependent
Markov chains

▶ (Yi ) k-dependent Markov chain on S finite (i.e. law of Yn+1

depends only on (Yn−k+1, . . . ,Yn)).

▶ Induces Markov chain (Xn) on the (directed) de Bruijn graph
G = (V = Sk ,E ) with

ω = (i1, . . . , ik)→ ω̃ = (i2, . . . , ik+1)

with transition rate p(ω, ω̃), and invariant measure π(ω).

▶ Called reversible if

(Y1, . . . ,Yn)
law
= (Yn, . . . ,Y1), if (Y1, . . . ,Yk) ∼ π.

▶ Reversibility ⇐⇒ Yaglom reversibility on de Bruijn graph
with involution ∗:

ω = (i1, . . . , ik) 7→ ω∗ = (ik , . . . , i1) flipped k-string.
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Other examples of Yaglom reversibility of higher-order
Markov chains (Bacallado, 2006)

▶ Variable-order MC with context set C ⊆ S ∪ S2 ∪ · · · ∪ Sk on
de Bruijn graph: ∀(i1, . . . , iℓ) ∈ C, transition probabilities out
of x and y are the same whenever x and y both end in
(i1, . . . , iℓ).

▶ Random walk with amnesia: RW on G = (V ,E ) defined by
V = S ∪ S2 ∪ . . . Sk with two types of edges: “forgetting”
ones (i1, . . . , im)→ (i2, . . . , im), if m > 1, “appending” ones
(i1, . . . , im)→ ((i1, . . . , im, j), for each j ∈ V , if m < k.
Generalization of the above.
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⋆-Edge-Reinforced random walk: Definition
▶ G = (V ,E ) directed graph with involution ⋆ on V s.t.

(i , j) ∈ E ⇒ (j⋆, i⋆) ∈ E

▶ αi ,j > 0, (i , j) ∈ E such that αi ,j = αj⋆,i⋆ .

We call ⋆-ERRW with initial weights (αe), the discrete time
process (Xn) defined by

P(Xn+1 = j |Xk , k ⩽ n) = 1{Xn→j}
Zn((Xn, j))∑

l ,Xn→l Zn((Xn, l))

where

Zn((i , j)) = αi ,j + Ni ,j(n) + Nj⋆,i⋆(n)

Ni ,j(n) =
n∑

k=1

1{(Xk−1,Xk )=(i ,j)}.
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Define V0 = {i ∈ V : i = i⋆}, and write V = V0 ⊔V1 ⊔V ⋆
1 disjoint.

Let div be the divergence operator div : RE 7→ RV

div(z)(i) =
∑
j ,i→j

zi ,j −
∑
j ,j→i

zj ,i .

Given a = (ae)e∈E s.t. aij = aj⋆i⋆ , let

ai =
∑
j ,i→j

aij ,

and let γ(i0, a) be ∏
e∈E Γ(ae)∏

i∈V Γ(12(ai + 1− 1i=i0))2
1
2
(ai+1−1i=i0

)∏
i∈V1

Γ(min(ai , ai⋆))
.



Define V0 = {i ∈ V : i = i⋆}, and write V = V0 ⊔V1 ⊔V ⋆
1 disjoint.

Let div be the divergence operator div : RE 7→ RV

div(z)(i) =
∑
j ,i→j

zi ,j −
∑
j ,j→i

zj ,i .

Given a = (ae)e∈E s.t. aij = aj⋆i⋆ , let

ai =
∑
j ,i→j

aij ,

and let γ(i0, a) be ∏
e∈E Γ(ae)∏

i∈V Γ(12(ai + 1− 1i=i0))2
1
2
(ai+1−1i=i0

)∏
i∈V1

Γ(min(ai , ai⋆))
.



Define V0 = {i ∈ V : i = i⋆}, and write V = V0 ⊔V1 ⊔V ⋆
1 disjoint.

Let div be the divergence operator div : RE 7→ RV

div(z)(i) =
∑
j ,i→j

zi ,j −
∑
j ,j→i

zj ,i .

Given a = (ae)e∈E s.t. aij = aj⋆i⋆ , let

ai =
∑
j ,i→j

aij ,

and let γ(i0, a) be ∏
e∈E Γ(ae)∏

i∈V Γ(12(ai + 1− 1i=i0))2
1
2
(ai+1−1i=i0

)∏
i∈V1

Γ(min(ai , ai⋆))
.



Define V0 = {i ∈ V : i = i⋆}, and write V = V0 ⊔V1 ⊔V ⋆
1 disjoint.

Let div be the divergence operator div : RE 7→ RV

div(z)(i) =
∑
j ,i→j

zi ,j −
∑
j ,j→i

zj ,i .

Given a = (ae)e∈E s.t. aij = aj⋆i⋆ , let

ai =
∑
j ,i→j

aij ,

and let γ(i0, a) be ∏
e∈E Γ(ae)∏

i∈V Γ(12(ai + 1− 1i=i0))2
1
2
(ai+1−1i=i0

)∏
i∈V1

Γ(min(ai , ai⋆))
.



⋆-ERRW : particular case, see ST (2025), Perrel-Sabot
(2025)

▶ Given G = (V ,E ) directed graph, let Ǧ = (V̌ ≃ V , Ě )
obtained by reversing each edge of E .

▶ Glue G and Ǧ at i0 ∈ V into G, and let ⋆ be the involution
mapping V to its copy in V̌ . In particular, i0 = i⋆0 .

▶ ⋆-ERRW on G starting at i0 with initial weights a.

▶ Map all excursions in Ǧ to reversed excursions in G : resulting
path has distribution of annealed law of the directed ERRW,
since div(a) = 0, by the time-reversal property of Sabot and
Tournier (2011).
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⋆-Edge-Reinforced random walk: partial exchangeability

Proposition (Bacallado ’11, Baccalado, Sabot and T. ’21)

Let i0 ∈ V . If div(α) = δi⋆0 − δi0 , then the ⋆-ERRW starting from i0
is partially exchangeable. Given path σ = (σ0 = i0, σ1, . . . , σn), let
ne be its number of crossings of edge e ∈ E, and let a = α+ n.
Then

P⋆−ERRW (X follows σ) =
γ(σn, a)

γ(i0, α)
.

Proof.
▶ div(Z (k)) = δX⋆

k
− δXk

for all k;

▶ Z (i) increases by 2 at each visit to i ∈ V0;

▶ min(Z (i),Z (i⋆)) increases by 1 at each visit to {i , i⋆}, for all
i ∈ V1.
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*-Edge Reinforced Random Walks (*-ERRW): results

Theorem (Bacallado, Sabot and T., 2021)

▶ (Zn(e)/n)n∈N converges a.s. to a random vector x = (xe)e∈E
in

L1 =

{
(ye) ∈ (0,∞)E : yi ,j = yj∗,i∗ , div(y) = 0,

∑
e∈E

ye = 1

}
.

▶ Conditionally on x, *-ERRW is a Markov chain Px with jump
probability xij/xi from i to j, xi =

∑
i→k xik .

▶ The random variable x has the following density on L1, w.r.t
pullback of Lebesgue measure on RB by the projection
(ye) ∈ L0 7→ (ye)e∈B , B basis of L1:

Cγ(i0, α)
−1√yi0

∏
(i ,j)∈Ẽ y

αi,j−1
i ,j∏

i∈V y
1
2
αi

i

 1∏
i∈V0

√
yi

√
D(y) dyL1 ,
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*-Edge Reinforced Random Walks (*-ERRW): results

We let Ẽ be the set of edges quotiented by the relation
(i , j) ∼ (j∗, i∗),

C =
2

√
2π

|V0|−1√
2
|V0|+|V1|

,

and
D(y) =

∑
T

∏
(i ,j)∈T

yi ,j .

The last sum runs on spanning trees directed towards a root
j0 ∈ V (value does not depend on the choice of the root j0).



ERRW and statistical physics: ERRW ←→ VRJP (I)

Let (We)e∈E be conductances on edges, We > 0.
VRJP (Ys)s⩾0 is a continuous-time process defined by Y0 = i0 and,
if Ys = i , then, conditionally to the past,

Y jumps to j ∼ i at rate Wi ,jLj(s),

with

Lj(s) = 1 +

∫ s

0
1{Yu=j}du.

Proposed by Werner and first studied on trees by Davis, Volkov
(’02,’04).



ERRW and statistical physics: ERRW ←→ VRJP (II)
Random conductances (We)e∈E

Theorem (T. ’11, Sabot, T. ’15)

ERRW (Xn)n∈N with weights (αe)e∈E

”law”

=
VRJP (Yt)t⩾0 with conductances We ∼ Γ(αe) indep.

(at jump times)

▶ Similar equivalence applies to any linearly reinforced RW on
its continuous time version (initially proved for VRRW, T’. 11)



Proof of ERRW ←→ VRJP (I)
Rubin construction : continuous equivalent of ERRW

Similar to continuous-time version of discrete-time Markov chain

Clocks at each edge:

▶ (ζei )e∈E ,i∈N collection of i.i.d variables, Exp(1) distributed.

▶ Alarms at each edge e ∈ E , at times

V e
k :=

k∑
i=0

ζei
αe + i

, k ∈ N ∪ {∞}.

Process (X̃t)t⩾0 starting from i0 ∈ V :

▶ Clock e only runs when (X̃t)t⩾0 adjacent to e.

▶ Alarm e rings =⇒ X̃t traverses it.

Then (X̃t)t∈R+ (at jump times) ”law”
= (Xn)n⩾0.



Proof of ERRW ←→ VRJP (II)
Yule process: a result of D. Kendall (’66)

For all e ∈ E , t ⩾ 0, let

Ne
t := nb. of alarms at time t for e.

Then ∃We ∼ Gamma(αe) s.t., conditionally to We ,

Ne
. increases between t and t + dt with prob. Wee

t dt.

Consequences on Rubin construction:

▶ Let Tx(t) time spent in x ∈ V at time t

▶ Then, conditionally to We , e ∈ E , and to the past ⩽ t,
if X̃t = x , X̃ jumps to y ∼ x between t and t + dt with prob.
Wxye

Tx (t)+Ty (t) d(Tx(t)) = WxyLy (t)d(Lx(t)), where

Lz(t) := eTz (t).



Proof of ERRW ←→ VRJP (II)
Yule process: a result of D. Kendall (’66)

For all e ∈ E , t ⩾ 0, let

Ne
t := nb. of alarms at time t for e.

Then ∃We ∼ Gamma(αe) s.t., conditionally to We ,

Ne
. increases between t and t + dt with prob. Wee

t dt.

Consequences on Rubin construction:

▶ Let Tx(t) time spent in x ∈ V at time t

▶ Then, conditionally to We , e ∈ E , and to the past ⩽ t,
if X̃t = x , X̃ jumps to y ∼ x between t and t + dt with prob.
Wxye

Tx (t)+Ty (t) d(Tx(t)) = WxyLy (t)d(Lx(t)), where

Lz(t) := eTz (t).



VRJP: three timescales (I)

Jump rates from i to j

▶ Initial timescale process Y , with local time L :

WijLj(t),with Lj(s) = 1 +

∫ s

0
1{Yu=j}du.

▶ Reversible timescale process Z , with local time T :

Wije
Ti (t)+Tj (t),with Tj(s) =

∫ s

0
1{Zu=j}du.

▶ Exchangeable timescale process X :

1

2
Wij

√
1 + ℓj
1 + ℓi

,with ℓj(s) =

∫ s

0
1{Xu=j}du.



VRJP: three timescales (II)

Proof: Change ”clocks” at all sites:

▶ Z : Tj = log Lj , or Lj = eTj (already appears in the proof of
ERRW ←→ VRJP)

▶ X : ℓj = L2j − 1, or Lj =
√

1 + ℓj .

Then

WijLjdLi =
1

2
Wij

√
1 + ℓj
1 + ℓi

dℓi = eTi+TjdTi .



Partial exchangeability of VRJP

Theorem
The VRJP is partially exchangeable in the sense of Diaconis and
Freedman.
VRJP(i0,W ) X is a mixture of Markov Jump Processes (MJP) Pu

with jump rate from i to j

1

2
Wije

uj−ui ,

where u has measure µi0,W (du) described next slide.



VRJP ←→ SuSy hyperbolic sigma model in QFT (I)
Fixed conductances (We)e∈E , G finite (Sabot-T.’15)

The measure µi0,W (du) has density on L0 = {(ui ),
∑

ui = 0}

N

(2π)(N−1)/2
eui0 e−H(W ,u)

√
D(W , u),

where
H(W , u) = 2

∑
{i ,j}∈E

Wi ,j sinh
2 ((ui − uj)/2).

and
D(W , u) =

∑
T∈T

∏
{i ,j}∈T

W{i ,j}e
ui+uj .



VRJP ←→ SuSy hyperbolic sigma model in QFT (II)
Fixed conductances (We)e∈E , G finite (Merkl-Rolles-T.’19)

• Qi0,W (du) marginal of Gibbs “measure” on supermanifold
extension H2|2 of hyperbolic plane with action
AW (v , v) =

∑
i ,j Wij(vi − vj , vi − vj), taken in horospherical

coordinates after integration over fermionic variables.

• Merkl-Rolles-T.’19: Other variables in extension of SuSy model
arise on two different time scales as limits of

▶ local times on logarithmic scale

▶ rescaled fluctuations of local times

▶ rescaled crossing numbers

▶ last exit trees of the walk (tree version of fermionic variables)

• Bauerschmidt-Helmuth-Swan ’19 (AP and AIHP): very nice
interpretation of in terms of Brydges-Fröhlich-Spencer-Dynkin
isomorphism for the supersymmetric field.



VRJP ←→ random Schrödinger (Sabot-T.-Zeng ’15) (I)

Let, for all i ∈ V ,

βi =
1

2

∑
j∼i

Wije
uj−ui + δi0(i)γ,

γ ∼ Γ(1/2) indep. of u.

▶ ∀i ̸= i0, βi = jump rate from i

▶ β field 1-dependent: β|V1
and β|V2

are independent if
distG(V1,V2) ⩾ 2.

▶ On Zd with Wij = W constant, (βi )i∈V translation-invariant

▶ The marginals βi are such that (2βi )
−1 have inverse Gaussian

law.



VRJP ←→ random Schrödinger: Range and law of β (II)

▶ V finite

▶ ∆ = (∆i ,j)i ,j∈V discrete Laplacian, letting Wi :=
∑

j∼i Wi ,j ,

∆i ,j :=

{
Wi ,j , if i ∼ j , i ̸= j

−Wi , if i = j

▶ Hβ := −∆+ 2β, W diagonal with coefficients (Wi )i∈V .

▶ Hβ > 0 (positive definite): =⇒ (Hβ)
−1 has positive entries.

▶ β = (βi )i∈V has distribution

νW (dβ) =

√
2

π

|V |

1{Hβ>0}
e
∑

i∈V (Wi/2−βi )√
|Hβ|

∏
i∈V

dβi .



VRJP ←→ random Schrödinger: Retrieve u from β (III)

▶ Set G = (Hβ)
−1.

▶ Then

βi =
1

2

∑
j∼i

Wije
uj−ui , i ̸= i0

⇐⇒ Hβ(e
u.)(i) = (−∆+ 2β)(eu.)(i) = 0, i ̸= i0

⇐⇒ eui =
G (i0, i)

G (i0, i0)
, i ∈ V

where (ui )i∈V defined above and follows the law QW
i0
(du).

▶ Hence, time-changed VRJP starting from i0 mixture of
Markov jump processes with jump rate

1

2
Wi ,je

uj−ui =
1

2
Wi ,j

G (i0, j)

G (i0, i)



ERRW/VRJP and statistical physics: implications
Using link with QFT and localisation/delocalisation results of
Disertori, Spencer, Zirnbauer ’10 :

Theorem (ST’15, Angel-Crawford-Kozma’14, G bded degree)

ERRW (resp.VRJP) is positive recurrent at strong reinforcement,
i.e. for ae (resp. We) uniformly small in e ∈ E.

Theorem (ST’15, Disertori-ST’15, G = Zd , d ⩾ 3)

ERRW (resp. VRJP) is transient at weak reinforcement, i.e. for ae
(resp. We) uniformly large in e ∈ E.

Using link with Random Schrödinger operator:

Theorem (Sabot-Zeng ’19, Sabot -19, Merkl-Rolles ’09)

ERRW with constant weights ae = a (resp. We = W) is recurrent
in dimension 2.

Theorem (Poudevigne’22)

Increasing initial weights of ERRW and VRJP makes them more
transient (unique phase transition).



Correspondence ⋆-ERRW ←→ ⋆-VRJP (I)

Let (We)e∈E be conductances on edges, Wij = Wj⋆i⋆ > 0.
The ⋆-Vertex-Reinforced Jump Process (⋆-VRJP) (Ys)s⩾0 is a
continuous-time process defined by Y0 = i0 and, if Ys = i , then,
conditionally to the past,

Y jumps to j ∼ i at rate Wi ,jLj⋆(s),

with

Lj(s) = 1 +

∫ s

0
1{Yr=j}dr .



Correspondence ⋆-ERRW ←→ ⋆-VRJP (II)
Random conductances (We)e∈E

Theorem (Bacallado-Sabot-T. ’21)

⋆-ERRW (Xn)n∈N with weights (αe)e∈E , αij = αj⋆i⋆

”law”

=
⋆− VRJP (Yt)t⩾0 with conductances We ∼ Γ(αe), e ∈ Ẽ indep.

(at jump times)

Proof.
Similar to [T.’11, Sabot-T.’15], as for any linearly reinforced RW
on its continuous time version.



⋆-VRJP: again three timescales

Jump rates from i to j

▶ Initial timescale process Y , with local time L :

WijL
⋆
j (t),with Lj(s) = 1 +

∫ s

0
1{Yu=j}du.

▶ Reversible timescale process Z , with local time T :

Wije
Ti (t)+T⋆

j (t),with Tj(s) =

∫ s

0
1{Zu=j}du.

▶ Exchangeable timescale process X :

1

2
Wij

√
1 + ℓ⋆j
1 + ℓi

,with ℓj(s) =

∫ s

0
1{Xu=j}du.



The limiting manifold
Set LW0 = {(ui )i∈V , div(W u) = 0,

∑
i∈V ui = 0}.

Proposition

The following limit

Ũi = lim
t→∞

Ti (t)− t/|V |

exists a.s. and Ũ ∈ LW0 .

Proof of Ũ ∈ LW
0 .

If X is at i , it jumps to j with probability Wijd(e
Ti (t)+Tj∗ (t)) on

infinitesimal time interval. Hence

Wije
Ti (t)+Tj∗ (t)/Zt(ij)→t→∞ 1.

On the other hand, by Kirchoff’s law,

|
∑
j : i→j

Zt(ij)−
∑

k: k→i

Zt(ki)| ⩽ 1.



⋆-VRJP : Randomize initial local time

▶ Also appears in the context of self-repelling motion: T., Tóth
and Valkó’12, Horváth, Tóth and Vetö ’12.

▶ For i0 ∈ V , consider the probability measure given by

ν i0,W (da) =
1

F (W , i0)
e
ai⋆
0 e−

1
2

∑
i→j Wi,je

aj⋆−ai⋆

(da),

on
A = {(ai ) ∈ RV , ai⋆ = −ai}.

Let

Pi0,W (·) = EA∼ν i0,W (Pi0,W A
(·)), (W A)i ,j = Wi ,je

Ai+Aj⋆

law of the ⋆-VRJP after expectation w.r.t. A ∼ νWi0 .
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⋆-VRJP : Randomize initial local time

Lemma (Sabot-T. 2024)

Under PW
i0 , conditionally on σ{Xs , s ⩽ t}, (Ai ) is distributed

according to 1
F (Xt ,WT (t))

νXt ,WT (t)
.

Proposition

Let (αe) be positive weights with div(a) = δi∗0 − δi0 , and

We ∼ Gamma(αe) indep. Then W A law
= W.



⋆-VRJP : partial exchangeability

Let

C (t) =
1

2

∑
i∈V

(eTi (t)+Ti⋆ (t) − 1),

and Zs = XC−1(s).

Proposition (Sabot-T. 2024)

Under PW
i0 (·), Z has jump rate

W
T (t)
i ,j

F (W T (t), j)

F (W T (t), i)

and is partially exchangeable.



⋆-VRJP : mixing measure

Theorem (Sabot-T. 2024)

i) Under PW
i0 , the following limit exists

Ui := lim
t→∞

Ai + Tt(i)− t/N,

and
U ∈ LW0 = {(ui )i∈V , div(W u) = 0,

∑
i∈V

ui = 0}.

ii) Under PW
i0 , conditionally on U, the ⋆-VRJP in partially

exchangeable time scale, (Zt)t⩾0, is a Markov jump process with
jump rate from i to j equal to

Wi ,je
Uj⋆−Ui⋆ .
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⋆-VRJP : mixing measure

Theorem (Sabot-T. 2024)

Under PW
i0 , U has distribution µi0,W (du)/FW

i0
, where µi0,W (du)

has density on LW0

CGe
ui⋆
0 e−

1
2

∑
i→j Wi,je

uj⋆−ui⋆

e
−

∑
i∈V0

ui

√
D(W u)

detA(−Ku)
,

with
D(W u) =

∑
T

∏
{i ,j}∈T

W u
i ,j :

sum on all rooted spanning trees of the graph, Ku generator of
MJP at rate W u

i ,j = Wije
ui+uj⋆ .



Given Z Markov process PW ,u
i0

, there exists a random variable

Bθ(s) =
1

2

∫ s

0

1Zu=i − 1Zu=i∗

θ + ℓi (u) + ℓi∗(u)
du, ∀i ∈ V , s ⩾ 0.

Bθ(∞) has density on A, which we denote by f W ,u,θ
i0

. Let

f W ,u
i0

= f W ,u,1
i0

for simplicity.

Theorem (Non-randomized ⋆-VRJP)

(i) B1(t)→ 1
2(u − u∗) as t →∞.

(ii) The law of U for the non-randomized ⋆-VRJP is

f W ,u
i0

(
1

2
(u − u∗)

)
µW
i0 (du).

(iii) At time t ⩾ 0, the jump rate of the non-randomized ⋆-VRJP
Z conditioned on U = u from Zt = i to j is

f
W ,u,1+ℓ(t)+ℓ∗(t)
j

(
1
2(u − u∗)− B1(t)

)
f
W ,u,1+ℓ(t)+ℓ∗(t)
i

(
1
2(u − u∗)− B1(t)

)Wije
u∗j −u∗i .



*-VRJP: Random Schrödinger version

Theorem
For all θ ∈ (0,∞)V , η ∈ (R+)

V , we have∏
i∈V0

θi

∫
S

1Hβ>0
√
2π

|S| exp

(
−1

2
⟨θ,Hβθ⟩ −

1

2
⟨η,Gβη⟩

)
dβ√
|Hβ|

=

∫
A

1
√
2π

|A| exp

(
−1

2
⟨eaθ,Weaθ⟩+ 1

2
⟨θ,W θ⟩ − ⟨η, eaθ⟩

)
da.

When X0 = i0, the measure on β is associated to a differentiation
with respect to ηi0 of a combination of the two measures above at
η = 0, θ = 1 on {i0, i∗0}c .
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