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Edge-Reinforced Random Walk (Coppersmith and
Diaconis, 1986)

» G = (V, E) non-oriented locally finite graph
» a. >0, e €E, initial weights

e Edge-Reinforced Random Walk (ERRW) (X,) on V : Xy = iy
and, if X, =i, then

Z;ijp(n)

P I S ) = 5 W)

where

n
Ziij(n) = aij+ Z X1 X ={i}-
k=1

» a. small: strong reinforcement

» a. large: small reinforcement



The ERRW
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A simulation due to Andrew Swan.



The Mixing Measure of ERRW

S

A simulation due to Andrew Swan.



(a) de Finetti Bruno:
1906-1985

Sul significato soggettivo della probabilita.
Memoria di

Bruno de Finetti (Roma).

Sunto.

Si spiega come si possa con tutto rigore introdurre il concetto
di probabilith e dimostrarne le proprietd. fondamentali ben note atte-
nendosi esclusivamente al punto di vista soggettivo, Dopo aver in-
dicato un modo di procedere di natura quantitativa, che particolar-
mente ai presta alla trattazione analitica, se ne analizzaug critica-
mente i principi dimostrando che sono di natura puramente quali-
tativa e elementare.

(b) On the subjective meaning of probability, 1931
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The notion of exchangeability (de Finetti)

Definition
Let (X;)i>1 random process taking values in {0,1}. Then X is
called exchangeable if, for all n € N and o € S,,,

L ((Xg(,’))lgign) = L ((Xi)1<i<n) -

Theorem (de Finetti)

If (Xi)i=1 is exchangeable, then there exists a random variable
a € [0,1] such that

1 n
; E Xl —>I14)OO .
i=1

Conditionally on «, (X;)i>1 is an i.i.d. sequence of Bernoulli
random variables with success probability o, which we call P%.



(a) Diaconis Persi: 1945- (b) Freedman David: 1938-2008

The Annals of Probability
1980, Vol. 8, No. 1, 115-130

DE FINETTI’S THEOREM FOR MARKOV CHAINS

By P. D1acoNis' AND D. FREEDMAN?
Bell Laboratories, Murray Hill, New Jersey and University of California at
Berkeley

Let Z = (Zy, Z;, - - - ) be a sequence of random variables taking values in
a countable state space . We use a generalization of exchangeability called

partial Z is partially if for two sequences 0, 7 €
I"*! which have the same starting state and the same transition counts,
P(Zy=0p,Z =0, .2, =0)=PZy=1pZ =1, ", 2, =1,).

chains

‘The main result is that for recurrent processes, Z is a mixture of Markov
if and only if Z is partially exchangeable.



Partial exchangeability (Diaconis and Freedman, 1980) (I)

Definition

Let (Yn)n>0 a random process on a graph G = (V/, E), E oriented
(resp. non-oriented) edges. It is called partially exchangeable
(resp. reversibly partially exchangeable) if, for any nearest-neighbor

path v = (10,...,72) on V,
P[(Y07"'7Yn) = (’707---77n)]

only depends on its starting point and on the number of crossings
of directed (resp. undirected) edges by ~.



Partial exchangeability (Diaconis and Freedman, 1980) (II)

Theorem (Diaconis and Freedman, 1980)

Assume (Yp)n>0 a.s. recurrent (i.e. Y, = Yy infinitely often) and
partially exchangeable (resp. reversibly partially exchangeable, and
each edge is traversed is traversed in both directions a.s.).

Then it is a mixture of Markov chains (resp. reversible Markov
chains), i.e.

L(Y) = /Pw(.) dp(w).



Partial exchangeability (Diaconis and Freedman, 1980) (II)

Theorem (Diaconis and Freedman, 1980)

Assume (Yp)n>0 a.s. recurrent (i.e. Y, = Yy infinitely often) and
partially exchangeable (resp. reversibly partially exchangeable, and
each edge is traversed is traversed in both directions a.s.).

Then it is a mixture of Markov chains (resp. reversible Markov
chains), i.e.

L(Y) = /Pw(.) dp(w).

Here P“ denotes the Markov Chain with transition probability
w(i,j) from i to j. If P¥ is reversible, then there exists
x = (xe) € (0,00)F such that

w(i,j) = w*(i, ) X’f_, =3 " xj. Let P* =P,

jri



Edge-Reinforced random walk (ERRW): partial
exchangeability

Let P® Jaw of ERRW with initial weights a = (a¢)ece and
starting from ip.

Lemma
The ERRW is reversibly partially exchangeable: more precisely,

]P)I'O,Q(XO — iO) LR aXn — in :JO) — M?



Edge-Reinforced random walk (ERRW): partial
exchangeability

Let P® Jaw of ERRW with initial weights a = (a¢)ece and
starting from ip.

Lemma
The ERRW is reversibly partially exchangeable: more precisely,

]P)I'O,Q(XO — i07 . 'aXI‘I — in :JO) — M?

where ne (resp. v;) is the number of crossings (resp. visits) of edge
e (resp. site i) by the path (ig,...,in), @ = (3¢ + Ne)ecE, and

HGGE M(ae)
[Liey T (3(ai + 1 = 6;(i))) 22 =% 0)

’7(’.0’3) -



Edge-Reinforced random walk (ERRW): partial
exchangeability

Proof. .
Note that P?(Xy = i, ..., Xn = in = jo) equals
[lece(ae, ne)




Edge-Reinforced random walk (ERRW): partial
exchangeability

Proof. .
Note that P?(Xy = i, ..., Xn = in = jo) equals
[lece(ae, ne)

)

and that

n;j = Z nj = 2vj — dio (1) — 5jo(i)

ji
so that

vi = 0 (i) = (ai+"’)2_5f°(i) _a —25:'0(1').
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Edge-Reinforced random walk (ERRW): statistical view

>
>

Let L(ip,a) be the mixing measure of x under P2,

Given reversible Markov Chain P* with transition probability
x;j/x,- from i to j, with unknown random vector x, how can we
estimate x?

Bayesian approach: assume prior on x is L(ig,a) and run
Markov Chain P*, then law is the one of ERRW P"¢ by
theorem above.

Hence, the posterior distribution after n first steps is given by
L(Z(n), Xp).

Thus prior and posterior are conjuguate priors.

(Diaconis and Rolles, 2006) Z(n) is a minimal sufficient
statistic for the model, also provide method of simulation of
the posterior.



Edge Reinforced Random Walks (ERRW): how to find the

[imit measure?

Bayesian statistics again: assume L(ip, a) has integrable smooth
density % w.r.t da = HeEE\{eO} dae, e € E, on the simplex
L1={> ae=1, a.>0}.
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Edge Reinforced Random Walks (ERRW): how to find the

limit measure?
Bayesian statistics again: assume L(ip, a) has integrable smooth
density 0% w.r.t da = HeeE\{eO} dae, e € E, on the simplex
L1={> ae=1, a.>0}.
Bayes' formula:

PO (x € ly,y + dy][Xo = ios - - Xn = in = jo) = PP*(x € [y, y + dy])
PX(Xo =loy .-+, Xn = in=Jo)

Pio:2(Xg = iy ..., Xn = in = Jo)

©3(y) dy lece v

~ P02(Xo = o, .-, Xn = in = Jo) [Liev Yol
1

=P>?(x € [y,y + dy])

Therefore

HeEEyge ’Y(i()va).
H Vi_‘sjo(i) ’y(jo,oz)

ievYi

P (y) = ©*(y)



Edge Reinforced Random Walks (ERRW): Limit measure
(Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

Theorem

» (Ze(n)/n)nen converges a.s. to a random vector x = (Xe)ecE
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Edge Reinforced Random Walks (ERRW): Limit measure
(Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

Theorem
» (Ze(n)/n)nen converges a.s. to a random vector x = (Xe)ecE
» Conditionally on x, ERRW is a reversible Markov chain P*
with jump probability x;j/x; from i to j, xi =, _; Xik.
> x has the following density w.r.t to measure [[.cg\ (o} dVe On
the simplex {Ve € E, ye >0 ) ..pVe =
ae—1

. _ Y
Cr(in, a) 175 HesE XS /D).

1,
Hievyi2



Edge Reinforced Random Walks (ERRW): Limit measure
(Diaconis and Coppersmith, 1986, Keane and Rolles, 2000)

Recall that
: a
’}/(Io,a): ; HeGE (e) — 7
[Licy T (3(ai + 1= 65(i))) 22 %)
and
03/2—|V/|
€= \/W’ D(Y): Z HYey

TeT eeT

where T is the set of (non-oriented) spanning trees of G.



Early results on recurrence of Edge-Reinforced random
walk ('86-'09)

» Pemantle '88: recurrence/transience phase transition on trees:

» Root the tree at iy for simplicity.

» Between two visits to each vertex, once an edge is crossed the
walk comes back through it.

» Hence, independently at each vertex, Pélya urn with initial
number of balls ((aU + 5{j father of ,0})/2)j~,-.

» Hence the environment is independent Dirichlet at each vertex
iz Random Walk in (independent) Random Environment
(RWRE)

» Merkl Rolles '09: recurrence on a 2d graph (but not Z2)
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Yaglom reversible Markov chains

» Markov Chain on discrete locally finite directed graph
G = (V, E), with involution x on V s.t.

(i,j))e E=(*,i")eE

» Transition probability p(i,/): i —
> MC Yaglom reversible iff 3 proba measure w on V s.t.

7T(’>./) = 7T(I):D(I?./) = (_/.*),D(_].*, I*) = ﬂ-(j*v I*) Vi,j € Vi,
(i) = =(i*) Vie V.



Yaglom reversible Markov chains

» Markov Chain on discrete locally finite directed graph
G = (V, E), with involution x on V s.t.

(i,j))e E=(*,i")eE

» Transition probability p(i,/): i —
> MC Yaglom reversible iff 3 proba measure w on V s.t.

U)pG*, i) = (", i*) Vi, j € V,i~],
(i) Vie V.

(i, j) = m()p(i,j) =
(i) =

» — 7 invariant measure for MC.

Initial motivation: continuous time and space setting
* 1 (x, %) = (x, —x).
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Example of Yaglom reversibility: Reversible k-dependent
Markov chains

» (Y;) k-dependent Markov chain on S finite (i.e. law of Yj1
depends only on (Y,—k+1,---, Yn))

» Induces Markov chain (X,) on the (directed) de Bruijn graph
G = (V =S¥ E) with

w:(il,...,ik)—)(ZJ:(I.g,...,I'k_;,_l)

with transition rate p(w,®), and invariant measure m(w).
» Called reversible if

/. .
(Y, . Y) ZE (Yo, .. V), if (Ya,..., Yi) ~

P Reversibility <= Yaglom reversibility on de Bruijn graph
with involution x:

w= (i, ..,0k)—w" =(ik,..., M) flipped k-string.



Other examples of Yaglom reversibility of higher-order
Markov chains (Bacallado, 2006)

» Variable-order MC with context set C C SUS2U---U Sk on
de Bruijn graph: V(i1,...,ig) € C, transition probabilities out
of x and y are the same whenever x and y both end in
(s, ip)-



Other examples of Yaglom reversibility of higher-order
Markov chains (Bacallado, 2006)

» Variable-order MC with context set C C SUS2U---U Sk on

de Bruijn graph: V(i1,...,i;) € C, transition probabilities out
of x and y are the same whenever x and y both end in
(s, ip)-

» Random walk with amnesia: RW on G = (V/, E) defined by
V =SUS?U...Sk with two types of edges: “forgetting”
ones (i, ... im) = (i2,...,im), if m>1, “appending” ones
(ity--eyim) = ((i,---,im,Jj), for each j € V, if m < k.
Generalization of the above.



*-Edge-Reinforced random walk: Definition
» G = (V, E) directed graph with involution x on V' s.t.

(ihj)e E= (", ") e€eE

» «a;; >0, (i,j) € E such that o j = aj» j».



*-Edge-Reinforced random walk: Definition
» G = (V, E) directed graph with involution x on V' s.t.
(ihj)e E= (", ") e€eE

> Qjj > 0, (i,j) € E such that Qfj = Qjx jx.
We call »-ERRW with initial weights (), the discrete time
process (X,,) defined by

Zn((Xn,J))

PXor1 = 71X k<) = Loy 55— 7 50T
] n—> ’

where

Zn((i,J)) = eij + Nij(n) + Njx jx(n)

Nij(n) = Z DX, 1. X0)=(i)}-
k=1



Define Vo = {i € V : i = i*}, and write V = Vp U V4 U V{ disjoint.
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Define Vo = {i € V : i = i*}, and write V = Vp U V4 U V{ disjoint.
Let div be the divergence operator div : RE — RY

div(z)() = > zij— Y zi
Jii—=j Jd—i
Given a = (@e)ecE S.t. ajj = aj=j», let

aj = E a,-j,

Jri=Jj

and let (i, a) be

[lece M(ae)
1211 : :
[Tiev FGGlai +1 - 1j—jp))22 (a1~ i) [Licv, T(min(a, aj+))
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*x-ERRW : particular case, see ST (2025), Perrel-Sabot
(2025)

> Given G = (V, E) directed graph, let G = (V ~ V E)
obtained by reversing each edge of E.

> Glue G and G at ip € V into G, and let » be the involution
mapping V to its copy in V. In particular, iy = ij.

> x-ERRW on G starting at ig with initial weights a.

» Map all excursions in G to reversed excursions in G: resulting
path has distribution of annealed law of the directed ERRW,

since div(a) = 0, by the time-reversal property of Sabot and
Tournier (2011).



*-Edge-Reinforced random walk: partial exchangeability

Proposition (Bacallado '11, Baccalado, Sabot and T. '21)
Letip € V. If div(a) = 6jx — 0jy, then the x-ERRW starting from io
is partially exchangeable. Given path o = (09 = iy, 01,...,05), let
ne be its number of crossings of edge e € E, and let a = a + n.
Then

IP’**ERRW(X follows o) = 7(({’"’ 2)

’7(’07a) ‘




*-Edge-Reinforced random walk: partial exchangeability

Proposition (Bacallado '11, Baccalado, Sabot and T. '21)

Letip € V. If div(a) = 6jx — 0jy, then the x-ERRW starting from io
is partially exchangeable. Given path o = (09 = iy, 01,...,05), let
ne be its number of crossings of edge e € E, and let a = a + n.

Then
7(0',1, a)

’Y(’Ova) ‘

P*—ERRW (X follows o) =

Proof.
> div(Z(k)) = dx; — dx, for all k;
» Z(i) increases by 2 at each visit to i € V;
» min(Z(i), Z(i*)) increases by 1 at each visit to {/,i*}, for all
ie V.
L]
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*-Edge Reinforced Random Walks (*-ERRW): results
Theorem (Bacallado, Sabot and T., 2021)

» (Zn(e)/n)nen converges a.s. to a random vector x = (Xe)ecE
in

E]_ = {(ye) S (O,OO)E D Yij = Ve dlv(y) = 0, Zye = ]_} X

ecE

» Conditionally on x, *-ERRW is a Markov chain Py with jump
probability xj;/x; from i to j, xi = Y, Xik.

» The random variable x has the following density on L1, w.r.t
pullback of Lebesgue measure on RE by the projection
(ve) € Lo (Ve)ecn, B basis of L1:

C'Y(i07a) \/)T( y; )H,GVO\/»\/ d)/Ela



*-Edge Reinforced Random Walks (*-ERRW): results

We let E be the set of edges quotiented by the relation

(i,J) ~ G*, 7).
2

C = ,
\/%|VO‘—1\/§|VOH‘IV1‘
Dy)=>_ ][ vis

T (ij)eT

and

The last sum runs on spanning trees directed towards a root
Jo € V (value does not depend on the choice of the root jp).



ERRW and statistical physics: ERRW <— VRJP (1)

Let (We)ece be conductances on edges, W, > 0.
VRIP (Ys)s>0 is a defined by Yy = iy and,
if Ys =i, then, conditionally to the past,

Y jumps to j ~ i at rate W; ;L;(s),

with <
LJ(S) =1 +/ ]]_{yu:j}du.
0

Proposed by Werner and first studied on trees by Davis, Volkov
('02,'04).



ERRW and statistical physics: ERRW «— VRJP (lI)
Random conductances (We)ecr

Theorem (T. '11, Sabot, T. '15)

ERRW (X,)nen with weights (ce)ece
VV/ 7
w VRJP (Yt)e=0 with conductances We ~ T () indep.

(at jump times)

» Similar equivalence applies to any linearly reinforced RW on
its continuous time version (initially proved for VRRW, T'. 11)



Proof of ERRW «— VRJP (1)
Rubin construction : continuous equivalent of ERRW

Similar to continuous-time version of discrete-time Markov chain

Clocks at each edge:
» ((f)ecE ien collection of i.i.d variables, Exp(1) distributed.

1

P> Alarms at each edge e € E, at times

k
¢

=
Process (X;)¢>0 starting from i € V:
> Clock e only runs when (X;)¢=0 adjacent to e.

> Alarm e rings = X, traverses it.
Then (Xe)ter, (at jump times) Ia:w (Xn)n>o0-



Proof of ERRW «— VRJP (Il)
Yule process: a result of D. Kendall ('66)

Forallee E, t >0, let
Nf := nb. of alarms at time t for e.
Then 3W, ~ Gamma(ae) s.t., conditionally to W,

N€ increases between t and t + dt with prob. W,e" dt.



Proof of ERRW «— VRJP (Il)
Yule process: a result of D. Kendall ('66)

Forallee E, t >0, let
Nf := nb. of alarms at time t for e.
Then 3W, ~ Gamma(ae) s.t., conditionally to W,
N€ increases between t and t + dt with prob. W,e" dt.

Consequences on Rubin construction:
» Let T,(t) time spent in x € V at time ¢t

> Then, conditionally to W, e € E, and to the past < t,
if Xz = x, X jumps to y ~ x between t and t + dt with prob.
W eTx(fHTy( ) d(Tx(t)) = Wiy L,(t)d(Lx(t)), where



VRJP: three timescales (I)

Jump rates from i to j

» Initial timescale process Y, with local time L :
S
VV,"LJ'(t)./With Lj(S) = 1+/O ]l{yu:j}du.
» Reversible timescale process Z, with local time T:
S
V\/UeT"(t)—"_Tj(t),With TJ(S) = / ]l{Zu:j}du'
0

» Exchangeable timescale process X:



VRJP: three timescales (II)

Proof: Change "clocks” at all sites:

> Z: Tj=loglj orL;= e'i (already appears in the proof of
ERRW +— VRIJP)

> X: =17 -1 0rL;=\/1+¢.

Then
W’JLJdL’_EW”szE idT;.



Partial exchangeability of VRJP

Theorem

The VRJP is partially exchangeable in the sense of Diaconis and
Freedman.

VRJP(ip, W) X is a mixture of Markov Jump Processes (MJP) P
with jump rate from i to j

%M@ewfw

Y

where u has measure described next slide.



VRJP <— SuSy hyperbolic sigma model in QFT (1)
Fixed conductances (W,)ece, G finite (Sabot-T.'15)

The measure /2" (du) has density on Lo — {(u;). > u; — 0}

N
Gownpete "IVDW.),

where
HW,u)=2 Y Wjsinh® ((u; — u)/2).
{ij}€E

DWW, u)y=>Y " [] Wyje .

TeT {ij}eT

and



VRJP <— SuSy hyperbolic sigma model in QFT (I1)
Fixed conductances (W,)ece, G finite (Merkl-Rolles-T."19)

o O (du) marginal of Gibbs “measure” on supermanifold
extension H22 of hyperbolic plane with action

Aw(v,v) =32, Wi(vi — vj, vi — v;), taken in horospherical
coordinates after integration over fermionic variables.

e Merkl-Rolles-T."19: Other variables in extension of SuSy model
arise on two different time scales as limits of

» |ocal times on logarithmic scale

> rescaled fluctuations of local times

P rescaled crossing numbers

> last exit trees of the walk (tree version of fermionic variables)

e Bauerschmidt-Helmuth-Swan '19 (AP and AIHP): very nice
interpretation of in terms of Brydges-Frohlich-Spencer-Dynkin
isomorphism for the supersymmetric field.



VRJP <— random Schrodinger (Sabot-T.-Zeng '15) (1)

Let, forall i € V,

1 o .
= LY W s,
i
v~ T(1/2) indep. of u.
> Vi iy, (B; = jump rate from i

» [ field 1-dependent: S, and 5y, are independent if
diStg(Vl, VQ) > 2.

» On Z9 with W; = W constant, (3;)icy translation-invariant
» The marginals j3; are such that (23;)~! have



VRJP <— random Schrodinger: Range and law of 3 (II)

v

V finite
» A = (Ajj)ijev discrete Laplacian, letting W; := iji Wi,

Asioe Wij, ifinj, i#]
U W, ifi=

» Hg:= —A+ 23, W diagonal with coefficients (W;)jcv.

Hs > 0 (positive definite): == (Hg)~! has positive entries.
> B =(Bi)icv has

VI o g.
2 eZiEV(VVI/2 51)
w
v(dp) = \/; Liry>0——=—= | | 96

V ’Hﬂ‘ iev

v



VRJP <— random Schrodinger: Retrieve u from /5 (lll)

> Set G = (HB)_l.
» Then

1
pi=5 D Wyetmv i # iy

s Hy(e")(7) = (A +28)(e")()) = 0, i £ o
ui _ G(i07 i)
el = m, ieV

where (uj)jcv defined above and follows the law

» Hence, time-changed VRJP starting from iy mixture of
Markov jump processes with
1 1. G(io,J)

Wbl — W
0 Vive 2" G (o, 1)




ERRW/VRJP and statistical physics: implications

Using link with QFT and localisation/delocalisation results of
Disertori, Spencer, Zirnbauer '10 :

Theorem (ST'15, Angel-Crawford-Kozma'l4, G bded degree)
ERRW (resp.VRJP) is positive recurrent at strong reinforcement,
i.e. for ac (resp. We) uniformly small in e € E.

Theorem (ST'15, Disertori-ST'15, G = Z9, d > 3)

ERRW (resp. VRJP) is transient at weak reinforcement, i.e. for a.
(resp. W, ) uniformly large in e € E.

Using link with Random Schrodinger operator:

Theorem (Sabot-Zeng '19, Sabot -19, Merkl-Rolles '09)
ERRW with constant weights a. = a (resp. W. = W) is recurrent
in dimension 2.

Theorem (Poudevigne'22)

Increasing initial weights of ERRW and VRJP makes them more
transient (unique phase transition).



Correspondence x-ERRW «— x-VRJP (1)

Let (We)ecke be conductances on edges, Wj; = Wjxj» > 0.

The x-Vertex-Reinforced Jump Process (x-VRJP) (Y5)s>0 is a
continuous-time process defined by Yo = ip and, if Y5 =i, then,
conditionally to the past,

Y jumps to j ~ i at rate W; jLj«(s),

with B
Lj(s) =1 +/ ]l{yr:j}dr.
0



Correspondence x-ERRW «— *x-VRJP (lI)
Random conductances (We)ecr

Theorem (Bacallado-Sabot-T. '21)

*-ERRW (Xp)nen with weights (ce)ecE, tjj = Qujxj»

l’/ " ”
M VRJP (Yt)e=0 with conductances We ~ T (), e € E indep.

(at jump times)

Proof.
Similar to [T.'11, Sabot-T."15], as for any linearly reinforced RW

on its continuous time version. L]



*-VRJP: again three timescales

Jump rates from i to j

» Initial timescale process Y, with local time L :
S
V\/,'J'Lj(t),with Lj(S) =1+ /0 Il{yu:j}du.
» Reversible timescale process Z, with local time T
S
0
» Exchangeable timescale process X:

1+ 07

1 ) s
EVVU ﬁ,wﬂ:h fj(s):/o Il{xu:j}du.



The limiting manifold
Set L§¥ = {(u)iev, div(W") =0, 3;cy uj = 0}.
Proposition
The following limit

0; = lim Ti(t) — t/|V|

[im

t—00
. ¥ w

exists a.s. and U € Ly".

Proof of U € LIV.
If X is at i, it jumps to j with probability Wd(ei(!)+Ti*(*)) on
infinitesimal time interval. Hence

Wye O+ T ) 7, () =400 1.

On the other hand, by Kirchoff's law,

1Sz - Y Zdki) < 1.

Jri—sj ke k—i



*-VRJP : Randomize initial local time

» Also appears in the context of self-repelling motion: T., Téth
and Valkd'12, Horvath, Téth and Veto '12.



*-VRJP : Randomize initial local time

» Also appears in the context of self-repelling motion: T., Téth
and Valkd'12, Horvath, Téth and Veto '12.

» For iy € V, consider the probability measure given by

. 1 L, 1 o @ik —apk
W) = e e S Mo g

on
A= {(a,-) S Rv, ajpx = —a,-}.



*-VRJP : Randomize initial local time

» Also appears in the context of self-repelling motion: T., Téth
and Valkd'12, Horvath, Téth and Veto '12.

» For iy € V, consider the probability measure given by

. 1 e 1 Ak —ajk
V() = Ey et 3 Wt (da),
on
A={(a)) e RY, aj = —a;}.
Let
@i07w(.) _ EANVIUW(]P,I'O,WA(.))’ (WA),'J _ VVi,_jeAi+Aj*

4%

law of the x-VRJP after expectation w.r.t. A ~ Vi’ -



*-VRJP : Randomize initial local time

Lemma (Sabot-T. 2024)
Under PZV, conditionally on o{Xs, s < t}, (A;) is distributed
thfVVT(t)

i 1
according to F X W) .

Proposition
Let (ce) be positive weights with div(a) = &;x — &;,, and
W, ~ Gamma(ae) indep. Then WA W



*-VRJP : partial exchangeability

Let

1 VLT
Ct) =5 > (M7 1),
eV

and Zs = XC—l(s)'
Proposition (Sabot-T. 2024)
Under P‘;V() Z has jump rate

T(t) F(WT(t)a.])
iJ F(WT(t),i)

and is partially exchangeable.



*-VRJP : mixing measure

Theorem (Sabot-T. 2024)
i) Under P, , the following limit exists

Ui = tILngo Ai+ Ti(i) — t/N,

and
Ue Ly ={(u)iev, div(W") =0, Y u;=0}.
icv



*-VRJP : mixing measure

Theorem (Sabot-T. 2024)
i) Under B}, the following limit exists

Ui = tILngo Ai+ Ti(i) — t/N,

and
Ue Ly ={(u)iev, div(W") =0, Y u;=0}.
eV
i) Under @ZV, conditionally on U, the x-VRJP in partially

exchangeable time scale, (Z:)t>0, is a Markov jump process with
jump rate from i to j equal to

U'*_UI‘*
W,-J-e J .



*-VRJP : mixing measure

Theorem (Sabot-T. 2024)
Under B}, U has distribution 11" (du)/F}, where ;1" (du)
has density on L}V

CGeu'F)( ei% Ziﬂj V‘/i,jeuj*iui* ef Zievo uj D( Wu) .
det4(—KY)’

pw*y=>" 1] w:

T {ij}eT

with

sum on all rooted spanning trees of the graph, KY generator of
MJP at rate W,‘; = W,-je“"+”j*.



Given Z Markov process P,-ZV’“, there exists a random variable
]. s ]12”:, - lzu:’*
2 Jo 04 Li(u)+ i (u)

B?(c0) has density on A, which we denote by ﬁ-(:/v’”’e. Let
ﬁW,U — f‘.W,U
io io

B(s) =

du, YieV,s>0.

1 for simplicity.

Theorem (Non-randomized x-VRJP)

(i) BY(t) = 3(u— u*) as t — oo.

(ii) The law of U for the non-randomized x-VRJP is

w, 1 * w
e (G- ) ult (),
(iii) At time t > 0, the jump rate of the non-randomized x-VVRJP
Z conditioned on U = u from Zy =i toj is

f.W,u,l-i—Z(t)—i—Z*(t) (
J
£W,u,1+€(t)+f*(t) (

(u—u*) — BY(t)
(u—u*) - BY(t))

V\/,je”f**”f*.

NIl= [ N[



*-VRJP: Random Schrodinger version

Theorem
For all § € (0,00)Y, n € (R})Y, we have

Lhg>0 1 1 dj
H 0; /5 N 5| &P <—2 (0, Hgtl) — 5 (n, GB77>> m

ieVy
1 1
=[] ——exp <— (%0, We?0) + - (0, W8) — (n, e39>> da.
/A \/ﬂM' 2 2

When Xy = ip, the measure on [ is associated to a differentiation
with respect to 7;, of a combination of the two measures above at
n=20,60=1on {i, i}



o
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