

Uni Twin

università degli studi FIRENZE

United Nations • L

Educational, Scientific and

Cultural Organization

UNESCO Chair on the Prevention and

- Sustainable Management of Geo-Hydrological Hazards,
- University of Florence, Italy

Rilevamento frane e misure correttive a basso impatto ambientale

Nicola Casagli

PRESIDENCY OF THE COUNCIL OF MINISTERS

Delegate Commissioner for the Montaguto landslide

Consiglio Nazionale delle Ricerche ISTITUTO DI RICERCA PER LA PROTEZIONE IDROGEOLOGICA

F. Guzzetti G. Lollino

N. Casagli

F.M. Guadagno

PRESIDENCY OF THE COUNCIL OF MINISTERS

Delegate Commissioner for the Montaguto landslide

Consiglio Nazionale delle Ricerche **ISTITUTO DI RICERCA PER** LA PROTEZIONE IDROGEOLOGICA

- F. Guzzetti
- G. Lollino

D. Giordan

- P. Allasia
- M. Baldo
- A. Manconi
- F. Godone

- N. Casagli G. Gigli R. Fanti F. Mugnai W. Frodella F. Ferrigno
- P. Barsotti
- L. Giammattei
- F. Orzali
- F. Barsotti
- S. Nadotti
- S. Martinelli
- A. Devitis
- G. Bravi

Università degli Studi del Sannio

- F.M. Guadagno P. Revellino F. Pinto
- G. Grelle
- L. Guerriero

Montaguto

Montaguto AV

Montaguto landslide

Presidenza del Consiglio dei Ministri Dipartimento della Protezione Civile

- Roma-Napoli National railway
- National Road SS 90 "Delle Puglie"

Montaguto, May 2010

Geological setting

- Faeto Flysch (early Miocene)
- Toppo di Capuana clay loam (early Miocene)
- Altavilla Unit (late Miocene)
- Cervaro Creeck alluvial deposits (Pleistocene – Holocene)

Guadagno et al. (2010)

The landslide

Before

After

Timeline

- 1763: royal road involved, Borboni realized the first stabilization works
- 1957-58: reactivations
- Until 1980: very low activity
- 1990: deviation of Montagna creek
- 2003 2004: minor landslide reactivations
- May 12th 2006: major landslide reactivation and DPC ordinance
- September 2009: major landslide reactivation, the landslide reaches the road SS 90 "Delle Puglie"
- March 10th 2010: the reactivated flow destroy the road and the railway

1990 Montagna creek deviation

Cervaro stream

deviated channel

natural original channel

1955 drainage network

Figura 4.5 Stralcio delle Tavolette in scala 1:25.000 della Carta topografica IGM (F°174 Ariano Irpino), edizione 1955, con la segnalazione della rete idrografica evidenziata.

Image © 2011 GecEye © 2011 Tele Atlas

41°14'57.95"N 15°13'10.47"E elev 604 m

Image © 2011 GeoEye © 2011 Tele Atlas

2010

41°14'57.95"N 15°13'10.47"E elev 604 m

Landslide lakes

Cascini et al. (2009)

Monitoring activity Installation 29th April 2010

GB-InSAR, LIDAR, thermal and optical imaging

Integrated monitoring system

Consiglio Nazionale delle Ricerche Istituto di Ricerca per la Protezione Idrogeologica CENTRO DI COMPETENZA DEL DIPARTIMENTO DELLA PROTEZIONE CIVILE - PRESIDENZA DEL CONSIGLIO DEI MINISTRI

Consiglio Nazionale delle Ricerche Istituto di Ricerca per la Protezione Idrogeologica CENTRO DI COMPETENZA DEL DIPARTIMENTO DELLA PROTEZIONE CIVILE - PRESIDENZA DEL CONSIGLIO DEI MINISTRI

Consiglio Nazionale delle Ricerche Istituto di Ricerca per la Protezione Idrogeologica CENTRO DI COMPETENZA DEL DIPARTIMENTO DELLA PROTEZIONE CIVILE - PRESIDENZA DEL CONSIGLIO DEI MINISTRI

Thermal infrared image

Interferogram (landslide foot)

OTEZIONE CONE

GBInSAR monitoring sectors

DTM difference 2006-2010

Interferogram May 26th , 2010 maximum speed = 2.7 m/day

Interferograms - July 26th, 2010 maximum speed = 3 x 10⁻² m/day

Interferograms – December 26th, 2010 maximum speed = 4 x 10⁻³ m/day

Interferograms – March 26th, 2011 maximum speed = 5 x 10⁻⁴ m/day

Interferograms – July 26th, 2011 maximum speed = 3 x 10⁻⁴ m/day (E sector)

Cumulated displacement maps

EZIONE

Recorded velocity (m/day)

Comparison with rainfall

Stabilization works

Upper sector (depletion zone)

- upstream surface drainage (diversion ditches)
- drainage wells
- re-profiling of the main scarp
- lake drainage
- modification of the slope profile
- surface drains (ditches)
- shallow drains (trenches with gabions)
- deep drains (drainage diaphragm)
- stream channels restoration to natural conditions

Middle sector (main track)

- modification of the slope profile
- surface drains coupled with deep trench drains
- left-bank stream channelization
- right-bank stream channelization

Lower sector (deposition zone)

- re-profiling of landslide deposits on the right side
- gabion toe drain and buttressing
- landslide deviation on the left side
- surface drains coupled with deep trench drains
- left-bank stream channelization

Observational method

Advantages and Limitations of the Observational Method in Applied Soil Mechanics. Géotechnique, Volume 19 Issue 2, June 1969, pp. 171-187

Ralph Peck and Karl Terzaghi at Lake Maracaibo in 1956 (From The Terzaghi & Peck Libraries NGI, Oslo)

Upper sector: Before drainage

Upper sector: After drainage

Gabion weir

Deep drainage trench built with gabions and coupled with a surface concrete ditch

Drainage trench and well

/liddle sector: drainage trench and gabion

Gabion weir

IN 20

Lower sector stabilization

- Gabion modules
 3.6 x 3.1 x 4.7 m
- Anchored concrete plates

- Toe buttressing
- Drainage
- Support and reinforcement

5	5	6	7
	25,00	25,00	25,00

Laser Scanner of landslide foot

1st solution for infrastructure protection

Proposal for infrastructure protection (1st solution)

1. Profiling and landslide deviation

2. New railway track

3. Embankment

4. New road track

2nd solution for infrastructure protection

Proposal for infrastructure protection (2nd solution)

1. Profiling and landslide deviation

2. Railway protection wall

3. Artificial tunnel for the railway

4. New road track

16 months after

May 2010

September 2011

Recent works

2011-09-07

2011-09-10

Conclusion

- Support to emergency management
- Problem solution in less than 16 months
- Monitoring with new tecnologies for fast track diagnosis and design
- Continuous monitoring of the effectiveness of stabilization works
- Observational design method based on radar monitoring
- Landslide stabilization based on drainage and engineering solutions at low environmental impact
- Two solutions for the protection of the infrastructures in the valley bottom

Nat. Hazards Earth Syst. Sci., 17, 845–860, 2017 https://doi.org/10.5194/nhess-17-845-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy)

Federica Ferrigno, Giovanni Gigli, Riccardo Fanti, Emanuele Intrieri, and Nicola Casagli Department of Earth Sciences, University of Florence, Via La Pira 4, Florence, Italy

Correspondence to: Federica Ferrigno (federica.ferrigno@unifi.it)

Received: 23 October 2015 – Discussion started: 7 December 2015 Revised: 14 April 2017 – Accepted: 4 May 2017 – Published: 9 June 2017

